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As a convenient qualitative approach to strongly correlated electronic systems, an inhomogeneous
Hartree-Fock plus random-phase approximation is applied to response functions for the two-
dimensional multiband Hubbard model for cuprate superconductors. A comparison of the results with
those obtained by exact diagonalization by Wagner, Hanke, and Scalapino [Phys. Rev. B 43, 10517
(1991)] shows that overall structures in optical and magnetic particle-hole excitation spectra are well
reproduced by this method. This approach is computationally simple, retains conceptual clarity, and
can be calibrated by comparison with exact results on small systems. Most importantly, it is easily ex-
tended to larger systems and straightforward to incorporate additional terms in the Hamiltonian, such as
electron-phonon interactions, which may play a crucial role in high-temperature superconductivity.

I. INTRODUCTION

Physical properties of highly correlated electronic ma-
terials have been investigated with the use of a great
number of different analytic and numerical techniques.
Cuprate oxide superconductors are one of the most im-
portant examples of such many-body systems. Rigorous
information has been obtained, by exact diagonalization
and quantum Monte Carlo simulation studies, on rather
small systems with a limited number of specific represen-
tative interactions. But really important physical proper-
ties might be missed in rigorous studies of such limited
model systems. On the other hand, theoretical treat-
ments should not be too approximate if properties
relevant to interesting phenomena such as high-
temperature superconductivity are to be captured.

To reconcile these constraints, we have proposed use of
the random-phase approximation (RPA) on the basis of
fully unrestricted Hartree-Fock (HF) states,! as a con-
venient and flexible qualitative technique, which can ex-
plore the influence of many physical ingredients and pa-
rameter values. The purpose of this paper is to demon-
strate that this approach indeed captures qualitative
features of the two-dimensional (2D), multiband Hubbard
model for cuprate oxide superconductors, by comparing
with results obtained recently by exact diagonalization of
a 2X2 system (Wagner, Hanke, and Scalapinoz). We also
note some important properties that can be missed in the
studies of such small systems.

In our approach, self-consistency between one-body
and two-body Green’s functions is not imposed in con-
trast to the so-called conserving approximations.> One-
body Green’s functions are given in the fully unrestricted
HFA. Two-body Green’s functions are then obtained in
the RPA, which take all linear fluctuations around the
HF state into account. To recover the self-consistency,
the resultant two-body Green’s functions should be used
to obtain new one-body Green’s functions. The latter are
then used to obtain new two-body Green’s functions, and
so on, to convergence. However, it should be stressed
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that qualitative features in particle-hole excitation spec-
tra are available even within the RPA, if linear fluctua-
tions are studied around true HF states. The true HF
states are obtained without any assumption on the form
of charge and spin densities, so that they are in general
spatially inhomogeneous.

II. HARTREE-FOCK STATES
We study the 2D multiband Hubbard model,
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The operator c:ra creates a hole with spin a in the Cu

deyZ or the O p, , orbital. Hopping integrals #;; include
the nearest-neighbor Cu-O and O-O hoppings, 7,; and
—1,,, respectively. On-site energies e; contain ¢, and ¢,
for the Cu and O orbitals, respectively, with A=ep —€y.
One-site repulsions U; include U, and U,. Long-range
repulsions U;; contain a nearest-neighbor Cu-O repulsion
U,y The bracket under the summation symbol means
that each combination of i and j is counted once. We
show results of undoped, one-hole doped, and two-hole
doped systems in the case of by = 1, Lo =0,A=2,U;=6,
Up=3, and Upd=1 in the 2X2 unit-cell system with
periodic boundary condition, so that comparison with ex-
act numerical results? can be made.

As a first step, the unrestricted HF Hamiltonian is
solved with self-consistency conditions for on-site and
nearest-neighbor, charge and spin densities, without as-
sumption on the form of these densities. The charge and
spin densities are shown in Fig. 1 in the one-hole doped
system, as an example. The radius of a circle represents
charge density at that site. An arrow indicates magni-
tude and direction of spin density, normalized so as to
touch the circle internally only if completely polarized.

