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The critical current I, of a long one-dimensional (1D) Josephson junction in the presence of different
types of structural disorder is investigated both analytically and numerically. It is shown that most
properties of I, can be understood from the behavior of the elementary pinning force (PF) of a single de-
fect, which we calculate exactly as a function of the external magnetic field H„pinning-center size, and
strength. The following types of disorder are discussed: (i) For a given field, and pinning centers with
equal strength, a unique arrangement of pins that maximizes I, is found. (ii) In the case of a periodic
pinning-center lattice, we reproduce the commensurability peaks in the field dependence of the critical
current, I,(H, ), previously reported by Oboznov and Ustinov [Phys. Lett. A 139, 481 (1989)]. In addi-
tion, we predict that a peak can be damped or disappear, if its position coincides with a field value at
which the elementary PF vanishes. (iii) The most interesting effects appear in the presence of random
disorder. Using the exact expression for the elementary PF, we extend the collective pinning analysis of
Koshelev and Vinokur (Zh. Eksp. Teor. Fiz. 97, 976 (1990) [Sov. Phys. JETP 70, 547 (1990)]) to arbi-
trary fields and properties of the disorder, and compare the obtained predictions with the results of nu-

merical simulations. The agreement between the two approaches is extremely good. In particular, we

find that the appearance of a plateau in I, (H, ) for large fields depends strongly on the ratio rp/AJ be-

tween the average pinning center size ro and the average Josephson penetration depth A, If ro/A, , =1,
there is no plateau at all, and in the case ro/k, ((1,a plateau is found up to fields for which the vortex
spacing becomes of the order of ro. Furthermore, we predict the possibility of a dimensional crossover
from a 1D behavior at low fields to OD behavior at large fields. Finally, we present a possible explana-
tion of the experimentally observed plateau in the j,(H, ) dependence of granular high-T, materials.

I. INTRODUCTION

The interest in the physics of Josephson junctions has
been unbroken since Josephson's predictions of the basic
relations governing the tunneling of Cooper pairs across
so-called weak links. ' Most aspects of the observed phe-
nomena are well understood by now, and numerous tech-
nical applications of the Josephson effects have been
developed as a consequence.

Soon after Josephson*s discovery, it was realized that
the self-field of the tunneling supercurrent introduces a
typical screening length scale, the Josephson penetration
depth k, which leads to the occurrence of a weak Meiss-
ner effect for long Josephson junctions (LJJ) with length
L &)A, . Furthermore, there exists a critical field H, in

0

LJJ, above which the magnetic field enters the sample in
the form of Josephson vortices. These properties estab-
lish a certain correspondence between type-II supercon-
ductors and LJJ. In fact, a LJJ can be viewed as a dimen-
sionally reduced type-II superconductor, exhibiting all

the well-known phenomena such as a Meissner effect, to-
pological (however, coreless) vortex excitations, pinning,
and also a I'.ritical state. ' A detailed study of the vortex
state and She Meissner effect in homogeneous LJJ was
done by O&Yen and Scalapino (OS). They detertnined the
possible magnetic field and current distributions inside
the junction, and calculated the field dependence of the
critical current. Their calculated curve was beautifully
confirmed by experiment.

For many technical applications of superconductors
and LJJ, the ability to carry a nonzero critical current in
considerably large applied magnetic fields is a key proper-
ty. In the case of type-II superconductors, it is well
known that the existence of a finite critical current in the
mixed state is due to the pinning of the vortices at
inhomogeneities of the sample. This prevents the dissipa-
tion arising from moving Aux lines. Intuitively, one also
expects that some kind of disorder-induced pinning
should lead to an increase of the critical current exhibited
by a LJJ, but the pinning phenomena are not very we11

understood. A first hint to the mechanism of pinning is
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found when comparing the LJJ to the Josephson point
contact (which has a length L «A,J) for which the local
magnetic field can be assumed to be uniform: The critical
current of the point contact vanishes at fields correspond-
ing to the penetration of an integer number of flux quanta
40=bc/2e, whereas a homogeneous LJJ has a finite criti-
cal current at any field below the second critical field H,

2

of the bulk superconductors, which are separated by the
junction. The finite critical current of the LJJ arises from
the pinning of the vortex lattice at the sharp boundaries
of the junction, where the Josephson coupling abruptly
drops to zero. Hence, the boundaries act as a defect, i.e.,
constitute a pinning potential. However, since the pin-
ning due to the boundaries is a surface effect, the limit
limr „I,/L vanishes; i.e., the uniform LJJ cannot carry
a critical current density Mo.re generally, one can expect
that an inhomogeneous coupling throughout the LJJ can
lead to real bulk pinning.

Previous investigations of Josephson vortex pinning
concentrated mainly on the case of a single defect or a
periodical modulation of the Josephson coupling, with
the center of interest being the question how the dynam-
ics of the fluxons is affected by the disorder. Another
approach was chosen by Vasenko, Likharev, and
Semenov, who studied large-scale disorder of arbitrary
kind, which allowed an analytical treatment by means of
asymptotic methods. Unfortunately, these methods can
only be applied if the length scale of the disorder is large
compared to the vortex lattice (VL) spacing. In general,
this is a severe restriction, but in the limit of sufficiently
large magnetic fields their results should be applicable.
They studied a junction for which the Josephson coupling
goes smoothly to zero as one approaches the boundaries,
which isolates the effect of bulk pinning from the surface
pinning at the sharp boundaries of a uniform LJJ. The
asymptotic decrease of the critical current for large exter-
nal fields H, was found to be ~ 1/H„and their formula
for I, was independent of the junction length L. Hence,
they predict that the contribution of bulk pinning de-
creases faster than the critical current due to the surface
pinning, i.e., for very large fields, an asymptotic decrease
I, ~1/H, (as for the homogeneous case) should be ob-
served. Our analysis confirms this asymptotic decrease
for large fields, however, we find a length dependence
I, ~L'~ of the critical current.

Very recently, Vinokur and Koshelev (VK) were
motivated by the possible relevance of disordered LJJ in
the context of theories for polycrystalline high-T, materi-
als. They investigated the behavior ofj, (H, ) at zero as
well as nonzero temperature in the presence of random
disorder by employing Larkin and Ovchinnikov's collec-
tiue pinning theory' (CPT), which was originally
developed and successfully applied to model random dis-
order in type-II superconductors. However, the analysis
of the field dependence of j, by VK was only qualitative
and relied on an approximation for the elementary pin-
ning force (PF), which, as we shall show, can only be
justified in a restricted field region, the size of which de-
pends on the typical length scale ro of the disorder.
Their main result was the appearance of a plateau in the

j,(H, ) characteristic for large fields, and they argued that
this might explain the experimentally observed plateaus
in polycrystalline high-T, materials. " ' We shall show
that the field region for which a plateau exists actually
depends on the ratio of ro/AJ (A~. is an average value),
and that it can be absent, if this ratio is larger or of the
order of 1. For a Josephson point contact, the influence
of random disorder on the field-current characteristic was
also found to yield a plateau for small scale disorder
(ro/L «1, L-A. , where ro is again the correlation
length of the disorder and L the junction length), and
small external magnetic fields. ' ' For large fields, a de-
creasing current I, was predicted. ' ' This behavior is
fully consistent with our results.

In this work, we concentrate on the static properties of
the disordered LJJ. In particular, we are interested in the
field dependence of the critical current about which, in
our opinion, a detailed understanding for arbitrary fields
and types of disorder is still lacking. Our investigations
are based (i) on large-scale numerical simulations of the
disordered LJJ, by exactly solving the self consisten-t stat-
ic sine-Gordon equation in the presence of a position-
dependent coupling strength, and (ii) on improving the
CPT approach of VK to the case of arbitrary fields and
pinning-center sizes. The predictions of CPT can then be
directly compared to the numerical results. In our simu-

lations, the disorder in the LJJ is modeled by a piecewise
constant coupling. This allows for a numerically ob-
tained exact solution of the perturbed sine-Gordon equa-
tion and thus produces reliable results in the entire field

regime and for arbitrary types of disorder. As an optical
guide through the paper, in Figs. 1(a)—1(d), we show typi-
cal shapes of the local magnetic field and current density
patterns at the critical current for a field H, /H, =5. We

compare a uniform junction [Fig. 1(a)] with junctions
having different types of disorder, viz. , optimized ar-
rangement of defects [Fig. 1(b)], periodic defect lattice
[Fig. 1(c)],and random defects [Fig. 1(d)].

