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Using an expansion technique we study the dynamics of a spin-s Heisenberg ferromagnet with

nearest-neighbor exchange coupling J. The transverse-mode frequencies are calculated by expanding a
self-energy function in powers of 1/z, where z is the number of nearest neighbors on the lattice. To
zeroth-order in 1/z, the mode frequencies agree with the random-phase approximation. To the next or-

der in 1/z, the coupling between the transverse and longitudinal fluctuations is responsible for a shift in

the spin-wave (SW) frequencies ~i, and for the appearance of a second pole in the correlation function at
an energy close to zJs. This second mode is excited by longitudinal fluctuations, which force the local

spin to precess about the mean field with frequency zJs rather than with the spin-wave frequency coi, . Be-
cause of its interactions with the surrounding spins, this precession can propagate through the lattice.
When coi, is close to zJs, the precessional mode may be observable as a splitting of the transverse reso-

nance into two peaks. Since the coupling between the longitudinal and transverse fluctuations becomes

exponentially small at low temperatures, the precessional mode only appears above the crossover tem-

perature T=0.2zJs. Because the SW approximation mishandles the subtle interplay between the longi-

tudinal and transverse fluctuations, it misses the second pole in the correlation function. In agreement

with earlier work we find that the SW approximation breaks down above the temperature T, when the

exponential coupling terms in the correlation function become significant. Although the precessional

mode is induced by longitudinal fluctuations, it is fundamentally a transverse excitation and must be dis-

tinguished from the longitudinal mode, which has zero frequency.

I. INTRODUCTION

At low temperatures, the spin-wave (SW) approxima-
tion has been remarkably successful' in predicting the
thermodynamic and dynamic properties of a ferromag-
net. But even Dyson, who pioneered the SW approxi-
mation, recognized that its basic assumptions must break
down when the temperature becomes sufficiently high.
At high temperatures, the interactions between spin
waves become highly nonlinear and the concept of a
weakly interacting transverse excitation loses its mean-
ing. The consequences of this breakdown have gone
largely unstudied, mostly because the observed SW fre-
quencies ' of a ferromagnet remain quite close to the
predictions of the SW approximation even near the Curie
temperature T~. In a previous paper, Fishman and Vig-
nale (FV) used a rigorous expansion of the free energy to
predict that the SW approximation would fail above the
crossover temperature T=0.2zJs, where z is the coordi-
nation number of the lattice, s is the spin, and J is the fer-
romagnetic coupling constant. This thermodynamic
crossover is marked by a peak in the fluctuation specific
heat. In this paper, we examine the consequences of the
breakdown of the SW approximation for the dynamics of
a ferromagnet.

Using an expansion of the correlation function, we find
that the mode frequencies deviate from the SW predic-

tions above a temperature very close to T. Hence, the
thermodynamic and dynamic crossover temperatures
agree. Above T, the modes can no longer be described as
weakly interacting, particlelike excitations. As discussed
in FV, the many-body interactions between the spin
waves contribute to the free energy above T. In this pa-
per, we find that the coupling between the transverse and
longitudinal fluctuations also becomes significant above T
and shifts the SW frequencies.

Much more surprisingly, the longitudinal fluctuations
are responsible for a second pole in the transverse corre-
lation function near the energy b =zJs. At this energy, a
longitudinal fluctuation forces the spin to precess about
the local mean field with frequency A. Due to its cou-
pling with the surrounding spins, the precessional mode
can propagate through the lattice. The precessional
mode is absent in the SW approximation, which mishan-
dles the subtle interplay between the longitudinal and
transverse degrees of freedom.

Because they are strongly coupled and highly non-
linear, the "spin-wave" modes above T are quite different
from the linear excitations below T. But, to avoid con-
fusion, we continue to refer to these excitations, both
above and below the crossover temperature, as spin-wave
modes. When the SW frequency cok is close to 6, the
mixing between the SW and precessional modes splits the
transverse resonance into two peaks. Due to this mixing,
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there is really no sharp distinction between the SW and
precessional branches of transverse excitations.

In earlier work, FV studied the breakdown of the SW
approximation by expanding the S% and exact free ener-
gies in powers of 1/z. To zeroth and first order in 1/z,
the SW free energy is exact. But to order 1/z, the SW
free energy deviates from the exact free energy above the
crossover temperature T, which is marked by a peak in
the fluctuation specific heat. ' Since the Curie tempera-
ture scales like zJs, the nonlinear regime between T ~ zJs
and T& grows with increasing spin. Above T, the ex-
ponentially small terms in the free energy become impor-
tant and the asymptotic, low-temperature expansion of
the free energy breaks down. Hence, the failure of the
SW approximation follows the pattern predicted by
Dyson.

