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Renormalization group and the Fermi surface in the Luttinger model
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The exactly soluble Luttinger model can also be analyzed from the point of view of the renormaliza-
tion group. A perturbation theory of the beta function of the model is derived. We argue that the main
terms of the beta function vanish identically if the anomalous dimension is properly treated and if suit-
able properties of the exact solution are taken into account. Our treatment is purely perturbative and we
do not discuss the problems of convergence of the formal series defining the beta function: it has recent-

ly been established, however, that the series defining it is convergent.

I. THE LUTTINGER MODEL

The recent interest on the Luttinger model, see Ref. 1,
motivates our discussion of its properties in a formalism

which admits extensions to higher dimensions, developed
in Ref. 2. The model, see Ref. 3, describes two spinless
fermions labeled by co =+1, with a one-dimensional
Hamiltonian

+ A, f dxdyv(x —y)
0 & qi, 4.+, 4., g q2, Py+, 4y,

+v g (q, „+qz „)f dx P„+„g„„+of dx
co=+1

where 1T are creation and annihilation field operators, x
and y are position variables in the interval [O,L] con-
sidered with periodic boundary conditions, p F(2m. /
L)(nF+ ,') is the —Fermi momentum (nF is an integer de-

pending on L so that p~ is independent of L up to terms
of order 1/L), and Po is the velocity at the Fermi surface;
kv(r) is the interaction potential, which will be supposed
to have a short range, equal to a fixed length po ', and
even as a function of r; the charges q &

and q2 are arbi-
trary constants. Finally v and o are coun, terterms, neces-
sary to balance the ultraviolet divergences due to the un-
realistic linear dispersion relation in the kinetic-
energy —chemical-potential term To, in fact a fermion
field of type r0 and momentum lt has energy Poca.k. We
fix units so that the Fermi velocity is Po= l.

The case considered by Luttinger was q &

q, =q2+ =0, q2 =1. The model was solved in Ref.
4, but the exact solution applies to the general choice of
q;; the case q; + =

—,
' is explicitly treated in Ref. 4 and ex-

tended to a simple spinning model in Ref. 5.
The values of v and 0. have to be computed by intro-

ducing an ultraviolet cutoff in (1.1) (which otherwise does
not have a well-defined meaning) and, subsequently, by

imposing that the Schwinger functions of the model are
well defined uniformly in the cutoff. Their values depend
upon the way the ultraviolet regularization is introduced
and can be altered by an arbitrary finite constant (possi-
bly affecting the physical value of the Fermi momentum
or the Fermi velocity).

The regularization, which is implicit in the exact
theory of the ground state, seems to be simply the
suppression of the modes with k (—2 po for the a) =+1
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fermions and k & 2 po for the co= —1 fermions, where po
is an arbitrary (for the time being) momentum scale and
U is a cutoff parameter that will eventually go to infinity.
It is natural and convenient to fix po

' equal to the range
of the interaction potential, supposed of finite range.

Since the momenta +pF play a special role for the two
fermions, it is convenient to measure the momenta of the
co-type fermions from pFco. If we call ak the creation
and annihilation operators of the two fermions, we intro-
duce the following field operators:

/TO + tTO
g„,„—=e g„„e

1 +(ik x+(.t0 k pt,.—)t]
e cxk ~L

+IPFci)'x=e

where

R;(p)= g q; ~„(p), p„(p}=g ak+v „ak „,
Cil k

JV = g (a k a k a ) a k )
k&0

(1.4)

Note that To is equal to g„krokak „ak „up to a con-
stant, but the constant, see below, is infinite, and hence
this simpler form for To is not defined (although it can be
very useful for heuristic purposes).

One can check that the operators (1.3) and (1.4) can be
regarded as operators acting on a Hilbert space & con-
structed as follows. Let

oq e o e (ik x+tro k)a (1.2)+ tT + tT l + ' +

k

k~O
(1.5)

+ = +
ak, =+k+p

To=+ g k(a„+k„a k„+a „k„a+„k„),
co k)0 (1.3}

HI=L 'A, g v(p)[R, (p)R2( p)+R)( ——p)R2(p)]
p&0

+L 'A, v(0) g q, „A'„gq2 „JV„

The following Hamiltonian operators, necessary to estab-
lish contact with the existing literature, will also be intro-
duced, following Ref. 4:

be an abstract vector, formally in Fock space. Let %z be
the abstract linear span of the forrnal vectors obtained by
applying finitely many creation and annihilation opera-
tors to ~0). We get an abstract linear space on which we
introduce the scalar product between two vectors by
computing it in the obvious way as if they were Fock-
space vectors (no problem arises because we only deal
with vectors obtained by acting finitely many times on
~0) with the basic operators); then we define & to be the
completion of &o in the scalar product just introduced.

With such definitions it is easy to check the following
basic commutation relations:

[p„(ep),p„.( —ep ')]= em p5 „,5 —. , [p„(ep), To]= em pp (e—p), .L

p„(ep), g p„(ro'p)p„( —tv'p) = —ero p p (ep), p (
—ro p)~0) =0,L

p )O, tip

(1.6)

for p &Q, g=+1.
Furthermore, the operators (1.3) and (1.4), regarded as operators on % with domain ~o, are essentially self-adjoint.

A simple calculation shows that, if (setting q, =g„q,„)
v= —A v(0)(2 po+pF )/2m,

a =q+q ~v(0)(2 p, +pF)'/(4~') —L )(0~To~0),
(1.7)

then one has To+HI = To+HI, in a formal sense, as the To+HI is defined using an ultraviolet cutoff 2 po. The latter
relation becomes an identity in the limit U~ ~.