Our motivation for studying the disordered LJJ also
stems from the experimental picture found from magneti-
zation and transport measurements on polycrystalline
high-T, materials, which suggests modeling these materi-
als as granular superconductors What was observed is
a large difference between the critical currents responsi-
ble for transport (=10 —10 A/cm ) and diamagnetism
(=10 —10 A/cm ), the latter being several orders of
magnitude larger. " ' Furthermore, the transport criti-
cal currents showed a very strong field dependence with a
sharp decrease (of one order of magnitude) at very low
fields (=20—80 G) along with a strong weakening of the
Meissner effect at roughly the same fields. One concludes
that these fields correspond roughly to the average criti-
cal Josephson field H, . From all these properties, one

0
can conclude, that the polycrystalline high-T, oxides
should be modeled as an agglomeration of islands with
strong superconductivity having their order parameters
coupled via Josephson contacts. The large screening
currents could then be attributed to the strong intragrain,
and the transport currents to the weak intergrain super-
conductivity. Thus the critical transport current is essen-
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FIG. 1. Typical shapes of the local magnetic field H(x), and
the current density j(x) at the critical current for LJJ's with
different types of disorder characterized by the function E,-(x)
(in all cases the applied field was chosen as H, =5 measured in
units of H, , H,"', and H, , respectively): (a) The uniform junc-

0 0 0
tion with ratio L/A, , =10. (b) An optimized junction with
L/A, ,'"=10 and A,,'."/A, ,' '=0. 1. (c) A periodically modulated
junction with parameters L/A, J"=10, d~/A, J"=0.6, d~/s~ =6,
and A,,'"/A, ,' '=0. 1. (d) A randomly disordered junction with pa-
rameters L /1,, = 10, q =0.09, r0/A, , =0.1, and o., /r0 =0.2.

0

tially limited by the depinning of the intergrain Joseph-
son vortices. A study of the pinning properties of
Josephson vortices should therefore yield valuable infor-
mation about the behavior of the polycrystalline high-T,
materials.

A realistic model for a strongly coupled granular super-
conductor was proposed by Rhyner and Blatter, and
called the limiting interface model '.Within this model,
the critical current of a sample is limited by the depin-
ning of the Josephson vortices across a limiting interface
of weakest superconductivity, which extends over the en-
tire sample. Applied to the case of, e.g., a textured
YBa2Cu307 & film, the interface actually becomes a criti-
cal path which represents a one-dimensional inhomo-
geneous, macroscopic LJJ. Therefore, the field depen-
dence of the critical current of such a film should be
given by the j,(H, ) dependence of the single LJJ. It is in-
teresting to note, that for the case of Abrikosov vortices
the vortex flow also seems to start along a critical path, as
has recently been shown in a numerical simulation by
Jensen et al. '

As an introduction to the disordered case, in Sec. II,
we shall briefly review the static properties of a uniform

LJJ, and also describe the numerical procedure used to
simulate the field dependence of the critical current. At
the end, we shall discuss some aspects of the LJJ, which
are relevant for the disordered case.

In Sec. III, we calculate the elementary PF of a single
defect exactly. It will be shown that, for a fixed size of
the defect, the PF is a periodic function of the external
field with zeros at points where the pinning center size is
an integer multiple of the vortex spacing. As fluctuations
of the defect sizes are turned on, these zeros change into
minima. For very strong fluctuations, only the first
minimum at the field where the mean pinning center size
and the vortex distance coincide survives, whereas for
larger fields the pinning force becomes constant. These
results are applied to different types of disorder in Secs.
IV-VI: first we discuss the construction of a junction
with maximum pinning at a given external field. The
critical current of such an optimized junction is strongly
enhanced, and in fact, one finds a critical current density,
which is of the order of the maximum Josephson critical
current density j, . The j,(H, ) curve shows a linear rise

J
up to the field for which the junction is optimized, fol-
lowed by a sharp drop reflecting only small pinning
forces for larger fields.

For a periodic defect lattice, experimental j,(H, )

curves exist and show pronounced peaks at fields where
the periods of the vortex and the defect lattice are com-
mensurate. ' Our numerical curves obtained for such
junctions accurately reproduce these peaks. In addition,
we argue that certain peaks will be totally suppressed if
the ratio between the size of the defects and their dis-
tance is rational, because then the peak criterion coin-
cides with the criterion for a vanishing PF. To our
knowledge, such a junction has not been produced until
now, and it would be interesting to check this prediction
experimentally.

The case of main interest is random disorder. In Sec.
VI, we compare our numerical results to the predictions
obtained by applying CPT, where we use the results for
the average elementary PF from Sec. III, and calculate
the field dependence of the critical current density in the
usual fashion. VK already predicted that the correlation
length L„which in CPT determines the size of regions in
the VL over which short-range order is preserved, substi-
tutes the Josephson penetration depth in deciding about
the effective dimensionality of the junction, i.e., junctions
with length smaller than L, behave effectively like a point
contact. We find the additional feature that L, is strong-
ly field dependent for fields, which produce a vortex dis-
tance much smaller than the typical length scale ro of the
disorder. Therefore, in a junction that at low fields is
effectively one-dimensional with a length L &L„adi-
mensional crossover can occur as the external field is in-
creased.

The plateau in j,(H, ) which was believed by VK to be
a generic feature of a disordered LJJ is shown to occur
only when r0 is much smaller than the average Josephson
penetration depth A, , and even then, for strong enough
fields a second drop is shown to occur. The appearance
of the plateau, as well as such an additional drop is also
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seen in the measured j,(H, ) of polycrystalline high-T,
materials at fields well above H, =500 G of the grains.

Whether or not the existence of Abrikosov vortices in the
grains changes our results dramatically cannot be decided
with certainty, but we believe that the basic physical pic-
ture should not be altered. The fields up to which a pla-
teau is experimentally found in the granular high-T, ma-
terials are 3—4 orders of magnitude larger than the es-
timated value of the average Josephson critical field

H, =20—80 G (see above). From this it can be conclud-
0

ed that if the j,(H, ) dependence of the polycrystalline
high-T, films or bulk superconductors is essentially deter-
mined by the depinning of the Josephson vortices along a
critical path (interface) as suggested by the limiting path
(interface) model, the disorder producing this plateau
must vary on very small scales approximately three or-
ders of magnitude smaller than A. , which can be estimat-
ed to be a few pm.

The comparison of our numerical results with the pre-
dictions of CPT shows very good agreement. The numer-
ically extractable dependencies of j, on the junction pa-
rameters and applied magnetic field are reproduced very
impressively, and the numerical factor needed to obtain
quantitative agreement between the two approaches is of
order unity. In summary, CPT is found to yield a reliable
qualitative description for the phenomena induced by
random disorder in LJJ.

II. THE UNIFORM LONG JOSEPHSON JUNCTION

In order to investigate the pinning of Josephson vor-
tices in disordered junctions, it is important to have a
thorough understanding of the physics of a uniform LJJ.
In this section, we will briefly review the well-known
work by Owen and Scalapino (OS) on this matter, and in
addition, we try to point out a few ideas that we believe
to be central to the concept of pinning.

We consider a so-called "in-line asymmetrical" junc-
tion geometry (see Fig. 2) with the uniform applied mag-
netic field H, directed along the y axis and the current
Bowing in the z direction. The y dimension Wof the con-
tact is assumed to be very small compared to the Joseph-
son penetration depth A, , which sets the length scale on

which the physical quantities vary. Hence, variation is
only allowed along the x axis, and all the physical quanti-
ties are translationally invariant along the y direction.
Furthermore, we choose the length L of the junction in x
direction to be much larger than A, -, thus arriving at a
one-dimensional LJJ.

The basic equations governing the physics of the LJJ
are (la), Josephsons relation between the tunneling super-
current j(x) and the relative pair phase 8(x), and (lb),
the proportionality of the phase gradient to the local
magnetic field H (x):

j(x)=j, sin8(x),
J

(la)

88 2ed
Bx Pic

(lb)

where j, is the maximal Josephson current density,
J

d =2k,L+@, with A,L the London penetration depth, and
e is the insulator thickness. Combining (la) and (lb) with
Maxwell's equations yields the familiar pendulum equa-
tion (or stationary sine-Gordon equation)

Q2
8(x)=

2
sin8(x),

Bx A,J.

(2)

where the penetration depth is determined by
I, =Pic /(8medj, ). Note that allowing for a finite voltage

drop across the junction would lead to additional terms
with time derivatives in (2), so we are restricting our-
selves to stationary field and current distributions. In or-
der to uniquely specify a solution of (2), one needs a set of
boundary conditions that are determined by the junction
geometry and for our case read

4mH(x =0)=H, — I,
C

H(x =L)=H, .

(3a)

(3b)

Here we have introduced the total current I which from
Amperes law becomes

I = WI j (x)dx = W[H(L) —H(0)] .
0 4m

In the following, we shall set the width W = 1. Note that
these boundary conditions are different from the sym-
metric ones used by OS. However, since the effect of
bulk pinning is not affected by the boundary conditions,
we are guided here by pure computational convenience
when making our choice, as will become clear later.

A first point to note about the "equation of motion" (2)
is the fact that it has an important integral (correspond-
ing to the conserved total energy of the pendulum), viz. ,

~, ae, eK= +cos (4)
2 Bx 2

FIG. 2. The geometry of the "in-line asymmetrical" LJJ.

It turns out that apart from a translation, this parameter
completely determines a solution of (2). Depending on
whether a ~ 1, or ~ & 1 there are two types of solutions,
both of which can be expressed in terms of Jacobian ellip-
tic functions, '
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e(x)
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K&1

=sn
X Xp ]

KJ
sin

K&1

e(x)
2

=cn
X Xp

K
KA, .

(sa)

2ed Be 2H(x) = = cn
Ac BX KA J.

xo 1 2ed Be 2H(x = = dn
K AC Bx KA, .