In the parameters used in Ref. 2 and here, the one-hole
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FIG. 1. Charge and spin densities in the one-hole doped 2 X2
system with A=2, U,=1, U;=6, and U,=3. The densities
are represented by radii and arrows, respectively.

doped HF state contains a local charge bag, for which an
added hole enters mainly a Cu site and the four surround-
ing O sites canceling the spin density at the central Cu
site. Thus the local charge bag has S*=0, but does not
necessarily have S=0 due to intrinsic limitations of the
HF states. The local charge bag is regarded as the best
single-Slater-determinant state representing the Zhang-
Rice singlet state.*

The spectral weight for single-particle excitations is
given by the imaginary part of the one-body Green’s
function. This is shown in Fig. 2 in the undoped and the
one-hole doped systems. The solid and dashed lines
denote the Cu and O density of states (DOS), respective-
ly. The O DOS was averaged over the two O positions.
The energy o=0 is set at the center of the energies of the
lowest unoccupied and the highest occupied orbitals in
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FIG. 2. Spectral weight (in arbitrary units) for single-particle
excitations in the (a) undoped and (b) one-hole doped 2X2 sys-
tems with A=2, U,u=1, U;=6, and U,=3. The solid and
dashed lines denote the Cu and O DOS, respectively.

the undoped system. In order to make comparison with
other results? and experimental data easier, the energy
scale is reversed so that the regions w>Ep and w<Ep
correspond to creation and annihilation of an electron,
respectively. However, whether a HF orbital is occupied
or unoccupied is still indicated using the hole description.

In the undoped system, there are generally six bands
because three states per spin per unit cell are doubled by
the antiferromagnetic (AF) spin configuration. When the
direct O-O hopping ?,, is absent, two of them form a
dispersionless nonbonding oxygen band (NBO). Among
the remaining four bands, two bands are well separated
above and below from the NBO, and they have weight
mainly at Cu sites. In electron language, these bands well
below and above the NBO are called the upper Hubbard
band (UHB) and the lower Hubbard band (LHB), respec-
tively, following Ref. 2. The residual two bands have
dispersions above and below but near the NBO, and they
have weight mainly at O sites. We call these bands below
and above the NBO the upper and the lower parts of the
bonding oxygen band (UBO and LBO), respectively.

It should be noted that the limited number of momen-
tum points in the magnetic Brillouin zone of the 2X2
unit-cell system, p=(0,0) and (,0), span these “bands.”
Furthermore, the LBO is degenerate with the NBO at
p=1(0,0), which state corresponds to a half of the LBO in
this small system. Thus it is reasonable that the spectral
weight for single-particle excitations consists of only
several discrete peaks. The lowest unoccupied HF orbital
belongs to the UBO in the “band” picture. It should be
noted that the UBO has small but finite weight at Cu
sites. If the description by a single Slater determinant is
relaxed, the lowest unoccupied HF orbital or the upper
half of the UBO might be well described by the Zhang-
Rice singlet state,* as discussed in Ref. 2.

The doped hole occupies an orbital of the UBO and it
is self-trapped into a local charge bag, creating a band
structure with two local HF orbitals (L) appearing in the
charge-transfer gap, as shown in Fig. 2. These local HF
orbitals (L) have strong Cu-O-hybridized character at the
location of the local charge bag. They are regarded as
correlated states (CS)? because reconstruction of bands is
caused by many-body effects. Some orbitals in the NBO
also appear localized and are denoted by L’ hereafter.
But it should be kept in mind that it is not really clear in
this small system whether the L’ are really localized or
extended one. (See Sec. III.)

In short, the upper half of the UBO in the undoped
system and the L in the doped systems are regarded as CS
in Ref. 2. The NBO and L’ correspond to the NBO
there. The interpretation of the UHB and the LHB are
the same. Meanwhile the LBO and the lower half of the
UBO are not distinguished from the NBO in Ref. 2, but
the corresponding structures are clearly seen there, too.

III. RPA EXCITATION SPECTRA

Next we use the RPA and study linear fluctuations
around the (inhomogeneous) HF states by diagonaliza-
tion of the boson Hamiltonian,!
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where the operator §;¥ stands for creation of a particle-
hole (p-h) pair, gy—clic Here the indices A,v and pu,7
denote unoccupied and occupied HF orbitals, respective-
ly. The first term describes p-h excitations in the HFA,
where ¢, and g, are the HF energy levels. The second
term represents scattering of a p-h pair (v* term), pair-
creation and pair-annihilation of p-h pairs (#* and u
terms), where
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and ¢,(ia) is the HF wave function at site i and spin a.
The formula for u%,,, is given by interchanging the two
indices v and 7 in that for u},,: u3%,,,=v},.,. The two-
body Green’s functions are directly obtained with the use
of the eigenmodes, and their energies, of the boson Ham-
iltonian Hyp,.! We have also confirmed numerically that
this RPA approach gives the same results obtained by the
infinite sum of diagrams of the bubble and ladder types.