Moreover, one can also write

To +HI = g f d x:P„+„(ir0 B)g„„:+Afd x dy v (,x—y):
'

g q, „g„+„P„„'::'

g q2 „g„+„g „ (1.8)

where:: denotes the Wick ordering with respect to the
vacuum ~0) of & (i.e., the Wick ordering of a product of
creation and annihilation operators is obtained by rear-
ranging the order so that a+k +,ak +,ak, a k, k &0
are always to the right of the other operators, and the
new product is multiplied by the parity sign of the per-

mutation necessary to produce it).
We adopt the choice (1.7) of the counterterms because

it allows the simple interpretation (1.8) of the Hamiltoni-
an in terms of Wick ordering. However, the model thus
obtained is not, strictly speaking, identical to the model
of Luttinger as solved by Mattis and Lieb, see Ref. 4.
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They, in fact, add to (1.1) an extra term so that the opera-
tor HI' in (1.3) is just given by the first line, i.e. , v(0) is in
some sense forced to vanish, without requiring v(p) to
vanish continuously when p~O. But the second line in
the definition (1.3) of Ht' is an operator CI commuting
with To, as well as with all the operators p (p) and this,
of course, implies that the model (1.1) with the choices
(1.7) of v, o, i.e., (1.3) or (1.8), is exactly soluble in the
same sense of the Luttinger model and the two Hamil-
tonian are defined on the same Hilbert space and have the
same eigenvectors. The only problem is that CI is not
bounded below; however, it is easy to see that
To = To +Ct is still bounded below if A v (0 ) satisfies the
stability condition:

[Av(0)P] ~ [2m+2Av(0)q, +q2+ ][2m+2Av(0)q, q2 ],
(1.9)

P =q)+qp +q)

In fact, if we consider the action of To on the states with

n, excitations (i.e., number of particles minus number of
holes) of type r0=+ and n2 of type to= —,we have

A,v(0) 2 2To (n(+n2)+ (q(+q2+n&+q( q2 n2)
L

tanh2(p(p )=- A,v(p )P

2vr+kv(p)Q

and

~=qi+q2 —+qi —p2+ ~

Q =q(+q2+ +q( —q2—

+s(p) 1+ q, q2
A,v(p)

+ c(p)s(p)P,
A.v(p)

(p) =s(p) 1+ q, +q2+
A,v(p)

+c(p) 1+ q, q2
A, V(P)

+ c(p)s(p)P,
A,v(p)

+(p ) =c(p ) 1+ q(+q2+
A, V(P )

(1.13)

(1.14)

(1.10)

T= (2n/L) g —p„(ro p)p (
—co p) .

p )O, tip

Hence To —T commutes with all the operators p„(p),
and, therefore, with HI'+T. In this way we realize

To +HI as the sum of two commuting operators, the
second of which is a sum of easily diagonalizable corn-
rnuting operators, and this leads to the exact solubility of
the model, see Ref. 4. This is done by determining an
even function (p(p) such that setting
S=2vrL 'g, (( +z(p(p)p 'p+(p)p (

—p) then the opera-
tor e' (HI" + T)e ' does not contain mixed terms, i.e., it
can be written, if Eo(A, ) is a suitable constant, in the form

2&
& [&+(P»P+(P )p+( P )

p)0

+E (p)p ( —p)p (p)]+Eo(&),

and one checks that this is achieved by taking

(1.12)

and the right-hand side (rhs) is bounded below if and only
if (1.9) is satisfied.

As we shall see below, the condition (1.9) is implied by
the solubility condition of the model in the case con-
sidered in Ref. 4 (q; „=—,

' ), but this is not true in general.
However, (1.9) is always implied by the stability condi-
tion for the full Hamiltonian, if v(p) is a continuous func-
tion, as we shall suppose.

Let us now define Hl' —=HI —C~, so that To
+HI = To +HI ~ The basic remark of Ref. 4 is that the
commutation relations in (1.6) imply

[p„(+p),T To ]=0 for —p)0

where c(p)=cosh(p(p), s(p)=sinh(p(p). Of course one
needs that the rhs of the definition (1.13) of the hyperbol-
ic tangent be & 1 in absolute value: we shall call this the
"solubility condition. " Moreover, (1.12) and (1.14) imply
that the Hamiltonian is bounded below if and only if

[Av(p)P]'& [2~+2Av(p)q, +q, + ][22r+2XV(p)q, q, ] .

(1.15)

This stability condition is a consequence of the solubility
condition only if q, +q2+ =q, q2, as is the case con-
sidered in Ref. 4 or in the original Luttinger model. In
general only the converse is true, i.e., the stability condi-
tion (1.15) implies that the rhs of (1.13) is ( 1 in absolute
value, so that one should always assume the stability con-
dition (1.15).

In the rest of this paper we shall consider, as in Ref. 4,
the case q;~= —,', i = 1,2, then

1/2

e+(p) =E (p) =e P(P'= 1+ Av(p)
2' (1.16)

Eo(A, )1Sand the ground-state energy
+(e —2y(P)

Let us remark that the operator To —T can be explicit-
ly computed, and it is a constant in every linear space
containing a given number of excitations (this is nontrivi-
al and is implicit in Ref. 4, as pointed out in Ref. 6). The
constant can be computed in a state with n

&
excitations

of type co= + and n2 of type co= —,simply by evaluating
the expectation value of To —T on the ground state with
the same number of excitations, namely, the state with
the first n

&
levels of type co=+ occupied and the first n2

of type to= —occupied (if n, (0 then one m. eans, of
course, holes created). The problem is solved by the re-
mark that the commutation rules (1.6) imply that
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e' p+(p)e ', e' p ( —p )e ' are bosonic creation opera-
tors, while e' p+( —p)e ', e' p ( —p)e ' are bosonic
destruction operators annihilating the new ground state
which is IQ) =e' IO) as well as all the similar ground
states in the spaces with given numbers of excitations.

For completeness we give the argument (see Ref. 7)
showing that T0 —T is constant on the space with a fixed
number of excitations. Since Cl is clearly consistent in

this space, it is sufficient to consider the case A, =O, so
that To' = To. It is an immediate consequence of (1.11)
that, if E.(n„n z) are the eigenvalues of T0 —T in the
space with excitations numbers n1, n2, then each of the
corresponding eigenstates

I
n &, n2,j ) generates a family of

eigenvectors with the same eigenvalue simply by applying
the operators p+(p) and p (

—p) an arbitrary number of
times. Such vectors are all pairwise orthogonal and
nonzero. Furthermore the eigenvector ln „nz,j ) with ei-

genvalue EJ(n(, n2) can be so chosen that p+( —p } and

p (p) annihilate it. Then we see that by applying the
operators p+(p) and p (p) an arbitrary number of times
to In „nz,j ) one gets a family of vectors with the proper-
ty that (To —T) has eigenvalue E(n„n2,j ) on each of
them, while T has eigenvalue g & Op[n +(p) +n (p)],
where n+(p), n (p) are the number of times the opera-
tors p+(p), p (p) are applied. Clearly the partition func-
tion for To at positive temperature P can be computed
in two ways: one is by observing that it is the partition
function of a free Fermi gas with two particles with
dispersion relation to(k —pF ), which is obviously

(1.17}
n&0

where the independence of the two species of fermions
with co=+1 produces the squaring of the partition func-
tions and the identity E(j,n (,nz ) =E(j,n „0)
+E(j,0, n2 ).