X Xp
(5b)

junction and obtain the total current I(H„BO)of this
particular solution. Finding the critical current I,(H, )

now simply becomes an optimization problem for the
function I (H„eo)with respect to 8&, such that

I,(H, )= max ~I(H„Bo)~.—
m &8 ~m.

0

Before graphically showing the field dependence of the
critical current, let us mention a few general properties of
the uniform LJJ: From the solutions (5a) and (5b), one
can readily determine the asymptotic behavior of I, (H, ).
Since for large fields, the phase dependent term in (4) be-
comes negligible, the asymptotic value for K is
x „=H,/H„and hence, the oscillation amplitude b H of

0

H (x) 0- dn[x —xo/(I~„A, ) ~a.„]/a.
„

is an upper bound for the field difference at the two ends
of the junction. In the asymptotic regime this oscillation
amplitude becomes

bH/H, =v„/2=H, /(2H, ),
and hence, the upper bound for I, is

I, ~ (c/4')b, H =(c/8m)H, (1/H, ) ..

So the envelope of the I, (H, } curve decreases as 1/H, for
large fields, which can be seen in Fig. 3. The small oscil-
lations of I,(H, ) in Fig. 3 are due to the formation of one
additional vortex and correspond to the zeros in the
Fraunhofer pattern of a short Josephson junction, which
result from the penetration of one additional flux quan-

P. .O- 0.005
p pp4 Asympt. Decrease ~ 1/H,~y+ ~ ~

0.003-
0.002 .1.5

1.0
0 001.
0.000

0.002 0.004 0.006 0.008 0.010
H, /H.

Oscillation Period:
7rX) /L = 7r/10o.5-

0.0 '

10

FIG. 3. The field dependence of the critical current, I,(H, ),
of the uniform junction mentioned in Fig. 1(a). The small oscil-
lations correspond to the penetration of one additional vortex.
The window shows a plot of I, as a function of the inverse ap-
plied field H, /H, . One observes a straight line, indicating the

0

asymptotic law I, ~ 1/H, .

The critical value K, = 1 has an important physical
significanc: solutions with K) K, can only occur for ap-
plied fields below H, =Ac/(ed', ). In fact, this critical

0

field corresponds to the usual first critical field H, of a
I

bulk type-II superconductor, since only below H, , i.e.,0
for K)K„there exist solutions which describe the shield-
ing of the magnetic field from the interior of the junction,
i.e., a Meissner effect with effective screening length A, ,
the Josephson penetration depth. For fields above 0, ,0

the only possible solutions have K & K„and they describe
configurations where the magnetic field has penetrated
into the sample in the form of Josephson vortices.

In spite of the apparent analogy between a bulk type-II
superconductor and a LJJ, there are important
differences between Josephson and Abrikosov vortices:
Josephson vortices involve one single length scale A, ,
whereas an Abrikosov vortex is characterized by two
lengths, the coherence length g (characterizing the core),
and the London penetration depth A,L (characterizing
electromagnetic properties). Abrikosov vortices have a
well-defined no~mal core at which the superconducting
order parameter vanishes. In contrast, Josephson vor-
tices have no normal core whatsoever (the modulus of the
superconducting order parameter essentially vanishes in-
side the whole junction). The basic property of a Joseph-
son vortex is a rapid change of the order parameter phase
by 2m. The position of a Josephson vortex can be accu-
rately defined as the point at which the phase derivative,
i.e., the local magnetic field, has a maximum, and the vor-
tex spacing is determined by the periodicity a in the solu-
tions (Sa) and (5b) for ~ ( 1. It is given by a =2k, «K (a. ),
which approaches the asymptotic value a „o-mA, ~H, /H, .

0

for large fields H, ))H, . Here E (a ) is the complete el-
0

liptic integral of the first kind. '

Until now, we have considered general solutions of (2),
but in reality we are interested in only one of them, the
one which produces the largest current. This will be the
critical current of the junction because the solutions of (2)
describe all possible stationary configurations, whereas
nonstationary ones would lead to dissipation and are thus
overcritical. The computational strategy for finding the
critical current is as follows (note the difference to OS}:
Fix the magnetic field H (L)=H, and the phase
B(L)=80 at the outer end of the junction. This deter-
mines the value of a via (4}, i.e., the shape of the VL, and
using the boundary conditions (3) at x =L, the shift xo in
the solutions (5a} and (5b), i.e., the VL position, is also
fixed. Hence, we have completely determined the solu-
tion by specifying the pair H„ep. We can now calculate
the value of the magnetic field at the other end of the
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turn @0. The period of these oscillations depends on the
length of the LJJ and is given by pH=n. AJH, /L .The

shapes of j(x) and H(x) at the critical current for a field

H, /H, = 5 is shown in Fig. 1(a).
0

The last property of the uniform LJJ we would like to
mention is the fact that it cannot carry a critical current
density j,. The total current through the junction is al-
ways restricted to the junction surface, since the net
current carried by a complete vortex vanishes. Incom-
plete vortices, however, can only appear at the surface;
hence, we have a surface current and one can say that the
existence of a nonzero I, at H, )H, is due to the pin-

0

ning of the VL at the surface, i.e., the surface acts as a de-
fect. This idea can already give us a hint how we can

I

achieve a larger I, and even a finite critical current densi-

ty: The key to pinning in LJJ is to break the translational
symmetry of the vortices by introducing disorder. In this
way, one can make each vortex carry a net current, thus
the total current is proportional to the number of vor-
tices, which in turn is proportional to the junction length
I., and we end up with a critical current density. Of
course, the details of the behavior of I, and j, depend on
the type of disorder, as we shall see in the following sec-
tions. The basic mechanism of pinning is, however, al-
ready explained by the above statement.

In order to be able to investigate pinning, we need to
introduce a few more concepts: Pinning and PF's are
best understood in terms of the pinning potential, which
is defined from the total energy functional of the junction,

E(8(x)]= E +1—cos8(x) + V (x)[1—cos8(x)] dx,ae
'

0 ' 2 Bx IJ
(6a)

where EJ =fji, /2e is the uniform Josephson coupling en-

ergy, and the term 0- V~(x) describes the nonuniformity,
i.e., the pinning potential, which is zero for the uniform
case. The equation of motion (2) can be derived from (6)
by an Euler-Lagrange variational principle.

The way we have introduced the disorder in (6) corre-
sponds to a situation where the coupling energy
EJ(x)=EJ+ V~(x) becomes inhomogeneous via its depen-
dence on j, (x)=j, +j~ (x), such that the penetration

J J
depth will also show spatial fluctuations according to
AJ(x) ~ 1/j, (x). The functional (6) can be rewritten in

terms of EJ(x) and A~(x) as

A,,(x) g8E[8(x)]=J E (x) +1—cos8(x) dx .
o ' 2 Bx

(6b)

As a consequence of the position dependence of the pa-
rameter A, . =A, .(x ), the solutions of the second-order non-
linear differential equation (2) can no more be expressed
in closed analytical form. This means, that for a general
function AJ(x), one can only obtain approximate numeri
cal solutions. However, since we know the analytical
solutions for constant A, , it becomes possible to obtain
exact numerical solutions of (2) by choosing A, (x) to be a
piecewise constant function. In this way, one can ap-
proximate basically any smooth function A, (x } arbitrarily
well. For this choice of disorder, one can show that at
the boundary xz between two regions with different con-
stant A, the phase 8(x~ ) and its derivative
8'(x~ ) ~ H(xe ) must be continuous, whereas the current
density jumps according to Eq. (1a}. Thus the solutions
are simply obtained by propagating 8(x) across regions
with constant A, via (5a) and (Sb) and then use the con-
tinuity of e,e to obtain the solution for the next region.
This procedure can be conveniently performed numeri-
cally. We have thus a reliable method for dealing with
disorder in a LJJ and the algorithm for obtaining the crit-

ical current is the same as in the uniform case.
The dependence of I(H„80)on 80 is very smooth for

a uniform junction, so the optimization, which has to be
performed in order to obtain the critical current is not
very difficult. This feature is drastically changed when
disorder is introduced: I(H„80)varies on very small
scales as a function of the initial value eo, and a huge
number of maxima and minima appear. This indicates
the existence of chaotic behavior in the dynamical system
under consideration, since the features of solutions with
almost identical starting conditions can be completely
different. Numerically this presents a big problem be-
cause it is very time consuming to determine a global
maximum in the presence of hundreds of local minima.
However, we observe, that many different maxima are al-
most degenerate, so that it is not necessary to find the ab-
solute maxima. This fact allows us to use a much faster
nondeterministic optimization procedure similar to the
simulated annealing algorithm. As a check of the
method, for some examples, the such obtained values of
I, are compared with the real global maxima, and a rela-
tive error of less than 1% is found.

Before proceeding with the investigation of junctions
with macroscopic disorder, i.e., many defects, we need to
understand the pinning behavior of a single defect more
deeply, and this will be our task in the following section.

