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Superconductors in strong magnetic fields: de Haas —van Alphen effect
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We consider superconductors in strong magnetic fields in the mixed state when the orbital quantiza-
tion of the electrons is important. By averaging over the Abrikosov vortex lattice, solutions are obtained
for the Green's function and gap parameter in the quantum case. These solutions are appropriate to de-

scribe phenomena on a scale large compared with the vortex-line separation and are independent of the
detailed vortex configuration. These results are used to calculate the de Haas —van Alphen oscillations in

the free energy in the mixed state. The effects of spin splitting and a layered structure are discussed.

I. INTRODUCTION

The properties of superconductors in the mixed state in
large magnetic fields is a subject of considerable current
interest. In the high-T, materials it is possible to attain
fields where the quantization of the orbits of the electrons
in the field becomes important. The condition we find for
the observation of effects associated with quantization of
the orbits is Rl /g & 1, where R is the cyclotron-
resonance radius of an electron in the magnetic field,
l =(c/eH)' is the magnetic length and /=vs/b, is the
coherence length in the field. Close to H, 2 the gap pa-
rameter 5 is depressed and g becomes long and this con-
dition can be realized. This condition can also be written

b, & Qpco„where p is the Fermi energy, to, is the cyclo-
tron frequency, and 6 is the gap parameter in the field.
These conditions are discussed further in Sec. V. Low
temperatures such that co, -kT are also important be-
cause otherwise the quantization effects are smeared out.
Previous work on this subject includes a study of the
effect of quantization on the upper critical field H, z( T) by
Gruenberg and Gunther' and by Tesanovic et al. Possi-
ble pairing schemes for electrons in quantized orbits have
been discussed by Markiewicz et al. Quantization of the
orbits of the electrons in the field leads to quantum oscil-
lations in the magnetization of normal metals [de
Haas —van Alphen effect (dHvA)] and provides valuable
information on the Fermi surface. It is clearly of interest
to carry out such experiments on the high-T, supercon-

ducting oxides. The low temperatures needed and the
fact that the upper critical field in these materials at low

temperatures is extremely large requires that such experi-
ments be carried out in the mixed state. The dHvA effect
in the mixed state of 2H-NbSe2 has been previously re-

ported. The condition that co,~) 1, where ~ is the col-
lision time, makes these experiments diScult in the mixed
state of type-II materials as they are frequently alloys.

This is presumably the reason for the lack of further ex-
perimental results. Recently two theoretical studies of
the quantization of quasiparticle orbits in the presence of
superconducting pairing have appeared ' and been ap-
plied to calculate dHvA oscillations in the quasiparticle
magnetization. The present author considered the ex-
treme quantum limit and Maki used a method of quan-
tizing the semiclassical approximation. Both authors
found that the gap in the mixed state behaved as an
effective temperature and reduced the amplitude of the
dHvA oscillations.

In this paper we obtain solutions to the Gorkov equa-
tions for the Green's functions and gap parameter in the
mixed state when the orbits of the electrons in the ap-
plied field are quantized. It is argued that a number of
properties of the mixed state are independent of the de-
tailed structure of the Abrikosov vortices which allow us
to average over this structure and leads to considerable
simplifications. We thus obtain a theory of the supercon-
ducting state in strong fields when the electron orbits are
quantized, which is useful for describing properties of the
mixed state which are independent of the detailed vortex
lattice structure. One such property is the dHvA effect.
The cyclotron-resonance radius R, of an electron with
the Fermi energy is generally much larger than the vortex
spacing d. Thus, R, /d p/2nto, -and is. large except in

the extreme quantum limit co, -p. These results are then
used to calculate the dHvA effect in the mixed state.
These results extend those previously obtained. We also
discuss the effect of spin splitting and the two- or three-
dimensional crossover for layered materials.