Note that, as remarked above, we know explicitly at
least one among the eigenvectors lj, n „n2 ) of To —T,
namely, the one in which all the levels are filled up to the
level n, (above k =pF) with fermions of type + and down
to the level n2 with fermions of type —.Furthermore, on
such states it is easy to see that T has eigenvalue 0, while
T0 has value (n, +n 2 )tt/L. We see that if, and only if,
such states were the only ones with n, , n2 excitations, it—pE(n1, 0'g) 2would follow that the (gi „e ' '

) would have to
2 —pE(n1, 0'j) 2be the sum (gk~zz ) . However, (g, „e ' '

)

can be obviously (Ref. 4) computed by remarking that the
two above methods of computing the partition function
of the free gas must yield the same result [i.e., (1.17)
equals (1.18)], so the property that there is only one
eigenstate of T0 —T, which has the quantum numbers n „
n2 and which is annihilated by p+( —p), p (p), is

equivalent to the validity of the following identity among
power series:

+ oo oo

zk = P(l+zk ')(1—z
k= —oo k=1

(1.19)

which is a well-known identity about theta functions (see
Ref. 8, Tables 8.180 and 8.181).

Had we taken the Fermi momentum to be
pt;=2mnFL ' [instead of pF =2m(nF+ ,')L '] and —per-
formed consistently the above analysis, we would have
found instead of (1.19) another remarkable identity:

where z=e ~ ~ [ recall that p~ =2m/L(nF+ ,')]-
Another way is to note that the above basis of vectors
In&, nz,j, [n+(p)], [n (p)}) is obviously complete, and
the operator To =—( TD

—T )+T has on it eigenvalues

zk(k+()/2 g (1+z ) (1 z )
k=0 k=1

II. SCHWINGER FUNCTIONS

(1.20)

so that the partition function is

—pE(n, , O,j) 2

e
j,n1

g (1—z ")
n&0

E(n&, nzj )+ g p[n+(p)+n (p)],
p&0

(1.18)

By repeating the classical analysis of Ref. 9, one finds
expressions for the Schwinger functions of the Gibbs
state at inverse temperature P for the system confined in a
box [O,L ] with periodic boundary conditions. If
x=(x, t), p)t;)0, t;At if i', s;=+I, and

Im(1), . . . , n(n)] is the permutation of [1, . . . , n] (with
parity o „)such that n.(1))~(2) & "& m (n), then

13(H—Eo ) 1
—(p—t~, )

)(H —Eo )S~ t'(x(, to&, s&, .. . .,x„,to„,s„)=( —1) (Tre ) 'Tre

w(i) e(2I 0 w( l w( ) 0Xe e
tr(n)' m(n)

is the standard definition of the Schwinger functions, where E0 is the ground-state energy.
Therefore, if IQ) denotes the ground state of H, it is

limS ~(x to s . x to s )—:S =( —1) (Qlg'"" e "" "" '"@""' IQ).1~ 1~ 1~. . . ~ n~ n~ n = n m(1)' m(-1 ) "&n) ~~n)

(2.1)

(2.2)

The mean number of particles with momentum k+pFcu and type co can be, consequently, evaluated as

nk „= lim lim — dxdye' '* "'SL ~((x,O+), m+;(y, O), —,m)
1

L~oo P~oo I (2.3)
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where 0+ means that 0+ should be replaced by t & 0 and then the limit of the large parentheses as t ~0 has to be con-
sidered.

The rhs of (2.2) can be explicitly evaluated; for example, for the model with p;(cD) =
—,', i =1,2, one can show, see Ref.

10, that

gLSL ~n SL„—e O, n

where So „are the free Schwinger functions and

(2.4)

L 2~ 1
Qn (X)~CD)~e)~" ~Xn~CDn&en } X X

p)0 P co—+1
s(p) —+2 g eeie

i j C I
i&j

pit- —t I/c&(p)
cosp (x —x )

pit; t
I pit; t I/c2(p)e;e(e ' ' —e ' ' ' )cosp(x; —x)

i,j &I
i&j

—pit, . —t. I/c2(p)—c(p)s(p) g E;eje ' ' ' cosp (x; —xj )

t; t ~

e ' ' —e

i&j

-pit, . -r. I/c, (p)
)sinp (x —x ) (2.5)

Here I denotes the set of indices such that co; =co and
we have set

Xv(p) ) —2m, (2.7)

which we shall suppose to be satisfied in the following.
We have seen that the physical meaning of (2.7) is simply
that of the stability of the model, i.e., boundedness from
below of the energy spectrum, proportionally to the num-
ber of particles and holes).

Denoting S(x,cD):—limL „limt) „S '~(x,
cD, —;O,cD, + ), and So(x, cD) the corresponding free func-
tion, we find

S(x,cD) =S (x,cD)exp —Q(x) —R(x) icD I—(x)

with (see Ref. 10 for details)

Q(x)= f dp (1—e ' cosp. x),2s ( p ) —p I
t

I /c, ( p)

0 P

(2.8)

s(p)=sinhg(p), c(p)=cosh'(p), c2(p)=e P'P',
(2.6}

tanh2tp(p) =- A,u(p)
A, v (p )+4m.

Of course the positions (2.6) are meaningless, unless

—i(kot+kx)

So(x, cD) = dkodk
e

(2~)2 iko+cD—k 2n icDx+t

2' =2[sinht)p(0) ]
' 1/2

1+ 2'
2

1 + ~ ~ ~

8 2m.