III. ELEMENTARY PINNING FORCE
OF A SINGLE DEFECT

The one-dimensionality of the model we consider
brings with it the nice feature that we can fairly easily
calculate the pinning force of a single defect exactly.
This is very useful because it turns out that many of the
properties of a particular arrangement of defects (such as,
e.g. , random or periodic pinning centers) are already
determined by the dependence of the elementary pinning
force on the given parameters. To calculate this pinning
force, one needs to obtain the change in potential energy
of the VL due to the defect, i.e., the pinning potential U
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and then differentiate U with respect to the VL position
xp, which is defined from the solutions (5a) and (Sb). The
pinning force is thus given by Fz= —BU&(xp)/Bxp. In
correspondence to a piecewise constant E (x), which is
used in the simulations, the type of defect we shall con-
sider is simply a potential well in the Josephson coupling
energy, i.e.,

E (x)=E + V (x),

0, x(0
V~(x)= —q' E, ~x &rp,

0, xPrp

where the dimensionless parameter q describes the
strength of the pinning potential. The pinning force for a
more general shape of the defect should not behave quali-
tatively different.

Since we are mainly interested in the field dependence
of the critical current above H, , we perform the calcula-

0

tion of the elementary PF for Aux lattices, which are de-
scribed by a phase distribution 8(x) with

sin[8(x)/2] =cn(x —x&&/ai J ~~ )

and ~ & 1 [see Eq. (Sa)]. So the VL position is determined
by xo, and the vortex density by the elliptic parameter K .
In this case, the (normalized) pinning potential
U = U /q'/ E can be written as [see Eq. (6a)]

r0 Pp 8(x ) (Pp xp )/K

U~
= —I [1—cos8(x)]dx = 2f— sin dx = 2A—Jx f cn (s~x )ds,

0 0 2 X 0 /K

where ro =rp/A, and x p =xo/A J. The resulting pinning force is then given by

FP

&/2E
J

8 —,, XO rO XO
U (xo, rp) =2 cn a. —cn K

This function has the same spatial periodicity a as the original vortex lattice indicating that the effective pinning poten-
tial varies typically on scales of the order of a. For a defect lattice, the parameter xp, which determines the strength
and direction of the PF for any particular pin, will in general depend on the pinning center position and therefore be
different for different pinning centers (an exception is, e.g., a periodic defect lattice at special values of the applied field,
which we shall deal with in Sec. V). This problem always shows up in pinning theories and to resolve it, one needs a
prescription (summation rule}, which treats the effect correctly according to the type of pinning center configurations
under consideration. An example of such a summation rule is the above mentioned "collective pinning theory, "'
which describes random disorder assuming that the average total PF vanishes, and that the effective PF is due to Auc-
tuations (see Sec. VI).

In any case if we want to use (g} for the summation process, we have to average out the VL position, by integrating
the absolute value of F over a period in xp. We can avoid taking the modulus, by simply choosing a half period in xo,
e.g. , [rp l2, r p/2+itK(a. ) ] [K (I~ ) is again the complete elliptic integral of the first kind], on which F~ does not change
sign, thus obtaining

r0/2+tcK(N )F=(F)
aK(a ) ~p/2

r r I
Xp rp Xp

cn K —cn K dXp

4
K(a )

t I
rp rp

sn K cn K
2K 2K

ro
dn

4=—sin(rp/ii) (for a «1) .
7T

The result is an odd periodic function in r 0, with zeros at
points for which rp=m2aK(v ) (m =1,2, 3, . . . ). At
large fields, F is also approximately periodic (in the
asymptotic sense) in 1/~, i.e., in the applied field H, .
This means that for a fixed size of the pinning center, its
force on the VL vanishes for certain fields. Since the vor-
tex spacing corresponding to a given value of K, i.e., ap-
plied field, is a =2k, xK(z }, this result is to be expected
because the above condition simply states that the pin-
ning center accommodates exactly m vortices. But we
know that the contribution to the pinning potential of a

complete vortex inside the pinning center is zero [see Eq.
(8)], so the same applies to any integral number of vor-
tices resulting in a vanishing PF.

This behavior has an important consequence for the

j,(H, ) characteristic of a junction with random disorder:
If the defects are randomly distributed but have equal
size, there should be sharp minima in the j,(H, ) curve
with a critical current, which is of the order of the value
in the corresponding uniform junction. However, if the
sizes of the defects are also random, these minima should
still appear, but be smoothed out more or less strongly,
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depending on the broadness of the statistical distribution
of the sizes. In fact, these different minima can be nicely
identified in the simulations of junctions with the corre-
sponding type of disorder (see Fig. 12).

The smoothing of the minima for cases with a random
distribution of pinning center sizes can be obtained from
F by taking the weighted average over ra, which we as-
sume to be a Gaussian random variable with mean ro and
variance o.„,

f e ' ' 'l~p(ro)I«0,N„o
where N„is the normalization integral

N„=f exp[ —(ro ro) /2c—r„]dro

(10)

'o

0(

0()

FIG. 4. The averaged pinning force F~ of a single defect as a
function of the parameter x '( ~H, /H, for H, /H, ))1),and

p p

the degree of randomness of the distribution of the pin size,
I

o., /r p. The average pinning center size is chosen as rp/A J. =0 1.
As the randomness is turned on, the oscillatory structure of F~I
found for fixed pinning center size (o.„/rp =0) is smoothed out,
and for large fields, F~ approaches a constant. For o.„/rp

~ 0.2,
only the first minima at the field where the average pinning
center size rp is equal to the vortex spacing a survives. The re-
gime of constant pinning force corresponds to the asymptotic
decrease of the critical current stated in Eqs. (18).

The integral Eq. (10) can only be calculated numerically,
and the resulting behavior of F~ as a function of 1/» and
o „with fixed ro =0. 1 is shown as a surface plot in Fig. 4.
For finite o.„andlarge values of

I /Ir ~ H, /H, & H /H, =n /a, ,
p p

the PF becomes essentially constant because then there
are many oscillations of P~ under the peak of the Gauss-
ian at ro. In Fig. 4, it can be observed that the field H is
shifted to smaller and smaller values as cr„is increased,
and for large values cr„/ro&0.18 only the first and
second oscillation of the unaveraged pinning force P sur-
vive.

The size-averaged expression F for the PF will enter
our collective pinning analysis in Sec. VI, and we shall

see that the behavior of F alone determines many of the
features of the critical current. In the following, we shall
use the results of this section to understand the depen-
dence of the critical current on the applied field for
different types of disordered junctions.

IV. OPTIMAL PINNING

In the last section, we have seen how the PF of a single
defect depends on its size and the position of the VL. So
one is led to ask the question whether there could be
some kind of defect structure, which would produce a
coherent addition of the PF of each single vortex, result-
ing in a strongly enhanced supercurrent. Remembering
that the shape of the VL and in particular the distance
between the vortices depends on the field strength, it be-
comes clear that the coherent PF addition would only be
possible for certain external fields, because one requires
the matching between the VL and the defect lattice.
Furthermore, since a large critical current corresponds to
a large field gradient across the sample, there wi11 also be
a vortex density gradient to which the defects have to ad-
just and therefore, the optimal defect lattice cannot be
percodtc.

In fact, it turns out that the determination of such an
optimized junction is possible and also quite simple:
Given two possible coupling strengths E'",E' ' with

E,'"»E' ' (regions with E' ' represent strong pinning
centers), we shall construct a junction of length L charac-
terized by an alternating piecewise constant j, according

J
to the above couplings such that its critical current is
maximal for a given external field. So within the class of
disorder which can be represented by a step function in

j, , and under the additional restriction of only two possi-
J

ble coupling strengths, there exists a unique realization of
disorder which exhibits maximal pinning. We shall also
show that, in contrast to the uniform case, such a junc-
tion is able to carry a critical current density which is of
the order of the larger j,"'.

In the following, we will briefly describe how an opti-
mized junction can be "constructed": Fix the external
field h, =H, /H,"' »1 [from now on, a lowercase h will

always represent a magnetic field measured in units of
H,'" =Pic/(ed', J(")], and choose the first region to have

1arge coupling E'.". The size of this region is determined
by the requirement that the ratio ~It~/l& of its total
current and length be maximal. It is not difficult to see
that this condition can be satisfied by choosing (i) the
phase 8(L)=m. such that j (L)=0, ~, =1/h, and (ii) I, to
be exactly half of the corresponding vortex spacing,
I, =a/2=A, '"E(1/h, )/h, . This choice means that the
first region is occupied by exactly half a vortex in such a
way that the resulting current density points in the same
direction everywhere between its zeros at x, =L and

x, =L —I„with 6(x, )=2m.. It is now unavoidable to
obtain a current in the opposite direction from the other
half of the vortex, but this contribution can be made very
small by choosing a small coupling E' ' for the next re-
gion. The length l2 is calculated from the requirement
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that 6(x, )=sr, j(x, )=0 with x, =L —I, —lz, which is

the end point of the first vortex. Explicitly carrying out
the calculation, one obtains 12 =a2A. ' 'E(s~z), where
@2=(h, /q~-

—1/q +1) ' with the ratio q =E'.~'/
E'"«1. After this cycle, the field is lowered to the
value h (x, ) = [h, —(1—

q )]'~ yielding a total current of

I) = [H(L) H(—x, )]
4m '2

H,"'{h,—[h, —(1—
q )]'~~] .

The same procedure can now be repeated n times until (i)
the end of the junction is reached with a total current

I, = QI„+bI

H,'"[h, —[h, n(—1 —
q )]'~ ]+BI .