The spectral weight for particle-hole excitations is
given by the imaginary part of the two-body Green’s
function in each channel O,

S [K0l0[n)*8(0—w,) , @)
cell n#0

where |0) is the RPA ground state and |n ) =¢£%|0) is the
excited state with energy w, of the nth eigenmode. The
number of unit cells are denoted by N... Here we con-
centrate on the paramagnetic current channel o= ]p“
(a =x or y) and the transverse component of the AF Cu
spin channel O =S¢,¢Q). The paramagnetic current
density operator is given by

A
~a __
Jp= > it e,jcjac,a .

i,j,a
where g;;=j—i. The nearest-neighbor Cu-Cu distance is
set at umty here. Note that )(j,,(a)) has the opposite sign
P

to the corresponding quantity in Ref. 2, and then
Im)( (w is equal to w0 .,(w) there. The transverse com-

ponent of the AF Cu spin density operator is given by

Se(Q)= 3 (—is;,

i€Cu

where 0,—=2a’ﬁcﬂ;aaﬁc,ﬁ, o stands for Pauli matrices.
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When the HF spin density is aligned in the x direction,
the transverse component denotes one of the y and z com-
ponents.

It should be noted that all the linear excitations were
obtained in the RPA by diagonalization of the boson
Hamiltonian Hgp,. Each linear excitation is investigated
by looking at what kind of particle-hole excitations con-
tribute to it, as described in our previous report.! Linear
excitations are classified into local shape modes, ‘“shake-
off”” branches of modes related to combinations of local
and extended HF orbitals, and extended modes such as
appear in the undoped case.

The real and regular (i.e., nonsingular) part of optical
conductivity, o (@)= Im)( A®)/w, is shown in Fig. 3 in

the undoped (solid line), one -hole doped (dashed line),
and two-hole doped (dash-dotted line) systems.

In the undoped system, the main optical absorption
peak at @ =3.6 is due to charge-transfer modes. The p-h
pairs which contribute to them are associated with the
UHB and the NBO (UHB— NBO transition). Thus the
main peak corresponds to the peak A4 in Fig. 12(b) of Ref.
2. The charge-transfer optical weight extends above
w=~A+U,;=3, while the energy difference between the
UHB and the NBO is slightly larger than
©~=A+2U,;=4, as observed in the exact diagonaliza-
tion.? This kind of excitonic effect was discussed in the
1D extended Peierls-Hubbard model at half filling in the
RPA by Nasu.’

In the one-hole doped system, the peaks at ©=3.3, 3.7,
and 4.2 correspond to transitions UHB-—-NBO,
UHB—L’, and UHB—L’, respectively. Thus these
peaks correspond to the peak A in Ref. 2. In larger sys-
tems, they might form a broad band. In addition, there
appear peaks related to the local gap states (L). The
peaks at w=2.4, 2.6, and 1.8 correspond to transitions
L L', L—-NBO, and L—L’, respectively. In other
words, they represent the process in which the O hole is
unbound from the Cu spin in the local charge bag. These
peaks correspond to the peak B in Ref. 2. The Drude
peak (D in Ref. 2) is not reproduced due to our periodic
boundary condition, as in Fig. 14 of Ref. 2. (See below.)

In the two-hole doped system, the peaks at ®=2.3, 3.5,
and 1.7 correspond to transitions UHB—L', UHB—L’,
and L —L’, respectively. Here the main peak (0=2.3) is

1.6 B
— undoped
- I t 1 hole |
1.2 J . | -- 2 holes
g T
;L‘\L OB 1 :‘. 13‘}
0.4 1 u\ F
0.0l g
o 1 2 3 4 5 6

R

FIG. 3. Real, regular part (i.e., excluding w=0) of optical
conductivity with A=2, U,;=1, U,=6, U,=3, and periodic
boundary conditions.
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located slightly lower than the main peak related to the L
in the one-hole doped system (o =2.4).

To clarify whether each peak is a true peak or just a
part of a rather broad band, larger systems should be
studied. But we emphasize here that most of the features
in optical excitations observed by the exact diagonaliza-
tion® are well reproduced by the much simpler technique
of inhomogeneous HF plus RPA.

We have also estimated the Drude weight (the real and
singular part at ®=0) in the optical conductivity for the
systems with periodic boundary condition,®’ by calculat-
ing both the negative paramagnetic and the positive di-
amagnetic contributions in the RPA with the help of the
Hellmann-Feynman theorem.®! In the half-filled 1D
single-band Hubbard model, we find oscillation with in-
creasing system size N, related to the two series of system
sizes N=4n and N=4n+2, and it converges exponential-
ly with N, as found by exact Bethe-ansatz calculations.’
However, its thermodynamic limit is positive and finite in
contrast to the exactly known value of zero*’ expected
for insulators.® This is presumably due to underestima-
tion of the paramagnetic contribution. Therefore the
present approach is not quantitative enough to be used to
distinguish between metals and insulators in the half-
filled 1D single-band Hubbard model. Nevertheless it
gives some guidance on the metal-insulator transition in
the presence of doping and especially for less special
models. Thus, in the 2D multiband Hubbard model, the
estimated Drude weight from the RPA increases with
doping for a fixed system size (2X2), which is consistent
with the exact result.? In the case of A=2, Uu=1,
U;=6, and U, =3 with periodic boundary condition, the
Drude weight (D in the notation of Ref. 2) changes from
0.34 (undoped), 0.63 (one hole) to 1.1 (two holes).