+ 1+ 2'

' —1/2

(2.11)

This shows, using (2.3) and (2.8), that the occupation
number nk behaves, near k=0, i.e., near the Fermi sur-
face, as a e(k)cDb ~—k~ '"l "'l, with e(k)=sgnk and a, b
two suitable positive numbers; hence, we have no discon-
tinuity at the Fermi surface, if A, ,AO, but just a singulari-
ty in the derivatives of suSciently high order, depending
on the value of g (the first order if 2l) (1). Note also that
the stability condition enters naturally in the solubility
restriction (2.7).

Equations (2.9) and (2.6) also imply that R (x, t )

+icD(t/~t~)I(x, t) and Q(x, t) behave, respectively, as

ln[[icD x+c2(0) 't]/(icD x+t)]

(2.10)

The (2.9) and (2.6) imply that R(x, O) =I(x,O)=0 and
that Q(x, O) to + cc as ~x~~ no like 2r) ln~x~, with [if
A, , =A,u(0)]

and

( ) f d cospx
(

—pit
—

pit l/cz(p)
0 P

( f d
sinp'x

(
—p gl

Pirl�/

p&p)
)O'P

(2.9) and

gln[x +cl(0) t ],
for x + t ~ (x), so that the asymptotic behavior of
S(x,cD} ls
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1 1 A(A, , )

2lr ito.x+c2(0) 't [x +c2(0) t ]"
It is possible to choose 5 so that

(2.12)

S(p, co) =&(k, )lp I "So(p,ro) for Ip I 0, (2.15)
where A ( A. , ) is a constant such that A (A, l )~ 1 as A, l ~0.

Formula (2.12) can be written

S(p, ro)=B(A, ) , for Ip I~0,Iq I'"
—iqo+mq

(2.13)

t ~(1+5)t,

c2(p)~ 1+ A,u(p)
2lr(1+5)

' —1/2 (2.14)

where qo=PO and q=c2(0) 'P. This imPlies that there
is no discontinuity at the Fermi surface and that the Fer-
rni velocity is equal to c2(0), which goes to 1 as A, ~O.
It is, however, possible to consider a variation of the
model (1.1), such that the Fermi velocity stays equal to 1

for any I,. In fact, if we add a term 5TO to the Hamiltoni-
an, the model is still exactly soluble and the Schwinger
functions are obtained from (2.4) and (2.5) by the replace-
ments (see Ref. 10)

and 5 is given by the condition (see Ref. 10)

c2(0) '(1+5)=1 . (2.16)

The exact solution (2.4) allows us to deduce all the
properties of the Luttinger model. It is, however, in-
teresting to investigate another approach to the theory of
the ground state, which does not rest, in principle, on the
solvability of the model and can then be extended to
more realistic examples.

Starting from the expression (1.8) and going through
the well-known pattern of deductions used to set up the
theory of the ground state as a problem of the analysis of
a suitable functional integra1, one can easily find a func-
tional integral formulation of the Luttinger model.

If we introduce a family of Grassmann fields lb(t„—+„,
which we denote with the same symbols already used for
the Fermi field operators (following a common practice,
source of a lot of confusion), (2.1) can be rewritten

S ' ( „x„to»s. . . , x, n'to, ne)n=:- ' f pg
' (dg)Q„I „l g„" ~ "e

fPL,P( d q )e
—v( ll )

where V(g) is

(2. 17)

A f d x dy dt U(x —y): g q, „t(„+,„p„,„::g q2 „p„+,„lI(„,„:, (2.18)

which is an element of the Grassmann algebra generated by g„—„(hence it is not an operator), and the integrals over g
in (2.17) are defined by expanding exp[ —V(g)] in powers of V(g), hence of g, and evaluating the integrals using the
Wick rule with the field propagator vanishing for all the pairings except for those between a f field and a g+ field; in
the latter case the propagator has the value

—i(kot+kx)

(2n. )
(2.19)

where (2m) f' 'P' means gl, gk (Lp) ', with the sums running over the values k=2m.L 'n, k&=2rrp '(m+ —,'), m

and n integers. The latter structure of k —= (k, ko) means that one should regard the inverse temperature interval [O,p]
with antiperiodic boundary conditions: P„o„= f„tr-

In the following sections we shall study, instead of the functions (2.17), the truncated Schwinger functions, which are
simply related to them and can be derived by a well-known procedure from the generating function 4 (ql ) in the follow-
ing way (we suppress the indices L,p):

52ngT( ~ )
S2n(x 1&+1~ ' ' xn~+n ~31~+1~~' ~3 n~+n ) +5 ".59'x, ~,

"
0'y

S (y)—:ln fP (dlit)e
(2.20)

where y— are auxiliary Cxrassmann variables, anticom-
muting also with the f„ fields, 5 denotes the formal
functional derivative which, together with the logarithm
and exponential, is defined in the sense of formal power
series, and

(ql+, g )—:g f dxq&„+ p „. (2.21)

The truncated Schwinger functions are then construct-
ed as power series in A, , whose terms are represented by
suitable Feynman graphs. As long as L,p( ~, the series
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can be shown to be convergent. One could then try to
collect terms of the series so that the limits L,P~ ~ can
be taken, using renormalization-group techniques. This
is what we shall do, using, however, a different infrared
cutoff, which has a meaning only with respect to the rep-
resentation (2.20) of the Schwinger functions (it seems
that our method does not work with the original cutoff}.
In order to solve the problem we use essential informa-
tion from the fact that the model is exactly soluble.
However, the results that we obtain can be easily extend-
ed to the more realistic system of spinless electrons in-
teracting with a symmetric potential, which is not soluble
(see Ref. 2). Furthermore, there is an intrinsic interest in
the technique that we shall explain in the following sec-
tions, because of the anomalous scaling (2.12), which can
be completely understood in this model from the point of
view of the renormalization group.

III. ANOMALOUS SCALING
AND RUNNING COUPLINGS

We consider the Grassmann integration with propaga-
tor

—i (k0t+ kx)

5„~f . =5 g(x, co)
(27r )2 —ik0+ cok

(3.1)

which is the limit of (2.19) when L,P~ ~. The expres-
sions (3.1) must be handled with care; in fact one can see
that the perturbative expansion of the Schwinger func-
tions, expressed in terms of Feynman graphs, can agree
with the exact expression (2.4) (in the limit L ~ DD ) only if
one calculates each contribution with an ultraviolet cutoff
on the space momentum, ~k~ ~2 p0, and then takes the
limit U —+ 0o.