2.0
(a) L/)I" = to

where AI « I, is the current of the last uncompleted cy-
cle, or (ii) h (x, ) ( 1. If h (x, ) ( 1 occurs, then in the

21t 2'
next cycle, the local magnetic field will change its direc-
tion. The optimization of this cycle is more difficult than
for the previous ones, but still possible. However, since
we are mainly interested in the limit of very long junc-
tions with many cycles, the contribution of a single cycle
is a 1/n efFect. So we arbitrarily choose it to be sym-
metric which means that the length l2„+&corresponds to
half a vortex with coupling E'. ', 12„+2to half a vortex
with E'" (in which h changes sign and 1~& 1) and then

l2 +3 to half a vortex with Ej After this "turning, "we

can proceed like before until the end of the junction.
In practice, this construction is most conveniently per-

formed on the computer and in Figs. 5(a) and 5(b), we
show the calculated field dependence of the critical
current for a junction that was optimized for a field value
h, , =5 using the following ratios for the total length and
the penetration depths L/A, '."=10,20, and kj /kj 10.
This particular geometry does not involve a "turning" cy-
cle. One observes that a precursor of the usual peak at
H, =H,'" still appears at a slightly smaller value than

H,'", but then a linear increase of I, sets in up to the field
0

H Hopt after which there is a very sharp drop to
values which are of the same order of magnitude as the
one found for the corresponding uniform junction. This
drop means that the pinning for values above H, , is
weak.

The linear rise of I, can be qualitatively explained as
follows: As H, &H pt the propagation of the solutions
(Sa) and (5b) in the regions where the defect sizes are
smaller than half of the vortex, a/2, is nearly unaffected
by the presence of the defects since there is no matching.
As the solutions reach the region where a/2 becomes
equal to the defect size, the initial phase eo can be adjust-
ed so that the VL can lock into the remaining part of the
defect structure. In this way, a coherent PF addition is
established over some fraction L„ofthe sample and
one can show that this fraction L„grows linearly with
the field, resulting in a corresponding linear increase of
I, =j,' 'L„,where j,' ' is the averaged critical current
density of the optimized junction.

The asymptotic value of j,'P' for large fields can easily
be calculated from the asymptotic form of the solutions
(Sa) and (5b): This asymptotic value is defined by

j,' '=(c/4m. )(b,H/b, L), where hH is the field difference
from one cycle (vortex) for large fields h »1 and b,L its
length. In this limit, one obtains

b,H = (cH,"' /4n)(1 —
q, ) /. (2h )

0

0.0

3.0

:- „-2.0
~~
52

& i.o

(b) L/xI" = 20

0.0
4 6 8 10
H. /H,"'

FIG. 5. The field dependence of the critical current, I, (H, ),
of two optimized junctions with parameters A, '"/A, ' '=0. 1, and
different lengths, (a) L/AI"=10, (b) L/A, J"=20. A precursor of
the Meissner-peak appears at a field H, /H, & 1, followed by a

0

usual sharp drop, and then a linear rise sets in up to the field

H pt for which the junction was optimized. At H pt the criti-
cal current of junction (b) is exactly twice as large as the one of
junction (a), confirming the existence of a critical current densi-
ty.

and EL =A, '"~/h so that the averaged current density
becomes

~ OPt (1)1
(12)

Note that the maximum critical current density is of the
same order as j'" and that it is independent of the fieldC.

h, , for which the junction was optimized. Fig. 1(b)
shows the coupling E (x), as well as the local field, and
current density distribution for the above mentioned
junction with length L/A, '."=10 at the critical current
for applied field H, =H, , One can clearly see the aver-
age linear behavior of the local field corresponding to the
constant j,' ' across the junction. This field distribution is
a direct analogue to the critical state in type-II supercon-
ductors.

At first sight, the "construction" of such a junction
looks like an academic problem, but, since the progress in
device fabrication technology moves very fast, its experi-
mental verification seems not impossible. A possible ap-
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plication, for example, could be achieved by employing
the drastic drop in I, to design a magnetic field driven
electronic switch or a current limiter.

Another type of disorder, which has already been stud-
ied experimentally and theoretically, is that of a periodic
defect lattice. In the next section, we will show that it is
again a commensurability effect (but of a slightly different
nature), which is responsible for the vortex pinning in
such structures.

V. PERIODIC DEFECT LATTICE

The pinning effect of a periodic defect lattice has been
studied theoretically by various authors using analytical
approximation schemes like perturbation expansions
and variational methods. Most of the approaches stud-
ied the dynamic behavior of the junction, and the main
effort was directed to obtain the disorder-induced proper-
ties of the current-voltage characteristic of the junctions.
Here we are interested in the field dependence of the criti-
cal current for a junction with a periodic pinning center
lattice. Experimentally, the I, (H, ) curve of such a junc-
tion has been measured, and the main feature, which is
the appearance of interference peaks was qualitatively ex-
plained by a simple commensurability criterion between
the periods of the VL and the defect lattice. '

Our numerical investigations aim at reproducing the
experimental curve and at providing a deeper under-
standing of the pinning mechanism responsible for it. In
addition, our numerical study reveals a few new features
of periodic pinning, such as the presence or absence of
peaks in I,(H, ), depending on the size of the pinning
centers, and we find that basically all the numerical re-
sults can be explained using the commensurability cri-
terion and the behavior of the elementary PF as calculat-
ed in Sec. III.

In general, the interplay of two spatially periodic sys-
tems is always accompanied by some commensurability
effects. In our case, the two systems are the periodic soft
VL and the periodic rigid defect lattice. The interaction
between the two can, of course, only affect the structure
of the soft VL, which tries to adjust to the periodicity of
the defects in order to maximize the PF's. This results in
a periodic modulation of the vortex density [see Fig. 1(c)],
which can be viewed as a supersoliton. If the periods of
the two lattices are incommensurate, the modulation
wavelength A, is very short (a few vortex spacings), and
the modulation amplitude small, whereas in the corn-
mensurate case, the amplitude and the wavelength can
become large (many vortex spacings). As a consequence
of this, at fields for which the VL becomes commensurate
with the defect lattice, sharp peaks in the I,(H, ) curve
can be observed.

In our numerical investigations, we model the periodic
defects again by a step function consisting of a periodic
chain of regions with alternating couplings E'",E' ',
where E'"))E'- ', such that regions with E'- ' act as pin-
ning centers. We denote the size of the pins by s and
their distance, i.e., the size of the regions with E'-", by d&.
Then the condition for commensurability states that the
defect lattice period d +s must be an integer multiple n

dp+sp =na„h=n2Aj~ "a„hK(x„h)
~(&)

co
=nmA, '" (n =1,2, 3, . . . ) .

H,
(13)

Note that-the most general commensurability criterion
would allow n to be rational, n =

q /p, with q and p in-
teger. However, only the case p =1 leads to very strong
pinning, since the number of pinning centers giving rise
to aligned PF's is reduced by a factor 1/p for p%1. Nev-
ertheless, in Figs. 6(a)—6(c), small peaks with p =2 and

q = 1,3 can still be identified.
With the above described type of disorder, we per-

formed simulations for various sets of parameters d, s .
Figure 6(a) shows the experimentally measured I,(H, ),

(a)

2 3 4
H. (Oe)

2.0

1.5

1.0
CQ

v 0.5

0.0
0 2

H, /Hc"

b)

2.0

1.5

1.0
M

v 0.5

Peak Distance:

/Hg' = nxI"/(s, +d, ) = 1.5z

(c)

0.0
0 4 6 8

H, /Hc"
10

FIG. 6. A comparison between the experimentally measured
field dependence of the critical current, I,(H, ), of a periodically
modulated junction (Ref. 25) (a), and (b) the numerically calcu-
lated I,(H, ) of a junction with the experimental parameters,
L/A, J"=18.7, d~A,,'."=1.66, s~/A, ,'"=0.4, and the chosen ratio
A,,'"/A, ,'- '=0. 1. Plotting the numerically calculated I, for larger
fields (c), one observes a damped peak due to a minima in the
pinning force P~ The distance between .the peaks confirms the

commensurability criterion Eq. (13). Note also the two smaller
peaks with p =2 and q = 1,3 in (a), (b), and (c).

of the VL period a, such that the direction of the indivi-
dual PF is the same for many pins [the number of pins
with aligned PF is of the order of A, /(sz+dz)]
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I I ~ I
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L/P, "' = 10

Peak Distance:

H/Hc = nX ~/8 = 7 S5~o
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H, /Hc"

k
20

FIG. 7. The field dependence of the critical current, I,(H, ),
of a periodically modulated junction with equal pinning center
size sp and pinning center distance dp. The parameters are
L jA.'-"=10 s /A, '"=d IA.'-"=0.4 and A.'"/A, ' '=0. 1. NoteJ ~ P J P J J J
that every other peak is missing due to the vanishing PF at the
fields defined from the commensurability criterion Eq. (14).

and in Fig. 6(b) the numerical result for I,(H, ) obtained
from a simulation with the experimental parameters
(L/A, '"=18.7, d /A, '"=1.66, and s /A, "~=0.4) is
shown. As far as we know, the value of A. cannot be(/)

determined experimentally, but the numerical calcula-
tions show that the I, (H, ) curve is basically unaffected by
a change of the ratio A, '. '/A, '" as long as it remains larger
than approximately 2, so we arbitrarily choose
Atj /k j 10 in al 1 our simulations. Since, in the experi-
ment, a symmetrical junction geometry was used, we
transformed our results, which used the boundary condi-
tions of an asymmetrical junction (see Sec. II), to the
symmetrical case. One observes very good agreement be-
tween the calculated and the measured curve, and, in par-
ticular, the criterion Eq. (13) is very well confirmed by
the positions of the peaks.