In this paper, we use a related technique to evaluate
the mode frequencies of a ferromagnet. Instead of ex-
panding the free energy, we expand a self-energy function
X(k,iso ) which is proportional to the inverse of the
transverse correlation function D+ (k, i co ). If
X(k, iso ) is expanded to zeroth-order in 1/z, the correla-
tion function has poles at the SW frequencies of the
random-phase approximation' (RPA). If X(k, iso~ ) is ex-
panded to order 1/z, the SW frequencies are shifted from
the result of the S% approximation and the correlation
function develops a second pole near the energy A. Both
the shift in the SW frequencies and the residue of the
second pole become significant only above T.

The self-energy expansion technique used in this paper
does not alter the spin commutation relations or simplify
the spin dynamics. In the high-temperature regime
above T, the results of this expansion are formally exact
and physically meaningful. To establish the self-
consistency of this technique and to apply it to a more
straightforward problem, we have studied the onset of
long-range order in a paramagnet. In the preceding pa-
per, we use the self-energy expansion to show that the
long-range correlations of a paramagnet diverge at the
same Curie temperature previously evaluated by Fishman
and Liu (FL) in the ferromagnet. Hence, the self-energy
expansion is consistent with the order-parameter expan-
sion used in FL. Both the preceeding paper and the
present one use the same basic methodology. First, the
real-space correlation function is expanded to the re-
quired order in 1/z. Then the real-space self-energy is ob-
tained by inverting a matrix equation. Finally, a Fourier
transformation yields X(k, i co ). All these manipulations
are performed for the Matsubara correlation function
and self-energy. The analytic continuation to real fre-
quencies is left till last.

Unfortunately, the lifetime of the SW and precessional
modes cannot be obtained with this approach. While the
shifts in the transverse mode frequencies are analytic
functions of 1/z, the width I of the modes is not. Hence,
a 1/z expansion of I always yields a vanishing result. To
compensate for this weakness of the theory, we have es-
timated I and its effect on the observability of the preces-
sional mode.

The expansion technique used in this paper is related
to the earlier work of Vaks, Larkin, and Pikin. Like the

present authors, Vaks et al. do not simplify the commu-
tation relations of the spin operators. They evaluate the
correlation function by expanding in powers of 1/ro,
where ro is the range of the exchange interaction. After
comparing our results with the results of Vaks et al. , we
conclude that the 1/ro expansion is exact to order 1/z.
As argued in Sec. V, however, the 1/ro expansion is not
exact to higher order in 1/z. Nonetheless, the results of
Vaks et al. provide a useful check on the 1/z results of
this paper. Because they include terms of arbitrarily high
order in 1/z, Vaks et al. did not notice that the trans-
verse correlation function develops an additional pole
near A.

To clarify the physical interpretation of the transverse
pole at 5, we have also evaluated the longitudinal corre-
lation function. After expanding to order 1/z, we find
that the longitudinal correlation function has a pole only
at zero frequency. The dynamics of the longitudinal Quc-
tuations are caused by the coupling between the longitu-
dinal and transverse degrees of freedom. At low temper-
atures, when this coupling is surpressed, the longitudinal
correlation function is static. Hence, we must carefully
distinguish between the precessional mode with energy 6
and the longitudinal mode with zero energy.

Although fundamentally a transverse excitation, the
precessional mode is excited by longitudinal fluctuations.
A longitudinal fluctuation forces the local spin to precess
around the mean field with frequency 6 rather than with
the SW frequency col, . Because of its coupling with the
surrounding sites, this fluctuation propagates through the
lattice with an energy which depends on momentum.
The propagation of the spin waves is also affected by the.
local, longitudinal fluctuation of a spin. Because the
wave function of the spin wave contains a sum over all
spin states, the spin wave can propagate through the lon-
gitudinal fluctuation with some change in energy. %hen
co& is close to 6, however, the spin waves couple strongly
to the precessional mode, leading to a repulsion of the
two transverse branches and a mixing of the two modes.

In the long-wavelength limit, a spin precession cannot
propagate through the lattice and the residue of the pole
at 6 tends to zero. So, as k —+0, the spin waves become
the only transverse modes of the lattice. But, for finite
wave vector, the precessional mode propagates through
the lattice with a frequency shifted from 6 by dispersive
effects. Although the precessional mode exists for all
nonzero momentum, it is most easily observed when
~&=5 and when each transverse branch contains a mix-
ture of the two modes. Away from this mode-crossing
point, the residue of the pole near 5 is very small.