We now consider the scaling decomposition:

1

g(x, cg) = g g'"'(x, co),

Po d~0d k —i(k t+kx) —a(k +k )g'"'(xai)= da f e ' ' (ik0+cok) if n ~0,—z~ —zn —2 (2 )2

(3.2)

h
,(,( ~ h)k ~,(,(n)+ (3.3)

is to define a recursive method to study the functional in-

tegrals in (2.17).
The normal scaling approach would simply be to use

that P~(dg)=g„' „P(dg'"'), in the sense that the in-

tegral of a function of P is the same regarding g as a field
with propagator g or regarding it as i}'j=i}'j'-"via (3.3)
and integrating over the various fields g'"'. The integra-
tion should be done recursively over g'", g' ', 1i'

trying to find recursive estimates. It will be clear, howev-
er, that such an approach is bound to fail. Therefore we
set up an anomalous scaling approach, as it has been
done in the theory of scalar fields in 4 —e dimensions,
where a normal scaling approach could not have worked.

We write g=g'"+f'- ' and perform the integration
over 1(' "defining

—p' (p ) p d (]) —v(f +f ) 3 4

This is a preliminary step dealing with the ultraviolet
part of the propagator; it is a step that has no relation
with the long-range slow decay of the propagator g,
which is the main difticulty. Heuristically, one expects

while g'" is given by the same integral over 0. with a
different domain, namely, aE[0,po !4]. Of course, the
remark that follows (3.1) affects only g "', which
represents the ultraviolet part of the propagator.

We introduce, in correspondence with (3.2), a sequence
of Grassmann fields g'„"„' with propagators
5„„5„~g'"'(x, m). The reason for introducing them, as
well as the related fields,

that V' ' is not very different from the original V. This
can be checked by studying the perturbation series for
V' 'in powers of k.

From the point of view of field theory, the evaluation
of V ' ' is a problem of renormalizable type, then it is not
trivial. However one can easily show that the theory is
divergence free (once v, o. are properly chosen as in Sec.
II) and that, to all orders of perturbation theory, V' ' is
an interaction containing terms of arbitrary degree in the
fields, but with coefticients decaying exponentially fast on
the scale p0 '. We think it possible to show that, for A.

small enough, one can sum the terms of the same degree
in the fields (there is some preliminary result in this direc-
tion, see Ref. 11). We therefore proceed by assuming that
V' ' has the form of a short-range potential with many-
body components (i.e., terms containing any number of
P

—fields), becoming very sinall as the number of bodies
increases.

It is important to realize why it is inconvenient to
break also g"' into scales ranging from p0

' to 0 (in

geometric progression with ratio 2); in fact at first sight
this seems to provide the possibility of a symmetric treat-
ment of the problem in its ultraviolet and infrared parts.
This would, however, be illusory, for the simple reason
that the interaction can be regarded as short ranged only
on scales p0

' or larger. In the ultraviolet scales the in-

teraction is very long ranged, and we should rather treat
it as a mean field. The only case in which it would seem
reasonable not to distinguish between ultraviolet and in-

frared scales is the case of a delta function interaction
(which has no scales intrinsic to it); this case is, however,
well known to be pathological (see Ref. 4), and in our for-
malism it is not even allowed because we suppose that
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1g ( h) or Z &g ( —h ) (3.5)

If we introduce the convolution operator C& with Fourier
transform

pp & oo. In fact, the model with the 6 interaction is
equivalent to the Thirring model for a quantum relativis-
tic field theory and requires wave-function renormaliza-
tion to remove the ultraviolet divergences (absent if the
range po of the potential is positive).

To perform the integration over f'- ' using an anoma-
lous scaling method, we introduce a sequence
Zp Z &, . . . , of constants. While Zp is fixed to be
Zp = 1, the others are left free to be determined inductive-
ly. The choice Z =1 would give back the normal scaling
procedure, but it will not be our choice, although most of
what we do also holds for this choice (though the results
are not useful, as will become apparent).

In order to proceed we need (1}the notion of relevant
terms and (2) a more fiexible notation for Grassmann in-
tegration. The second point is an easy one: we denote
Pz'"'(dg) or Pz "'(dg)-the Grassmann integrations with

propagator s

C (k)= (ho+4')2 '"po'/4

we can write, formally,

p( sh)(dy) ~

(3.6)

Xexp —Z g f dx g„+ (8, +iron„)ch(B)g„dt's .

(3.7)

This implies that the action of X on a V of the form

Coming to the notion of relevant operators, we consid-
er a general element of the Grassmann algebra and we
define the operation X, the localization operation, as fol-
lows. X is a linear operator which annihilates all mono-
mials in the field operators of degree &4. Its definition
on the monomials of degree 4 or 2 is simply

XQ„+„p„„=g„+„[f„„+(x2—x, )B1(„„],
(3.&)

X ] Cl)] Z20)2 X3Cll3 Z4CO4 X CO] X CtP X Ct)3 X 'Cl)4

J==12 J J J

CO] y ~ ~ ~ y Q7

I I
)& ~ ~ ~ s

W'„(x„ro,;. . . ,x„,ro„;y~, roI, . .,y„,'ro. '„)g+ „"p„+ „g,"li,dx, "dy„Xn ~n y&~& y„,~„ (3.9)

gives a result that can be written, by collecting similar terms:

J' V(g) =A, ' f dx g„+ g„+ P g„+v' g f dx P„+„g„„+g'g fdx g„+„B,g„„+ia'g f dx g„+„roB„Q„„, (3.10)

provided the W's in (3.9) are distributions that are not too singular.
To be precise by what we mean by "not too singular" we introduce the following fields:

+ +

Dx'y~ &x~ Py~ Sxy~ 4x ~ 4y~ (x y )de~
2 = — — 3 1
x y ~= gx m gy ~ ~, ,x, ,x, ,x, , ~ 3 4)S»,

z„'".' =(a, + i~a„)[1—c„(a)]1(„-„,
where Ch is the operator in (3.6).