However, one of the peaks in the calculated curve Fig.
6(c) is almost absent, which at first sight seems surprising.
The explanation is simple: From the calculation of the
PF in Sec. III, we know that the net force vanishes if the
pinning center size is an integer multiple of the VL
period. For the above value of s /A, ~"=0.4, the corre-
sponding field is given by H, /H," =7.9, which coincides

0

with the position of the damped peak. In the above men-
tioned experiment, I, was not measured at fields large
enough so that this feature could have been observed,
but, in principle, this damping should also be experimen-
tally detectable. In Fig. 1(c), the local field and current
density is plotted at the critical current with an external
field H, /H,"' = 5 for a junction with parameters

L/A ~=10, d /A. '"=0.6, and s~/k, ,'."=0.1. One ob-
serves the above mentioned vortex density modulation,
the wavelength of which determines the size of regions
where the PF's are essentially adding up coherently.

For most other values of the relevant parameters dp sp,
the field dependence of I, looks qualitatively the same
with one exception: If the ratio between the pinning
center size s and their distance d is rational, i.e.,

=m (r +s)2A.,'"~.»K(lr,'»)
H(&)

Cp

=m(r+s)nA, '" (m =1,2, 3, . . . ) .
e

(14)

This example again proves that the pinning center size is
a crucial parameter, and, as we shall see in the next sec-
tion, this is also true for the case of random disorder,
which is our main interest in the present work.

VI. RANDOM DISORDER
AND COLLECTIVE PINNING

Among the types of disorder we investigated, the ran-
dom case is probably the most interesting and also the
most relevant one. In general, every real sample contains
some kind of randomly distributed defects, and, in partic-
ular, since the critical current of granular superconduc-
tors is believed to be limited by the current carrying
capacity of its weak links, which in turn couple the single
grains, the study of the pinning by random disorder could
also provide insight into properties of such materials.
For possible applications of granular superconductors,
the critical current at large fields is of particular interest,
so we intended to study its field dependence for fields

H, »H, , where H, =20—80 G is a typical value.

For bulk type-II superconductors, it was soon realized
that the nonvanishing critical current in the Abrikosov
state is due to the pinning of the flux tubes at defects. A
very successful theory for the description of random pin-
ning was developed by Larkin and Ovchinnikov, the col-
lective pinning theory. ' The central idea of CPT is the as-
sumption that the long-range order of the VL is de-
stroyed by the presence of the disorder, leaving a short-
range order over some correlation length L, . The length

L, depends on the elasticity of the lattice determined by
the vortex-vortex interaction, and on the disorder. Each
correlated volume is assumed to be pinned independently
by a total PF, which is due to fluctuations, since the aver-
age PF of randomly positioned pinning centers vanishes.
The critical current can then be estimated from the equi-
librium condition between the driving Lorentz and the
total PF acting on this volume.

Very recently Vinokur and Koshelev (VK) noticed that
this theory might also be applied to random pinning of
Josephson vortices in LJJ. They estimated the field
dependence of the critical current and found that it
should exhibit a plateau behavior for large fields, i.e.,

s /d =r/s, where r, s are integers, the commensurability
criterion and the criterion for the vanishing of the PF
coincide for all values of n in Eq. (13), which satisfy the
relation n =r+s. This suggests that the corresponding
peaks should be suppressed. Figure 7 shows the calculat-
ed I,(H, ) curve for a junction with parameters
L/k'. "=10,d /A, '"=s /A, '"=0.4, i.e., r =s =1. One
observes that the above mentioned peaks (in this particu-
lar case every other one) are indeed suppressed. The
suppressed peaks obey the commensurability criterion

d~+s~ =m(r +s)a»
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j,(H, ) should become a constant. Furthermore, they ar-

gued that the correlation length L, should substitute the
average penetration depth A, . in distinguishing the
effective dimensionality of a junction, i.e., junctions with
L &L, (even if L ))A, ) should behave like randomly
disordered point contacts, for which the effect of random
disorder was investigated earlier. ' '

While we started numerical simulations for random
pinning, we could not find the predicted plateau behavior
ofj,(H, ). This led us to reinvestigate the collective pin-
ning analysis of VK and to carefully compare the predic-
tion of CPT with the exact numerical results, since it did
not seem clear a priori that this theory should also apply
to LJJ.

The discrepancy between the prediction of VK and the
simulation could soon be explained by the fact that VK
did not take the importance of the average pinning center
size rp and its expected fluctuation O.

„

into account. In
0

their formulas, they used a simple approximation for the
average elementary PF of a single defect, which is only
justified if ro «A, and for fields H, «n.A/H, /ro In.

0

this parameter range, their predictions are found to be
correct. The use of the exact expression (8) for the aver-
age PF extends the applicability of VK's results to arbi-
trary fields H, ~ 3H, , and arbitrary junction parameters.

0
I

We checked the dependence of the formulas for j, pre-
dicted by CPT (using the exact PF) on all the parameters,
and found astonishing agreement with the simulations to
an accuracy given by the statistical error bars. Also the
overall qualitative shape of the j,(H, ) curve is predicted
correctly. The numerical factor needed to obtain quanti-
tative agreement between the two approaches is =2, so
the order of magnitude of j, is correctly estimated by
CPT.

In order to apply CPT, one needs to find an expression
for the elastic modulus of the VL, which, in the one-
dimensional case under consideration, is simply the
compression modulus. This can be done by expanding
the energy functional E[8(x)] to first order in the dis-
placement field u (x). In our case, u (x) can be intro-
duced by writing the perturbed phase 8(x) in terms of
the slightly disturbed homogeneous phase distribution
8,(x)

8(x)=8,(x —u (x)) .

This is correct under the assumption of weak disorder.
By inserting this ansatz into (6), VK have shown that this
results in an effective functional E[u (x)] given in terms
of the displacement field u (x), which for the case of one
dimension becomes [X=x —u (x)]

'2

—u(0) 2 QX ax aX 2e

where j is the external current density. The random po-
tential V~(x) is assumed to be short range correlated ac-
cording to

, ae, 'C(x)=E.X ~4E
ax J

H,

H,
0

2

=const,

where A, ,H, are again average values, and the asymptot-
0

ic result holds in the large field limit. Following CPT,
one is now in the position to estimate the correlation
length L, by minimizing the sum of the elastic and the
pinning energy of a correlated region with respect to its
size. L, is determined by the condition that the variation
of the displacement u along the correlated region is of the
order of the length scale of the effective pinning potential.
Since this potential varies on the scale of the VL period a
(see Sec. III), the gradient Bu /Bx, which enters the elas-
tic energy, can be approximated by its average a/L,

( V~(x&)V&(x2)) =E qe.
where E is the average Josephson coupling energy,
q = (5j, ) /j, « 1 describes the strength of the disorder,j j
and the typical length scale of the disorder is the average
pin size rp with variance cr, . The resulting elementary

0
PF can thus be approximated by F~ from Eq. (10). The
compression modulus is the coefBcient of the elastic term
in Eq. (15), and is given by

across the correlation volume. The pinning energy is cal-
culated by adding the random PF's in thePnite volume
L„and is proportional to the square root of the number
of pinning centers in L, . The relevant energy density is
therefore

'2
C(X) a

c c
C

—F E q1/2
P J

C

1/2

where the defect concentration is defined by n = I/ro
The total average PF acting on the correlation volume is
assumed to be zero, so the actual pinning arises from fluc-
tuations resulting in a pinning energy proportional to the
square root of the pinning-center density. Since we are
only interested in the behavior for moderate to large
fields H, /H, )3, in the following calculations, we al-

0

ways use the asymptotic values for the compression
modulus C(x) (see above) and the VL period
a ~ mA, H, /H, . From .th.e minimization we then obtain

0

rp
L, =4m.A,

~qX,-

' 1/3 2/3

(16)

In contrast to the prediction of VK, L, is not indepen-
dent of field, but increases as H, at large fields, for
which the pinning force becomes effectively constant.
Since CPT assumes each correlation volume to be pinned
independently, the critical current is determined from the
equilibrium condition between pinning and Lorentz force
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density for a single volume of size L,
' 1/2

J H =F E q1!2
C

C e P j L
C

Note that our j, has a dimension current per length, be-
cause we set the junction width W =1. At this point, one
has to distinguish the dimensionality of the junction: If
L & L, the short-range order of the VL extends across the
entire junction. This means that the pinning of all the
vortices is correlated and L, must be substituted by the
junction length L in Eq. (17). Thus L, is a new e+ectiue
length scale, which distinguishes short [zero-dimensional

I

(OD)] and long lone-dimensional (1D)] randomly disor-
dered Josephson junctions, replacing the corresponding
length A, -, which plays this role for a homogeneous junc-
tion. This has an important consequence: As mentioned
above, L, increases with field, which means that for a
junction with L )L, at H, =0, there exists a critical field
H, for which L =L„andhence for fields H, )H, , a di-

mensional crossover takes place from one- to zero-
dimensional behavior of the junction. This crossover
could not be obtained using the approximation of VK.
Again using the asymptotic expressions, the final forrnu-
las for the critica1 current density of the short and long
junction read

L)L, :
JC,.