This paper is divided into seven sections. In Sec. II, we
develop the formalism of the self-energy expansion. Ap-
plying this technique to the transverse correlation func-
tion, we evaluate the frequencies of the S% and preces-
sional modes in Sec. III. In Sec. IV, we discuss the physi-
cal origins of the precessional mode and we demonstrate
that the SW frequency deviates from the predictions of
the SW approximation above the crossover temperature
T. In Sec. V, we estimate the width of the transverse
modes and we discuss the observability of the precession-
al mode. Section VI is devoted to a calculation of the
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longitudinal correlation function. Finally, Sec. VII con-
tains a conclusion and discussion. In the Appendix, we
prove a theorem which allows us to easily evaluate the
correlation diagrams of Sec. III while retaining the full
commutation relations. This theorem replaces Wick's
theorem, which is not valid for spin operators.

Z =TrIe ''e 'I

The 1/z expansion of ( A ) is generated by first expanding—PH2the exponents e ' in Eqs. (10) and (11), and then col-
lecting all the terms of a given order in 1/z:

II. FORMALISM
t' A ) = Ao(T*)+—A (T*)+I

0 (12)

In this section, we develop the self-energy expansion
for a spin-s Heisenberg ferromagnet with the Hamiltoni-
an

[Sai,Spj j= i5ij apyS~y (2)

with %=1. To develop a systematic expansion for the
correlation function and mode frequencies, we split the
Hamiltonian into a mean-field (MF) part H,z, a constant
term H „and a fluctuation term H2.

H= —J$S;S. ,
( i,j )

where J)0 is the ferromagnetic coupling constant be-
tween neighboring sites. The spin operators on the N lat-
tice sites obey the commutation relations

The zeroth-order term A0 is just the MF expectation
value ( A )~„. If A is dimensionless, then each
coefficient A„ is a function only of T* and s. The
higher-order coefficients A„» are produced by the cou-
pling of fluctuations on neighboring lattice sites.

Examples of this procedure are contained in FL and
FV. In FL, we found that the coupling of fluctuations
suppresses the order parameter from its MF value. By
setting the total order parameter to zero, we obtained a
I/z expansion of the Curie temperature Tc. In FV, the
free energy F/NzJ was expanded to second order in 1/z.
The second-order free energy F2/NzJ depends not only
on T' and s but also on the lattice topology.

The goal of this paper is to evaluate the transverse and
longitudinal correlation functions

H =H,~+H)+H2,
H, s = —zJMO g S;, ,

H& =
—,'NzJM0,

H2= —J g RJ,
(ij )

R; =S;,S,+ —,'(S;+S +S; Si+),

(3)

(7)

D+ (k, ice )= ge 'D~+, (ice ),

D;+ (ice )= —f dye (T, ;S+( )r~S(0)),
0
—ik R,.D„(k,ice )= pe 'D~', (iso ),

D,"(ice ) = —f dye™~(T,S;,(r)S,(0)),
0

(13)

(14)

(15)

(16)

where S;—+ =S,,+iS, , S,,=S,,—M0 is the longitudinal
fluctuation on site i, and M0 is the mean-field order pa-
rameter Mo=(S„)~F.

All MF expectation values are evaluated by setting Hz
equal to zero. Hence, the MF expectation value of the
operator A is given by

( A )~„= TrIe ' A I,
0

(8)

Zo=TrIe

Because H, is a constant, it does not contribute to the
MF expectation value. Every MF expectation value is a
function only of the dimensionless temperature
T*=T/zJ and the spin s.

Because the MF expectation value of H2 vanishes, H2
is the energy produced by the coupling of fluctuations on
neighboring lattice sites. As the number of nearest neigh-
bors z increases, the mean field zJM0 experienced by each
spin becomes stronger and the coupling of fluctuations
becomes weaker. In the limit z ~~, MF theory becomes
exact and H2 can be neglected. So the effects of H2 can
be studied with a 1/z expansion about MF theory.