II. GREEN'S FUNCTIONS IN STRONG FIELDS

The properties of a superconductor are contained in
the ordinary and anomalous Green's functions, G, and
F„which satisfy the Gorkov equations
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A=(O, Hx, O} is the vector potential in the Landau gauge
and the field is assumed uniform. The variations in the
field due to the vortex structure are of order 5 and

neglected as small. p is the Fermi energy and
co=(2n + 1)m/P are the Matsubara frequencies. The spa-
tial coordinates r&

——1, etc. We can rewrite the equation
for 6, as an integral equation

G, (1,1',co) =Go(1, 1',co)

—jd2d3 Go(1, 2, co)4(2)GO(3, 2, —co)

X 6(3)G,(3, I', co), (3)

where Go is the normal Green's function. In terms of the
Landau level wave functions

Go(12') = g
n, q, k

where s„k=(n +—,')c0, +k /2m —p and

(4)

Including the phase factor the expression in the brack-
ets on the right-hand side of (6} is periodic in the variable
R=(r, +r2)/2 and the averaging consists in integrating

q= Ne+'+' e (" ql ~ ~21 H ((x ~12)/1) (5)

where k is the momentum along the field, 1=&cleH is
the magnetic length, H„ is a Hermite polynomial and N„
is a normalization constant.

In the mixed state of a type-II supereonduetor, there
will be localized excitations in the cores of the vortex
lines and excitations outside the cores. When the coher-
ence length is small, the localized excitations would not
be expected to be appreciably affected by the magnetic
field and further near H, 2 where the cores almost overlap
most excitations will be delocalized. The delocalized ex-
citations would be expected to have some kind of Landau
level structure which will lead to de Haas —van Alphen
oscillations in their magnetization. The cyclotron radius

R, of an electron with the Fermi energy will be much
larger than the vortex line spacing d (R, /d -p/co, ),
where co, is the cyclotron frequency except for extremely
large fields such that all the electrons are the lowest Lan-
dau level, a situation we do not consider. It is then ap-
propriate to average over the vortex lines and the ap-
propriate average required in (3) is

V(r, rz) = (e ' ' b(r, )—b, '(r2) ), (6)

where the phase factor

P(r, , r2 ) =(x2+x, )(y~ —y, )/1

in the Landau gauge. The form of this average does not
depend sensitively on the distribution of the vortex lines
and should be the same whether we have a vortex lattice
or a disordered arrangement of vortex lines due to pin-
ning or melting of the vortex lattice. We first consider V
for a square Abrikosov vortex lattice where

22
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b,(r)- ge ' exp — x—
2 I2

R over a unit cell. This gives

V(r)=h, e (8)

where 6 is the magnitude of the gap parameter and is
determined below. Thus, in the vortex lattice the average
order-parameter correlations are short-range perpendicu-
lar to the field and determined by the magnetic length.

We now argue that the same result (8) also applies for a
disordered vortex lattice. We can eonstruet a disordered
lattice in the same manner as Abrikosov by writing b, (r)
as a superposition of states from the lowest Landau level

2

b,(r)- g C e'~ exp —x — 1
I

2
(9)

where C are random variables with ( C C" ) =C 5
This leads immediately to form (8) for the order-
parameter correlation function. The trial order parame-
ter (9) leads to a higher free energy than the Abrikosov
lattice (the Abrikosov parameter P„=2}. This higher
free energy could be offset by pinning.

It is difficult to interpret the order parameter (9) physi-
cally so we consider another method of constructing a
disordered vortex lattice. Using a symmetric gauge, we
can write trial solution for the order parameter

A(r)-e ~'~ ' II„(z—z„) (10)

when z=x+iy and z, are the positions of the vortex
lines. This form for the order parameter has been used

by Brandt, ' Kogan, " and others. We assume that these
lines are distributed at random and calculate the average
in (2.6) by averaging independently over the position of
each vortex line. Thus,

(&(r, )&+(,))-e ' ' (, ,*+(~z„l'))",

~here N is the number of lines. The radius of the system
is (/N 1 so we take (~z, ~ ) =Nl and for large Nwe ob-

tain

(12)

(P„~k(1)~V(1 —2)e '~" 'Go(2, 1, —co)~g„, ,k, (2) )

I„„= —A6 nqk, n 'q'k'
lCOm Cnnl

where

which reduces to (8) when the appropriate phase factor
for the symmetrical gauge is inserted. These arguments
indicate that (8) should be correct under most conditions.
In the Appendix we show that (8) can also be obtained
from the Ginzburg-Landau equations.