JC=
4m.

4/3

~qX
'" FpH. H,

4/3

(H»H j, (18a)

qX' ""FpHcp
L&L, : j,=

2 TOL He

H,
(H»H ) .

H
0'

e

(18b)

For large fields H, »H =~H, A, /o„,the PF F~ be-
Cp j fps

comes constant, and one obtains the above asymptotic
field dependence. It is important to keep in mind that
Eqs. (18a) and (18b) only represent a dimensional esti
mate, so that one should not expect the numerical values
of j, calculated from these formulas to be exact. Howev-
er, the functional dependence on the given parameters
can be assumed to be correct, if CPT is a valid approach.
The expressions Eqs. (18) are amenable to a direct check
by our numerical simulations. The dependence of j, on
the parameters q and L, and also its asymptotic field
dependence can be directly extracted from the simula-
tions because it is a simple power law. The dependence
on ro and o.

„

is not explicitly given, since the PF also de-
0

pends on them. Therefore, one can only check the quali-
tative agreement between the numerically calculated

j,(H, ) curve, and the one predicted from CPT for a set of
values of this parameters. In Fig. 1(d), we show a typical
plot of the coupling E (x), as well as j(x), and H(x) at
the critical current for applied field H, /H, = 5, and junc-

tion parameters q =0.09, roli, =0.1, cr„/A, =0.02,
0

L/k =10. One observes the existence of an average
(Bean critical state) gradient dH /dx, which is responsible
for the finite average critical current density. This is
completely analogous to a critical state in type-II super-
conductors.

Before reporting our numerical results, we need to say
a few words about the algorithm for the calculation of j,
in the presence of random disorder: The disorder is again
modeled by choosing E (x) to be a piecewise constant
function where the lengths l" of the constant regions as
well as the corresponding values E"are random Gauss-
ian deviates with mean values E, ro respectively. The
variance of E" is determined from the variance q of j,",
and the variance of l" is o.„.For each such obtained

realization of the junction, the critical current is calculat-

ed as described in Sec. II, and finally, a statistical average
of j, is taken over many (N) realizations. The statistical
error is given by the standard deviation o. . of j„renor-

C

rnalized by the square root of the number of realizations:
b j,=o

J /&N. In order to keep the error bars and the

computing time reasonably small, we typically used
100—300 realizations resulting in a typical relative error
of less than 3%%uh.

The check of the q and L dependence was done for a
junction with parameters ro/A, =0.05, cr„/A~ =0.01,
and a field of H, /H, =80. Figure 8(a) shows a plot of I,

0

vs L' . One observes the expected linear increase for
small values of L (i.e., j, o-L ' as predicted for a short
junction) up to a length L, /A, =35 from where the curve
is starting to bend away towards a quadratic behavior at
larger L. This proves the existence of the above men-
tioned crossover from zero- to one-dimensional behavior,
i.e., I, ~L for larger L. The length at which the cross-
over occurs should correspond to the correlation length,
which for this junction and field was estimated to be
L /X j 100 This means that the numerical factor in the
estimate Eq. (16) is =0.35. However, one has to take
into account that it is not possible to obtain a very accu-
rate value of L, from the numerical I,(L) dependence,
since the size of the region of crossover is not well
defined. In summary, these results prove the existence of
a critical current density for one-dimensional LJJ's and
hence show that a collective pinning approach to the ran-
dom pinning problem of the LJJ is possible. For the
zero-dimensional case, j, is not a true current density
since it is a length-dependent quantity.

The values of j, extracted from the slopes of I, in the
two regimes depicted in Figs. 8(a} and 8(b} confirm that
the numerical factor needed to rnatch the predictions
from Eqs. (18) and the numerical results is =2: For the
1D regime one extracts j,"" /j, =0.93 X 10 compared
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FIG. 8. The length dependence of the critical current, I„ofa
randomly disordered junction with parameters q =0.09,
rp/A, j 0.05, o.

„
/rp =0.2, and fixed applied field H, /H, =80:

p p

(a) A plot of I, vs L' . One observes a linear rise for small

L/A, , & 35, indicating the law I, ~L', characteristic for a OD

junction, i.e., L )L, . (b) The same data I, plotted vs L. From
the value L/A, , =35, a linear rise sets in, confirming the ex-

istence of a critical current density, which is predicted by CPT
for a 1D junction. The critical value L, /A, J =35 is therefore an
estimate of the CPT correlation length at this field.
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FIG. 9. The dependence of the critical current I, on the
strength q of the disorder at the field H, /H, =80 for the same

junction as in Fig. 8. (a) A plot of I, vs q' for a junction
length L/AJ-=4, i.e., a OD junction. The observed straight line
confirms the proportionality I, ~q' ', predicted by CPT [Eq.
(18b)]. (b) A plot of I, vs q2~ for a junction length L/A, , =100,
i.e., a 1D junction. In this case, the observed straight line
confirms the proportionality I, ~q, predicted by CPT [Eq.
(18a)].

to the predicted j, /j, =0.57X10, and for the OD

regime we obtain L '~ j,"" /j, = 1.01 X 10 compared to
L' j, /j, =7.0X10 . Note also that the current ex-

J
trapolates nicely to zero for L —+0.

Figures 9(a) and 9(b) show a plot of j, vs q'~ of the
same junction with length L /A, - =4, i.e., the OD case, and
vs q with length L/A, . =100, i.e., the 1D case. Both
points fit perfectly well to a straight line within the error
bars, and in the limit q —+0 both curves extrapolate nicely
to the values obtained for the corresponding homogene-
ous junction. Of course, a dependence of q' is very
hard to distinguish from q if represented by a finite
number of points, but the fit with the predicted exponent
was better in both cases. So the q and L dependence of j,
is confirmed by the simulations.

Another feature we observed in the length-dependent
calculations was that the relative variance of the critical
current o. /j„decreased with increasing length of the

C

junction. This is quite important in view of the relevance
of this theory to the polycrystalline high-T, materials:
Experimentally it is observed that the fluctuations in the
critical current of different ceramic samples produced un-
der equivalent conditions are very small. If we assume
that the critical current in such systems is limited by the
depinning across a critical path of macroscopic length, '

i.e., an inhomogeneous LJJ, this experimental finding cor-
responds to a relative variance in the calculated values of
j, from different realizations of the disorder, which
should scale to zero as the junction length increases.
This self-averaging effect agrees with the results of our
simulations.

From the physical point of view, the most interesting
property of the junction is the field dependence of the
critical current. Figures 10(a)—10(d) show numerically
obtained j,(H, ) curves for disorder strength q =0.09 and
several different sets of parameters ro/A,

~
and L/A, J com-

pared to the corresponding curves calculated with CPT
for the same parameters. The ratio o„/Fo=0. 2 was

identical for all four junctions. The basic features we ob-
serve are (i) the increase of the Meissner peak at H, and

p

its shift to larger fields H, /H, =2—3 for large-scale dis-
p

order, (ii) the appearance of a plateau with almost field
independent j, for disorder with length scale ro/X (0.2,
and (iii) the formation of a local minimum at the field
H =(m.A, /ro)H, at which the VL period coincides with

F J 0 cp

the average defect size. Comparing the numerical curves
with the predicted ones shows that features (ii) and (iii)
are both perfectly reproduced and also the overall shape
of the curves agrees beautifully. The Meissner-peak is
not found in the CPT results, since we restricted our-
selves to fields 0, /H, ~ 3 in our analysis. The curves es-

p

timated by CPT were rescaled by a factor of =2 in order
to allow a comparison of the qualitative shapes with the
numerical results. This value represents the numerical
factor mentioned above. The asymptotic field depen-
dence of j, calculated for a junction with parameters

q =0.09, ro/A, =0.5, L /X. =200, and o., /ro =0.2 is de-
p

picted in Fig. 11. One can nicely observe the crossover
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from 1D to OD behavior at a field H, /H, =80, where the

field dependence changes from j, ~ H, to j, ~ 1/H, .
The effect of different ratios o., /ro is demonstrated in

p

Fig. 12. If the ratio is zero, one can nicely observe the
effect of the oscillatory behavior due to the periodic
unaveraged elementary PF I', Eq. (9). For small values
of 0., /ro, a few peaks still survive, whereas for values

0
0.

„
/ro & 0.2, only the first peak is observable. Note that

p

for fields H, &H, all the curves essentially coincide.
rp

This behavior directly refiects the field dependence of the
averaged pinning force I', which was shown for different
ratios cr„/rc in Fig. 4.

0

Another point to mention is that the presented graphs
always show the average value of j„which can be
thought of as a background current produced by the ran-
dom pinning. Superimposed on this background, one has
to imagine the characteristic oscillatory structure of the
homogeneous I, (H) dependence resulting from the for-
mation of an additional vortex. This oscillatory structure
is seen in the numerical calculations when considering

the critical current of a single realization of the disorder,
but it disappears upon averaging.