Since H,z commutes with Hz, the exact expectation
value of A is given by

where co =2m m. T are the Matsubara frequencies,
P= 1/T, R; are the lattice vectors with R, =0, T, is the
time-ordering operator, and the Heisenberg operator
A (r) is defined by

A (r) —e~HAe vH— (17)

D;+ (ice )=5;JD'+ (ice ), (18)

D'+o' (ice )= 2M0

Vo

(20)

D,', '(ice ) = —P5 OG, , (21)

where 50=zJM0, v0=ico —h0, and the functions G„are
defined by

The transverse and longitudinal mode frequencies are
given by the poles of the correlation functions D+ (k, co)

and D„(k,co), which are obtained from D+ (k, iso ) and

D„(k,ice ) by the analytic continuation ice ~co+i5
In MF theory, with H2 set to zero, these correlation

functions are simple to evaluate. The correlation func-
tions are then short ranged with

1 —~em ~2(A ) =—TrIe ' e 'A I,Z
(10)

1 P mMO

m= —s

(22)
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m= —s

e
P mM

(23} X(k iso )= pe 'X);(iso ) . (27)

D'+ (i~ )
D+ (k ito )= (,1 D'+' (iso )X(k—, iso )

(24)

where the self-energy X(k, its ) is produced by the corre-
lation of fluctuations on neighboring sites. This relation
can inverted to yield the definition of the self-energy:

X(k iso )=,
)

1 1

D(0) ((to ) D+ (k iso )
(25)

Alternatively, Eq. (24) can be rewritten in terms of the
real-space matrices D,.+ (iso ) and X, (i to ) as-

D(ito )=D'+' (its )I+D'+' (iso )X(io) )D(its ),
(26)

where I is the identity matrix and X(k,iso ) is related to
the self-energy matrix by

The zeroth-order function Go is equivalent to the MF or-
der parameter. Both zJD'+' (iso ) and zJD,', )(iso ) are
dimensionless functions of order 1/z . Using Eqs.
(18)—(21), we find that the Fourier-transformed correla-
tion functions D+ (k, ito ) and D„(k,ito ) are given by
D'+' (iso ) and D,', '(iso ), independent ofk.

Analytically continued to real frequencies with
ito ~to+i5, the MF transverse correlation function has
a pole at the frequency 60. This pole corresponds to a
single spin precessing about the local mean field zJMO. A
local precession of the spin involves both longitudinal
and transverse fluctuations. While the transverse spin ro-
tates about the z axis with frequency 50, the longitudinal
spin fluctuates from s to s —1. At zero temperature, the
cost in energy for this longitudinal fluctuation is zJs. At
finite temperature, the energy cost is reduced to zJMO.

Due to the coupling of spin fluctuations on neighboring
sites, the spin excitations become collective and the pole
at 60 is shifted to the SW frequency co&. Because of their
collective nature, spin waves involve very small fluctua-
tions of the longitudinal spin. When k~O, the spin wave
reduces to a small rotation of the total magnetization of
the lattice and co& tends to zero. However, we shall dis-
cover that spin waves with energies close to 6p couple to
longitudinal fluctuations of the magnetization and to the
propagating, precessional mode of the spin.

While the MF transverse correlation function depends
on frequency, the MF longitudinal correlation function is
static. As discussed in Sec. VI, the longitudinal fluctua-
tions become dynamic when they couple to the transverse
fluctuations Because of this difference between the MF
correlation functions, we use slightly different methods to
study the 1/z corrections to the transverse and longitudi-
nal mode frequencies. The method described below is
suitable only for the transverse correlation function. The
method used to calculate the longitudinal mode frequen-
cies is described in Sec. VI.

The exact, transverse correlation function can be ex-
pressed as

Because D'+' (iso ) is nonzero for all k and all m, Eq.
(24) and Eq. (26) provide equally general expressions for
the correlation function. These equations make no other
assumptions about the transverse correlation function or
self-energy. A self-energy cannot be defined for the longi-
tudinal correlation function because D,', '(iso ) vanishes
when m%0.

Because the mode frequencies are given by the zeroes
of [D+ (k, co)] ', the inverse correlation function or
self-energy is really the object of interest. Strictly speak-
ing, it is not necessary to construct a self-energy
X(k,i to ) in order to expand D+ (k, its ) '. The
correlation function D+ (k, i co ) may be expanded
directly in powers of 1/z, then inverted to obtain the
mode frequencies, without ever defining a self-energy.
However, certain simplifications occur when Eq. (26) is
used to evaluate the self-energy. So, to calculate the
transverse mode frequencies, we expand the self-energy;
but to calculate the longitudinal mode frequencies, we
must expand the correlation function directly.

Several steps are required to expand the self-energy
X(k, iso ) in powers of 1/z. First, every correlation func-
tion D,

&
(i to ) is expanded in powers of 1/z. Then, Eq.