We now solve (3) by treating b. as a random variable
with a correlation function given by (8). The problem is
analagous to that of an electron in a random potential
and, since 6 is small, we use the coherent-potential ap-
proximation (CPA). The following result makes Eq. (3)
easy to solve:
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(n +n, )!I
nn& n+n)+1

n!n )!2
(14)

This result shows that the average of G„which we
denote by G, is diagonal when expanded in Landau states
(5) and has the form

6 & Qpco, as it goes over into the zero-field BCS form.
It also applies in the extreme quantum limit when
effectively only one term contributes in (16).

(2) Strong fields kT&+pco, . We replace the sum on

n, in (16) by an integral, neglect the X in the denomina-
tor, and obtain

„,k(1) „*,k(2)
G(12)= g

k ico E—„k
—X„k(co)

(15)

—y /4n co
Q2 oo

dy
(4~n ))~'co — leo+a k„+y

(23)

where self-consistency requires

I„„
nk ( (16)

After introducing a new variable y'=y+c„k and
evaluating the integral in the low-temperature limit, we
find

Before looking at solutions of this equation we obtain
the equivalent of the gap equation for b, . From (2) the
equation for the gap is

b, +(2)=—g f G()(3,2, —co)b+(3)G(3, 1,co), (17)

where A, is the interaction. We multiply this by
b,(1)e'4" ' and average both sides as in (6) again using
the CPA approximation. This gives the equation for V

V(1,2)=—g IG()(3,2, —co) V(1,3)

([P(),2) —P(1,3)]G (3 1 ) (18)

It is not difficult to show that (8) is a solution of (18) with
6 being determined by

g g G(n, k, co)X(n, k, co) .
2~1 pL„k~

(19)

We obtain the equation for the transition temperature by
letting b, ~0 on both sides of (19) which gives

1= g I„„.GO(n, k, co)GO(n', k, —co), (20)
2m. l pL „k„~

"

which is identical with that obtained by Gruenberg and
Gunther. '

We now examine the solutions of (16). For large quan-
turn numbers, the case of interest when p) co„we can

—(n —n) ) /4n
approximate I„„-e ' /&4n n and thus

~n
—n, ~

&n -(p-/co, )' . We then consider two cases.
(1) Weak fields kT & ~n) n~co, -—Qpco, In this cas. e,

in the denominator of (16) we can replace E„k by E„k and
1

neglect X and then

+2X=
(4~n )'~ co,

I /2
l 'ITN 7T nk+

/co f
n co,

(24)

The first term in (24) corresponds to a scattering of the
excitations by the vortex lines with a scattering rate

1 v'rr/n =b, (25)
7U Nc PCOc

L

The second term renormalizes the energy and is unimpor-
ta11t.

With these results we can now evaluate the gap equa-
tion. We do this in the semiclassical limit, i.e., sums on n

are replaced by integrals. The calculations are very simi-
lar to those of Gruenberg and Gunther, ' who determined
T, (H) from (20), and so we omit the details and just
quote the results.

(a) Weak fields kT & Qpco, . This is the situation near
T,(), the zero-field transition temperature. When (19) is
expanded in b, using (22) we find

'2

kT
TcO T 7 P~c

irkT T„12(~kT)'

~o
ln +2+ y =0,

16pco,~ 0
(27)

where g is the Riemann g function. The critical H, 2 is
determined by the vanishing of the right-hand side of (26)
and gives the well-known result of Abrikosov.
b, -pco, 2(1 H/H, z) as found —by Abrikosov but does
not depend on the vortex structure because we have aver-
aged over this structure.