We shall only consider Vs of the form (3.9), which can be rewritten as

(3.11)

V(1i)=XV(g)+ g f dg, dg„W„((„".. . , g„)4~" 4(„, (3.12)

where 4& denotes one of the fields in (3.11) and g is (x, ro) or (x,y, ro) or (x„xz,x3,x4, co) and dg means integration
over the x,y, . . . , coordinates and summation over the co coordinates; furthermore, the 8' are products of ordinary
smooth kernels by suitable time delta functions.

We shall write the function V ' ' in (3.4) as

V"'(li)=g(1(+, (a, + a )C,(a)1(-)+V'"(QZ, li),
where g is the coefficient of (1(j+,B,g ) in the expansion of V' '(g), and we set

(3.1 3)

(3.14)

We can now set up a recursive procedure for the analysis of the integral [which coincides with the = in (2.17}because
of (3.4) and the last two definitions]:
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f y(0)(
p( ~0)(dq)e v 0)

0

by writing Pz (df)=Pz (df)Pz (d4) 4=4+4. Integrating over P and using (3.7), we write (3.15) as

(3.15)

fPz —"(dg)exp[V' "(QZOQ)]=const f dPexp —Zog fdxg,+„(8,+iso()„)C )(B)g„„

Xexp[ —XV' "(QZ t/r) (1——X)V' "(QZ f)], (3.16)

which we rewrite, using (3.7), as

constf Pz'-
) "(dg)exP —(Zo —Z ))g f dx g,+ ((), +ir0B„)C )((3)1t, „

Xexp —g'g f dx t(„+ (8, +icoB„)C )(B)tt„+other relevant terms

X exp —(1—X ) V —g' g f dx g,+~( „' (3.17)

where const is a formally infinite but trivial constant, which we shall neglect in the following, together with similar
ones.

In the anomalous scaling procedure one chooses Z ) so that Zo —Z )+g'=0, i.e., the coefficient of

fdx g,+„(8,+icoB„)C )(B)g„vanishes and (3.17) becomes (thus defining V' ")

fP:,"(d)(j'jle (QZ, g), (3.18)

where V' " can be expressed in terms of the fields (3.11) as in (3.12), with h ~ —1, if V' ' was expressible in the same
terms, as in (3.12). The latter property is seen to hold for order by order of perturbation theory.

The iteration produces a sequence Zo, Z „.. . , as well as a sequence of potentials V'"' such that, up to a trivial con-
stant,

fp( 0)(dq)e + 0 —f p( h)(dq) e
+ h~ (3.19)

and a sequence of coefficients r„=(v)„5)„A.), ), called running couplings, which are defined by writing

«"'=Z,'&, y fd q„,q„+ q. P. +Z, &—, y—fd q„. ~„y„.+Z, 2",y-fd q„'„q. (3.20)

Furthermore the Wh functions, appearing in the expansion of (1 —X)V' ' in powers of the fields, are also produced as
formal power series in r), +„.. . , ro. No term proportional to

fdic

Q„„(),g„appears in (3.20) because of our

definition of the sequence ZA. Finally, using the oddness of the propagator, it is easy to see that, for each h,

VA=0. (3.21)

This property of the potential is related to the fact that, in the Luttinger model, the interaction does not modify the po-
sition of the Fermi surface, so that we effectively have only two running couplings. Of course, one could envisage other
prescriptions to construct the sequence Z, but it will appear that only one of them has the possibility of being applic-
able to our problem, namely, the just illustrated anomalous scaling choice.

On heuristic grounds we expect that an asymptotic behavior of the running couplings, such as

Z =z2 —»A
A

vA —+0
(a)

6A ~0 (b)
o~e

A+q (e, q~0
ZA

lv„l, lfi„l, lz„l &c,lz, l

(3.22)

for some z, r), A, „,e, Co, implies that the pair correlation function Sz(x,co):—Sz (x,co;O, ro) behaves as

s,(i)-lkl"s, (i), k-0
and that the four points truncated Schwinger function S4, which we write as

(3.23)
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4
ST(k, +,k, +,k, —,k —

) = —5(k, +k k—, k—) W(k„k, , k, , k ) g S (k. . . ) (3.24)

verifies

W(k, k, k, k) ~ Ik I'"[A, „+0(A,' „)], k~0 .

In Sec. V we show that the relations between the running couplings

rh —(Xh~5h, vh )

(3.25)

(3.26)

and the scalings Zh of different h s is such that (3.22) can hold if and only if the beta function vanishes. On the other
hand we know from the exact solution that (3.23) and (3.24) hold rigorously (see Ref. 10). Hence, we conclude that the
beta function of the model ought to vanish.

IV. SCHWINGER FUNCTIONS AND RUNNING COUPLINGS

Let us now discuss the connection between the potentials V'"' and the truncated Schwinger functions (2.20).
We define the effective potential V,)t()p) by

eff + — P ( d y )e
—v( f+ q& )

g

and we introduce [see (3.6)]

Q)(k, to) =( iko+—tok)

Q), (k, m)=Q, (k, a))C), (k) ', h ~0 .

(4.1)

(4.2)

By using the formal relation Pff(dp) ~e ' ' dg and by doing in (4.1) the formal change of variable p~li| —(i), it is
—&0+ Qg '0&

easy to see that

S (t)=(t+ Q)V' ) —V.)r(Q)t) .

The evaluation of the effective potential can be conveniently performed iteratively, starting from (3.13):

(4.3)

eff & — P( +0)(dq) —v (Q+g&)
1

P', — ' exp —Z —1 ++q+, ' +y —V' ' Z +y

Pz- exp —Z —1 y+, ' y —Z —1 y+, ' +
—V' '(QZo(g+)p)) J, (4.4)

and, by doing in (4.4) the formal change of variable g~g —[(Zo 1)/Z ) ])p, we get, up to a trivial constant,

e ' ' Pz '(df)e (QZo(f+))v/Zo)) .
0

(4.5)

Hence, by iteration, one can easily prove that, for any p ~ 0,

—& ~(g)
e " =exp

j=p+1 j Zj

r

(y, Qz. ')q& ) fPz ~'(dry)exp —-V' ' QZ f+ (4.6)

having set Z, =—1. So that, if Z2 is defined to be equal to Do,

2

& (y)=
Zj

(y+, Q, C,y )+ln fPz' ~'(dg)e (QZ-(@+Q)&p/Z )) .
J

(4.7)