The spectral weight for AF magnetic excitations at Cu
sites Im Xséu(Q)(w) is shown in Fig. 4 in the undoped

(solid line) and one-hole doped (dashed line) systems.

In the undoped system, the main peak is at =0 and
due to the Goldstone modes, which are related to restora-
tion of the spin rotation symmetry. Here Im
X, L u(Q)(co=0) is set to be zero because (for technical con-

venience?) the retarded Green’s functions are used in-
stead of the casual ones. In the thermodynamic limit,

undoped |

IMXseucq)

T = T T
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)

FIG. 4. Spectral weight for AF magnetic excitations at Cu
sites with A=2, Uy =1, U;=6, and U,=3.
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when the AF spin configuration on Cu sites has long-
range order at zero temperature, spin-wave excitations
are expected with dispersion extending from zero to finite
energy. Meanwhile, if the ground state is nondegenerate,
exact excitation spectra for finite systems generally show
a finite gap which may disappear in the thermodynamic
limit. We believe that the Goldstone modes obtained
here belong to these spin-wave modes and should have
finite energies in finite systems if the spin rotation sym-
metry is properly included in the RPA. Thus, the
analysis of the lowest peak in this channel by the two-site
quantum spin system? may be inadequate in larger sys-
tems.

In the one-hole doped system, the peak due to the
Goldstone modes are largely suppressed and a new peak
appears in the low-energy range. This new peak has ener-
gy 0.86 and corresponds to the transition L —-UBO. A
strong-coupling estimate of the nearest-neighbor Cu-O
Kondo exchange coupling is 0.7 and comparable to this
peak energy. In the exact diagonalization, the corre-
sponding peak is reported to have energy 1.47 and sug-
gested to be related to local Cu-O triplet excitation from
the Zhang-Rice singlet.” If this is true and were repro-
duced in our approach, this process would be described
by the transition L —L’. The reason of the discrepancy
is not clear.

IV. SUMMARY

As a convenient qualitative approach to strongly corre-
lated systems, inhomogeneous HF plus RPA (Ref. 1) has
been applied to response functions in the 2D multiband
Hubbard model, which has been studied extensively as a
model of cuprate superconductors. Comparison of our
results with those obtained on small systems by exact di-
agonalization by Wagner, Hanke, and Scalapino2 shows
that overall structures in optical and magnetic particle-
hole excitation spectra are well reproduced by inhomo-
geneous HF plus RPA.

For example, an optical absorption peak is induced by
added holes at an energy less then the charge-transfer
gap, and its spectral weight increases in proportion to
doping concentration. This absorption is mainly caused
by transition of a hole from local gap states to the non-
bonding oxygen band: in other words, unbinding of the
O hole from the Cu spin in the local charge bag. The
main charge-transfer peak, caused by transition of a hole
from the upper Hubbard band (using the electron
description) to the nonbonding oxygen band, has a re-
duced spectral weight as doping increases. These peak
positions are similar to those obtained by the exact diago-
nalization.

The present approach should not in general be used to
distinguish between metals and insulators because it does
not treat small-wave-number low-frequency charge exci-
tations properly and gives an incorrect thermodynamic
limit of the Drude weight. However it gives a rather
reasonable result as far as doping dependence is con-
cerned: The Drude weight increases with doping as ex-
pected by optical conductivity measurements!'® as well as
the exact diagonalization studies.
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A magnetic absorption peak is also induced by added
holes at an energy comparable to a strong-coupling esti-
mate of the nearest-neighbor Cu-O Kondo exchange cou-
pling. A zero-energy magnetic peak of the undoped state
is caused by Goldstone modes, related to restoration of
the spin rotation symmetry, and is largely suppresed at
q=(,) by doping.

The advantages of our approach are that (i) major
qualitative features of particle-hole excitations are well
reproduced by the conceptually and computationally sim-
ple method of inhomogeneous HF plus RPA; the method
can be calibrated and controlled by comparison with ex-
act results on small systems; and (ii) it is easy to extend to
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larger systems and to incorporate additional terms in the
Hamiltonian such as electron-phonon interactions. Such
terms may play crucial roles in high-temperature super-
conductivity. As will be described elsewhere,!! it is also
straightforward to extend the method to obtain optical
conductivity spectra in both phonon-energy and charge-
transfer-energy regions on the same footing.
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