(b) Strong fields kT &Qpco, . The upper critical field
at low temperatures H, 2(0) can be expressed in terms of
the zero-field, zero-temperature gap Ao by

Q2
X„k(co)= .

1 CO+ E.nk

(21)
where y is Euler's constant. Then, by expanding (19) in
powers of 6 and using (24), we find the gap parameter at
zero temperature near H, ~(0) is given by

and

(i co+ E„k )—
G (nkco) =

67 +c +6 (22)

which is of the BCS form and the quasiparticles have a
Landau level structure. It should be noted that this re-
sult also applies at low temperatures and low fields

(orb) 4 y 21+—+—+—1n8' p & 7T

= ln
H, 2(0)

H
(28)

and the gap is of order i)), -pco,2(0)[1—H/H, 2(0) j. coD

is the Debye frequency. From a knowledge of the form
of the Green's functions we can evaluate various proper-
ties and in the next section we consider the de Haas-van



5484 MICHAEL J. STEPHEN 45

Alphen oscillations in the magnetization in the mixed
state.

III. de HAAS —van ALPHEN OSCILLATIONS

In this section we evaluate the oscillatory terms in the
free energy in the weak- and strong-field limits. The os-
cillatory terms in the free energy are easily calculated by
introducing the integrated density of states determined
by Dingle

Z(e)= f de'f de" +5(c,"—c,„„). (29)
2ml L

The oscillatory part of the density of states is

'tip /co 7E„,= g C~de
' 'cos

p=1
(1+5)—ad

C

(36)

where 5=nl3, /8', p is a small modulation of the fre-
quency and r„ is given by (25). The amplitude is reduced
by the scattering of the excitations by the vortex lines.
The amplitude in (35) is the same as that found by Maki
but the frequency shift is smaller.

The last term in (35) to first order in c„k leads to an
equal shift in the cyclotron frequency and Fermi energy
and thus does not have an important effect and will be
omitted. Then using (29) to evaluate the oscillatory terms
in (34) we find

Zo= —g C~d cos (e+p, }—a„21Tp

p=1 C

where d is the dimensionality and the coefficients

(30)

COF23234mpl
CO

4 Sn38mp I

a2=0,

7 3 4
a

(31)

In deriving these results for d =3 it is assumed that the
kinetic energy of an electron along the field is k /2m. In
layered materials this may not be appropriate and it may
be more realistic to take

IV. EFFECTS OF SPIN

STCAM

1T+
[co[ n

The Zeeman energy of an electron in the field is
+h =+gp&H. In a normal metal the spin splitting of the
Landau levels leads to two sets of oscillating terms in the
density of states (30), i.e., C~d is replaced by
Czd=C~d cos(2nhp/co, ). In a superconductor in the
high-temperature case kT) gpco, the quasiparticle en-

ergies are E„k+="(/ e,k+6, +h.
In strong fields Qpco, & kT when the Zeeman energy

included the self-energy (24) is replaced by
' 1/2

Q2
X„k+(co)= ~nk+ e

4nn co,

e„k
= ( n + —,

'
)co, —t cos( ka )

—p (32) (37)

so that the hopping between the planes has a bandwidth
2t. In this case

C 3=( —1) JD
4mp I a

a3=0, (33)

Q2
X„k(co)=

+4m.co, (p+ e„„)

1/2

(35)

where Jo is a Bessel function. This leads to an increase in
the magnitude of the oscillations by a factor I/a and also
introduces extra Fourier components through the Bessel
function. In the limit t (co, we cross over to the d =2
result.