Let us now remark that it is not possible to take the limit p ~—ao in (4.7); in fact the sum on the rhs is divergent in
this limit because of the bad dependence on k of C (k) [see (3.6)]. However, the analysis of the potentials V'"' (see Ref.
12) shows that they all have the form of a short-range potential on scale (2"po) ', with many-body components that are
convergent power series in the running couplings near zero. Therefore, we see that the evaluation of the integral in
(4.7), with )p having support in 2)'po ~ ~k ~

~2)'+'po, is the same type of calculation, up to a trivial rescaling, that one
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would perform to evaluate the correlations on the scale of the potential. We can suppose that the latter problem is solv-

able, by the same techniques as in Ref. 2 suitably extended, and that the result is of order one {uniformly in h).
These considerations and (4.7) imply that the Fourier transform of the pair correlation function S2(x —y, ro) can be

written, for momenta of order 2"po, in the following way:

2

Q, (k ) 'S2(k, ro) =
j=h+1 j —

&

C,(k)+Z„-'g, (k)[ —fi„~k—2'V"'(2-"k }]
1

(4.8)

where V'"'(k) is a smooth function of k, which has a smooth limit as h ~—~ and is of the second order in the running

coupling s.
Equation (4.8) implies that, if k =2"k, with ~k ~

&0 and independent of h, and if limz „~h ~
'1nZ& =rI &0, then the

asymptotic behavior, for h ~ —oo, of S2(k, ro) is of the type

S~{k,a))= b(k)+ [5g+a(k)] (4.9)

We cannot compare (4.9) with the asymptotic behavior of the pair correlation (2.13}because our renormalization pro-
cedure fixed the Fermi velocity to 1, which is not the value in the model (1.1). Instead of modifying the renormalization
procedure, we choose to study the model discussed after (2.13), obtained by adding a term 5T to the Hamiltonian, so
that the Fermi velocity is fixed to 1, independently of A, . Then, by comparing (2.15) and (4.9), we see that b(k ) is a func-
tion of ~k ~, a(k ) =0 (it should be possible to derive directly these two results, but we did not do that) and

5h~O as h~ —~,
g = 27}=2 [sinhy(0 ) ]

A similar discussion for the four-fields Schwinger function yields a similar result, that is

S4(p„+,pz, —,p3, + p4 )= 5(p&+pc p3 p&)

(4.10)

(4. 1 1)

h

(4.12)

A.I, ~A, „(k,) . (4.14)

V. THE BETA FUNCTION

The above analysis not only permits us to define the
running couplings rh and the scalings Zh but also to find

an expression of rh „Zh &
/Zh in terms of

r- h, Z h /Zh. The latter can be studied from the explicit
expressions of rh in terms of the Feynman graphs of the
model, which are constructed from the formal integration
formula,

1
e '~'—= P(dg)e '~+"'=exp g —,6 (V; .

; V},
) nI

(5.1)

where 6 denotes the truncated expectation with respect
to the integration over g. The latter is defined simply by

where, for rnomenta of order 2:
W&"'(p»pz, p3)=hi, + W4"'(2 "p»2 "pz, 2 "p3) (4.13)

with W4"' having a smooth limit as h ~—~ and being of
the second order in the running couplings. The asymp-
totic behavior of the left-hand side in (4.12) can be calcu-
lated from the exact solution, and one can see (Ref. 10)
that it is compatible with (4.12) and (4.13) only if A, i, has a
finite limit as h ~—~:

imposing that, in the evaluation of the integrals 6'( V")
with the Wick rule, only some terms are to be retained.

Namely, if we think all the fields appearing in a rnonomi-
al in one of the V factors as lines and we represent a Wick
contraction by suitably joining together pairs of lines,
then we only retain terms corresponding to Wick con-
tractions generating a connected graph of lines.

The theory of the estimates of the series expansion of
ri, „Zz,IZ& in powers of r z, Z & „/Zi, is technically
involved, see Ref. 2, where the main result is that the for-
mal power series has coefficients of order n bounded uni-

formly in the scale parameter h, provided for some (&0,

e ~~& ~ZI, +q/Zz ~

(e~~ for q &0,

by the bound

D C" '(n —1)!

(5.2)

(5.3}

for some C& and D& and a11 h ~0. In fact the model is
technically very similar to the one-flavor Gross-Neveu
model, and it seems reasonable to us that one could im-

prove (5.3) by taking out the n! from the bounds.
It is in fact possible to prove, see Refs. 12 and 13, that

there is a convergent power-series expansion:

ra —i=Ara+B!(ra, Za+i/Za, ra+, , . . . , o I, o

(5.4)
Zh —1 = 1+B"„(ri„Z„+,IZ~, r„+,, . . . , Zo /Z„, ro ),

Zh
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where A is a 3X3 diagonal matrix, with elements 1,1,2,
see below, and with the functions BI, being holomorphic
when all their arguments r are in a small enough disk
with an h-independent radius, while the arguments
Zh+ /Zh, q &0 vary in an annulus like (5.2) for some g
small enough. Furthermore the limit lim& B& con-
verging to a holomorphic function of infinitely many
variables B(z ', B„z,82, . . . ), holomorphic in a disk of
some radius p)0 for the z variables and in an annulus
like (5.2) for the 8 variables with some g&0. So that if
limr =r " and limZh+»/Zh =8» exist then r " is a
fixed point of the relation r "=Ar "+8„(r "),
where 8„(r) is defined by setting 8„(r)
=8'(r, 8„r,82, r, . . . ).

For this reason we shall call beta function the function
of three complex variables Az+8 „(z),while we call beta
functional the functions Bh in (5.4), depending on h argu-
ments. The beta function in the above sense is a function
whose fixed points are the limit values of the running
couplings rI, of our model.

In the literature one also often considers the function
relating r&, to rz-. it follows from the above that the
latter also has a well-defined expansion around rI, =0, but
its coefficients grow as n. with the order; hence it is not a
priori well defined, and it seems to us that even if it is well
defined it will be so because of nongeneric cancellations,
absent in the case of spin nonzero, for instance. The
proof of the above convergence properties can be found
in Refs. 12 and 13. Hence, we shall assume them and
study their implications.