From the presented results, one finds the important
conclusion that the critical current can be kept at a con-
siderably large value for increasing field as long as the
length scale of the disorder is very small compared to the
penetration depth. The dramatic drop in j, occurs at the
above mentioned field H = (mA. Irc )H, . For fields

rp 1 « ~p

above this threshold value, the pinning is drastically re-
duced. However, it still leads to a nonzero critical
current density (for the lD case), in contrast to a homo-
geneous junction.

VII. CONCLUSIONS

We have presented a detailed study of Josephson vor-
tex pinning in one-dimensional inhomogeneous LJJ with
various types of disorder. The critical current of the
disordered LJJ was calculated as a function of the applied
magnetic field, (i) numerically by exactly solving the self
consistent stationary sine-Gordon equation in the pres-
ence of a piecewise constant maximum Josephson current
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FIG. 10. A comparison between the predicted (CPT) and the numerically determined field dependence of the critical current,

I,(H, ), for four randomly disordered junctions with different parameters rp/A&, and L/A, but with the same values q =0.09, and

0„/rp=0. 2. (a) A junction with large scale disorder rp/A. , =0.5, and L/A. ~=200. No plateau is found, and from the field

H, /H, = 10, the asymptotic decrease I, ~ H, sets in, until H, /H, =70, where a crossover to the behavior I, ~ H, ', characteris-
p 0

tic for OD junctions, is observed. The sharp drop in I, usually found at H, is shifted to larger fields =3H, . (b) A junction with a

smaller disorder length scale rp/A, ,-=0.05, and length L/A~=30. A plateau is observed for fields H, /H, ~20, followed by the

characteristic minimum when the vortex spacing a is equal to rp (at H, /H, =60), and finally, the asymptotic (OD) decrease I, H,

(c) A junction with a disorder length scale rp/A. , =0.033, and length L /A, , =30. The graph is qualitatively the same as in (b). Howev-

er, the observed plateau is slightly lower than in (b), and extends to larger fields H, /H, 35. (d) A short junction with a small disor-
0

der length scale rp/A, , =0.01, and length L/A, ,-=6. The drop of I, at H, =H, has become much smoother, and is followed by a

small maximum on the plateau. The plateau itself extends to large fields H, /H, =110, and the characteristic minimum is at
0

H, /H, =310. Note that the statistical error bars are smaller than the data symbols in all cases.
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FIG. 11. The dimensionalcrossovershownin Fig. 10(b). The
numerically obtained data points are compared, {i) against the
prediction for a 1D junction, and (ii) against the prediction for a
OD junction. One observes that for small fields (H, /H, ~60)

0

the 1D prediction gives the correct asymptotic decrease,
whereas for (H, /H, ~ 200) the OD prediction is correct.
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FIG. 12. The e8'ect of a varying pin size randomness o.
„

/r0
0

on the field dependence of the critical current I, for junctions
with q =0.09, r0/A, , =0.1, and L/A, , =20. (a) Equal pinning
center sizes, o, =0. Sharp minima are observed at field values

where the averaged PF vanishes, i.e., the pin size r0 is an integer
multiple of the vortex spacing a (see Fig. 4). (b) The minima of
the junction with o.

„

/r0=0. 1 are strongly smoothed, and

disappear for large fields. (c) At o.
„

/r0=0. 2, only the first

minimum (at H, /H, =30) survives, and for large fields, the

smooth asymptotic decrease I, ~H, ' predicted for a OD junc-
tion is found.

density j, (x) and (ii) for the case of random pinning, by
J

extending the collective pinning analysis by VK to arbi-
trary external fields and junction parameters.

Our main achievement was to show that CPT provides
an excellent qualitative description of random disorder in
LJJ. The crucial quantity which enters CPT is the aver-
age elementary PF. In contrast to VK, who used a sim-
ple approximation, we have calculated this force analyti-
cally, and as a consequence, using CPT, many additional
features in the field dependence of the critical current
were predicted, and also verified in the comparison to the
numerical results. In particular, the existence of a criti-
cal current density j„which is a necessary condition for
CPT, has been shown by numerical investigation of the
length dependence of the critical current, in contrast to
the uniform junction, which is only able to carry a sur-
face current.

One of the main results of VK was the substitution of
A, - by the CPT correlation length L, as the length scale
distinguishing between the effective dimensionality of the
junction: For junction length L &L„there should be
1D, for I. (L„ODbehavior (as for a randomly disor-
dered Josephson point contact). This finding is confirmed
by our results. However, we discovered an additional
feature: The approximation of VK yielded a field-
independent value of L, for large fields, whereas by using
the exact PF, we obtained the result that L, increases
with a power law ~H, . This means that a junction,
which behaves effectively one dimensionally at low fields,
will show a dimensional crossouer to a point contact as
the field increases.

Within their approximation, VK obtained a constant
critical current density for arbitrary large fields. We have
shown that this approximation is only valid for disorder
that varies on length scales ro much smaller than the
average Josephson penetration depth A, , and even in this
case it cannot be justified as soon as the vortex spacing
becomes of the order of ro. This situation arises for ap-
plied fields H, /H, =~X~/ro, and for larger values, a

0

power-law decrease ~ 1/H, for point contacts, and
~ H, for the one-dimensional case is found. This de-
crease is due to the fact that the PF approaches a con-
stant value for large fields, whereas the Lorentz force in-
creases.

This behavior shows a strong resemblance with mea-
sured j,(H, ) curves of polycrystalline high-T, supercon-
ductors: A sharp decrease of j, is found at applied fields
H, =20—80 G (depending on the material and tempera-
ture), " ' which corresponds to the critical field H, of
the weak links in these materials. This sharp drop is fol-
lowed by a large region (up to applied fields of the order
of 10 G at temperature T =77 K, and 10 G at T =4 K)
in which j, is essentially field independent. Assuming
that the critical current is limited by the depinning of
Josephson vortices along a critical path (a macroscopical-
ly long junction), e.g., in the context of a limiting path
model, ' one can explain these experiments as follows: If
we assume that the effect of finite temperature (recall that
our analysis is strictly valid only at T=0) is simply to
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change the value of the effective parameters A, ,H, ,j, ,J7 C 7 C. 7

i.e., we neglect thermal depinning and flux creep (which
is reasonable), the observed plateaus could be due to
very small scale disorder r0 =50 A. This estimate is ob-
tained in the following way: In our analysis the second
drop ofj,(H, ) occurs when the vortex spacing a is of the
same order as ro. This "critical" spacing ad can be calcu-
lated from the experimental values of the field at the drop
Hd =10 6 and the London penetration depth A,L =2000
A (both at 77 K) as r o=a d=4 o/(H, 2A I) =50 A. The
Josephson critical current density at this temperature can
be estimated to be approximately j, =5X10 A/cm .

J
Using these values, one can calculate the critical current
density j, from Eqs. (18), and obtain the result j,=100
A/cm, which is in reasonable agreement with the experi-
mental values. The scale ro =50 A seems to suggest that
the disorder in the grain boundaries could have the same
origin as in the grains, viz. , oxygen vacancies, with the
difference that it might be stronger in the boundaries
than in the grains. The change of the parameters due to
the increased temperature could explain the shift of the
second drop to lower fields, which is experimentally
found at T=77 K. However, in the above discussion,
one has to bear in mind that the experimentally measured
plateau persists far beyond H, =500 6, so Abrikosov

1

vortices have entered the grains, and therefore one can-
not say with certainty that their interaction with the
Josephson vortices can be neglected. Nevertheless, the
pinning of the Josephson vortices can be assumed to be
much weaker than the pinning of the Abrikosov vortices,
and therefore the limitation of the critical current should
still be determined by the pinning strength of the Joseph-
son vortices; i.e., our analysis should apply.

For a junction with a periodic defect lattice, our nu-
merical resu1ts reproduced the measured peaks in the
I, (H) curves and the explanation for the occurrence of
the peaks was confirmed to be given by the commensura-
bility criterion between the pinning center lattice and the
vortex period, as suggested earlier. ' However, due to

the behavior of the elementary pinning force, we predict
the absence of peaks at fields for which the pinning center
size is commensurate with the vortex size. Such a situa-
tion occurs whenever the ratio between the pinning
center size and the pinning center distance is a rational
number. This cancellation effect remains to be seen ex-
perimentally.

Finally we reported the possibility of constructing a
junction with maximal pinning consisting of alternating
regions with large and small Josephson coupling E~. The
sizes of the regions were chosen such that the critical
current was maximal for a given applied field H, , due to
the exact matching between the defects and the vortex
lattice. We calculated the field dependence of I, for such
a junction, and found a linear increase up to the field H, ,
followed by a sharp drop to values typical for corre-
sponding uniform junctions. In the asymptotic regime of
large fields, an average critical current density

j,' '=(1/n. )j,'" was found, which is of the order of the
J

maximum Josephson current density in the regions with
the larger coupling. It would be interesting to see wheth-
er such a junction can actually be produced, and perhaps
it could even be useful for technical applications.

Future work on disordered LJJ should certainly con-
centrate on the investigation of dynamic properties, such
as current-voltage characteristics, especially for the case
of random disorder, about which still little is known,
whereas dynamic phenomena in the presence of periodic
defects have already been studied fairly intensively.
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