We now use these results to evaluate the oscillating
terms in the free energy. The interesting case is that of
strong fields where co, )kT and X can be approximated
by (24). At low temperature it is sufficient to calculate
the energy per unit volume which is given by

2 Q2E= g g [e„k+X„I,(co}]G(n,k, co)+ . (34)
2vrl f3L „„

We will omit the last term in (34) and approximate X„k in
(24) by replacing neo, by p+E„k. This is exact in d =2
and a good approximation in d =3 when the bandwidth
along the z direction is small. The reason for this approx-
imation is to express (34) in terms of c.„k so that we can
use (30). Then

V. CONCLUSION

In order to observe dHvA oscillations in the mixed
state, a number of conditions have to be satisfied. Since
type-II superconductors are generally alloys, an impor-
tant condition which applies both in the normal and su-
perconducting states is (1) co,r) 1, where r is the quasi-
particle collision time. The results we have given are for
the clean case. In the dirty case, the sum in (36) should

7TP /6P 7

include an extra term e ' which leads to an addi-
tional decrease in amplitude. The second condition
which applies both in the normal and superconducting
states is (2) kT (co„because otherwise the Landau level

structure is smeared out. The third condition involves
the superconducting gap parameter.

From (36}we require co, r, & 1 and from (25} this condi-
tion can be written

Q2
&1,

~c 't/l4~c
(38)

where 5 is the gap parameter in the magnetic field.
From (28), 6 @co,(1 H-/H, 2) near H, 2 so—that (38) be-
comes

where c.„k+=c.„k+h. When this result is substituted in

the Green's function 6+ ' =ice —c.„k+—X„k+, we see that
the quasiparticle energies have energies c.„k+h, where
h =h(1 b, /co, p—) We thu. s obtain two sets of oscillato-

ry terms in place of (36}with p+h replacing p.
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' 1/2

1—H (1.
Hc2

(39)
useful discussion and to Boston University Physics
Department for hospitality.

We can interpret this condition by putting
V no=H, z/(H, z

—H). The number of observable quan-
tized levels is of order no and a dHvA efFect is only ob-
servable if no) n =p/co, . At low temperatures the zero
field gap bo is of order Qpco, 2 so that (39) can also be
written

APPENDIX

In this appendix we show that the order-parameter
correlation function (8) can be obtained from the
Ginzburg-Landau (GL) equation and that the average
current is zero. The GL equation for the gap parameter
1s

(40) 1 V—
4m

2
2ie 1 Te T

A, h(r, )+ '
b, (r, )

o im

CO

(41)

where A, is a coupling constant and coo some cut-off fre-
quency. At low temperatures kT(co„ the first term on
the right hand side of (41) leads to a reduction in the am-
plitude of the dHvA oscillations with integer p by a fac-
tor [1+A, log(2trpcoolco, )] ' if too) co, . The second term
on the right in (41) aifects the phase of the oscillations.
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which is similar to the condition given by Maki. For the
high-T, materials this appears to restrict the dHvA
efFects to a narrow region near H, 2 or require an extreme-
ly large field. The situation is much more favorable in
the low-temperature superconductors.

It has been suggested by a number of authors that, in
the high-temperature superconductors, the Fermi-liquid
behavior breaks down. This will lead to a smearing out
of the Fermi surface and reduce the amplitude of the
dHvA oscillations. (Temperature and scattering also
smear the Fermi surface. } For example, the anomalous
normal-state properties of the high-temperature super-
conductors can be understood with the hypothesis of a
marginal Fermi liquid' in which the electron self-energy
is frequency dependent

where PL = [7g(3)/6(n T, ) ]p and B=
—,'p.

We multiply this by 6'(r2) and average supposing that
6 is a Gaussian random variable which allows us to fac-
tor the quartic term. This leads to an equation for the
correlation function C(r, r2 ) = ( b '(r2 )h(r, ) ) which is

1 Vi-
4m

2ie 1 Tc

C '
pL T,

—2Bb, C(r, r2) =0,

(A3)

in agreement with (8) with b, being determined by (25).
The current is given by

J(r)- —( V2 —V, )b,"(2)b,(1)

4 2

I~(r) I'A(r) . (A4)

When this is averaged supposing A is due to a uniform
field (J)=0. This justifies the neglect of variations in the
field and the approximation of A by the vector potential
of a uniform field.

(A2)

where b,2=C(r, r) a constant. The solution is easily
shown to be
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