We stress, before continuing, that the above results
would also hold if one used the normal scaling procedure.
The bounds (5.3) and our convergence conjecture hold
also in the normal scaling approach. The importance of
the scaling does not come in at this point, yet.

If X&h denotes the sequence A, h, l,h+, , . . . , A,0 and a
similar notation is adopted for 5»,v», then the compu-
tation, via the Feynman graphs, of the running couplings
leads to the following:

, =(Zh/Zh i) [Ah+AhB, (A &h )+5 XhBh(2A & h5&& )h+k hvBh(3A, & h5&& hv&& )h+2"R i(A &h&5&h&v&h&2")] &

5h i=(Zh/Zh i)[5h+kh5h84(k&h)+vh85(k&h&5&h&v&h)+2"R2(A&h&5&h&v&h, 2")]
&

vh-i=2(Zh/Zh-i)[ h+vh~h86(~&h &&h»h)+2 3(~&h 5&h»h 2 )]2 h h

1 —(Zh /Zh —1)[ +~h88(~&h )+(3h~hB» ~ h&'5 h )+~hvh810 ~&h&~ h&v h +2 R4(A h &'5 h&v&h, 2 )] &

(5.5)

where all the B functions do depend also on the ratios
Zh+» /Zh, q & 0, as discussed above, but such dependence
is not explicitly indicated to simplify the notation.
Furthermore, we have computed a little more carefully
the lowest terms to find out the minimal power to which
each running constant is raised; in particular we have
used the following facts: (a) the graphs containing two A, h

vertices and any number of 5h vertices cancel out and (b)
since the propagator is an odd function of x, in the equa-
tion for v& &

there is no contribution due to graphs con-
taining only A, h vertices (and therefore an odd number of
inner lines) or containing only A, h and 5h vertices (a 5h
vertex does not change the parity of the graph).

As we have stressed in the preceding section, vz is ex-
actly zero in the model (1.1), so we could cancel out the
third equation (5.5). However we prefer to study the
complete set of equations (5.5), since they are valid also in
the model with an ordinary kinetic energy, where vt, is
not zero (see Ref. 2).

As a consequence of the discussion preceding (5.5), the
functions B-,R- should be analytic in their arguments
A, &h, 5&h, v&h (with a suitably small radius M of conver-

I

gence) and in Zh+»/Zh, q & 0 [in a suitably thin annulus
around the unit circle, see (5.2)]. Furthermore, B~ can be

shown to have a limit as j—+ —co, while the R terms
disappear in this limit. The R. vanish to second order in
A, h, 5h, vh (see Ref. 12).

Had we used the normal scaling approach, we would
have found an equation like (5.5) with 5h (or 5 h) re-
placed by a pair (ah, gh ) of constants [or by (a & h, g& h ),
representing the coeScients of Idx p„+„iB„l(„&and
f dx f„+„d,g„„],and each of the two new relations would
have had a nonvanishing term proportional to A,&. The
reason why such term is missing in (5.5) is precisely due
to our definition of anomalous scaling combined with the
symmetry in the propagator between x and t, which
makes identical the contributions to the variations of a&
and gh due to graphs only involving A,h vertices, hence it
makes identically zero the contributions to 5& of the same
graphs.

It is convenient to eliminate completely the factors
Zh /Zh, from (5.5), using the last of (5.5) and expanding
the denominators in power series:

~h —
1 ~h+~h 1(~&h )+~h~h 2(~ h&~&h )+Vh~h 3(~&h&~&h&V&h )+ h 1(~&h&~&h&V&h& h ) &

~h —1 ~h+~h~h 4(~&h&~&h )+VhG5(4h&~&h&V&h )+ h 2(~ h&~ h&V&h& h ) &

vh —I vh+vh~hG6(~&h&(3&h&v&h ) h 3(~&h&~&h&v&h& h ) &

A —1

—1

(5.6)
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having set t& =2", and not having once more written ex-
plicitly the dependence of the 6 on the variables

I, =Zi, + /Zq, q)0. The relation (5.6), defining the
beta functional, does not permit us to infer much about
the properties of the model; but we can derive extra infor-
mation about the G functions from the fact that the
model is exactly soluble.

Let us assume (1) that the flow (5.6) admits, for each
Ac&0 small enough, initial values 5o(Ao), vo(A&) such that

where = means that the logarithms of both sides, divided

by ~h ~, have the same liinit [see (4.3)], and A, „(A,), ri(X)
being analytic near A, =0. Call G, ( A, , i) )—= limh „Gi(A, &h), with A, =A, and 8 =2 "~, and
let us suppose that (2) the function G, in the first equa-
tion of (5.6) is analytic and not identically zero.

Assumption (5.7) immediately implies that
G, (A, „,71)=0; then A.„ is independent of A,o, as a conse-
quence of the analyticity hypothesis. But the hypotheses
(5.7) imply that ~A, „~ & Co~A, o~ has to hold for all A,o small

enough, so A. „=O and the fourth of (5.5) tells us that
ZI, /ZI, &

~1,which is incompatible with q & 0.
In conclusion, if the assumptions (1) and (2) above are

satisfied,

G, (k)=0 . (5.8)

This makes the argument leading to the conjecture given
in Ref. 2 more precise. A similar property has been pro-
posed in Ref. 14, supported by a symmetry argument.

We now observe that (1), i.e., (5.7), should be deducible
from the exact solution of the model, using (2.11), (3.23),
and (3.25). Moreover, A, „=AD+0(A,O), so that, if Ao is
small, A, „ is small also. Also (2) should be provable by
known techniques, as discussed above.

Then, by the previous discussion, our basic result is
that the main term in the beta function is not only zero to
second order, where it is easily calculated, but vanishes to
all orders. We have checked by explicit calculation that
(5.8) is verified also to third order, see Ref. 10.

It is remarkable that (5.8) holds: in fact, it can be used
in other models that are not exactly soluble, but which
can be shown to have the same 6, functions. One case,
see Ref. 2, is the model of one spinless species of fermions
interacting via a short-range interaction and with an or-
dinary kinetic energy [namely, (k —

pF ) /2m].
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