(26) is inverted to obtain the 1/z expansion of the real-
space self-energy X,". Finally, the Fourier transform in

Eq. (27) yields the 1/z expansion of X(k,i to ), which can
be written

X(k,i to )
=ao(iso )+—a )(iso )+

zJ z
(28)

The self-energy is divided by zJ so that the coeScients cr„
are dimensionless functions of T', it0 /zJ, the spin s,
and the functions

(n) y eik 5(").
k ar~"n g(n)

(29)

where the sum runs over the JV„different n-nearest-
neighbor vectors 5(").

For a cubic lattice with the lattice constant set to 1, the
first-order function is given by

y(,
"=

—,
' Icos(k„)+cos(k )+cos(k, )), (30)

which equals 1 when k =0 and equals —1 when
k=(+sr, +m, +m. ). In an arbitrary lattice, y),

"=I when
k=O but y&" does not always reach a minimum value of—1. Because y&" sums over JV', =z different sites, yz" is
of order 1 in the 1/z expansion. For n) 1, there is no
simple relation between JV„and z or between y(z"' and
y&". Both JV„» and y&" " can be expanded in powers
of 1/z. To lowest order in 1/z, JV„=z"In 1 and
y(n) (y(1))n

Unlike the MF term Ao in the expansion of ( A ), the
zeroth-order term o o(iso )in the ex'pansion of X(k, iso
is not the MF self-energy. As indicated by Eq. (25}, o()
vanishes in MF theory and is nonzero due to the coupling
of spin fluctuations on neighboring lattice sites. To cal-
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III. TRANSVERSE CORRELATION FUNCTION

To evaluate the 1/z corrections to the correlation func-
tion D„(ice ), we expand Eq. (14) in powers of PHz and
collect all the terms of a given order in 1/z. To lowest or-
der in this expansion, D„(icu ) is of order 1/z". The 1/z"
contribution to D„(ico~) is represented by Fig. 1(a). A
solid line represents a factor of JR," coupling neighboring
sites i and j. Because RJ is the linear combination of n

difFerent vectors 5"', each of the n lines coupling R, to
R~ must be oriented in a different direction. Hence,
D„"(ice ) is proportional to J"=(zJ)"/z".

After a straightforward calculation, we find that the

/R) /R)

Rg

(a) (b)

R1
(c)

Rq

(e)
R

FIG. 1. The diagrams which contribute to the correlation
function D„.

culate oo(iso ), we must expand D&+ . (ice ) to order
1/z", where R is the nth-nearest neighbor of R&. Then,
Eq. (26) is inverted to obtain X, (i.co ) to the same order.
Finally, the Fourier transformation of Eq. (27) sums over
the z "/n! equivalent lattice sites oriented around R, to
yield the zeroth-order self-energy oo(ice ). To evaluate
cr, (ice ), we must expand D+, (.ice ) to order 1/z"+',
invert Eq. (26) to extract the self-energy, and Fourier
transform to obtain the final result.

If the correlation function is evaluated among the nth-
nearest neighbors of site 1, then the matrix elements
D» (iso ) are not all equal. For example, the next-
nearest neighbors of R& =0 can be divided into two
classes: R.=+x+y and R'=+2x or +2y. In the first
class, R is a linear combination of different nearest-
neighbor vectors 5"', in the second class, RJ cannot be
expressed as such a linear combination. While the corre-
lation functions are the same for R within either sub-
class, D,+ XD&+' . In the evaluation of oo or o „only
D j+ contributes: D& ' contributes to 0.

2 but not to o.
, or

o.0. More generally, among the nth-nearest neighbors of
R„we may restrict consideration to lattice sites R-
which are linear combinations of n different nearest-
neighbor vectors O'". Because D,+ and X,+ are the
same for every nth-nearest neighbor in this subclass, we
define D„(i~ ) to be the correlation function D, (i co . )

and X„(ice ) to be the self-energy X& (iso ). These new
quantities should not be confused with the coefficients in
a 1/z expansion of the correlation function or self-energy.

contribution of this "backbone" diagram is

D(a)(. ) ( 1)n (z ) n ' Mn+1
n n+1

0
(31)

where U0=ico —h0 was defined earlier. Notice that
zJD„"(iso ) is a dimensionless function of iso /zJ and
M0. As expected, this function is of order 1/z". For
n =0, Eq. (31) reduces to the MF result of Eq. (19).

Inverting Eq. (26), we now solve for the self-energy
matrix elements X„(ico ). To order 1/z ",
X~(ice )= —zJ/2z is the only nonzero matrix element.
Hence, the zeroth-order term in the 1/z expansion of
X(k, ice ) is given by

0(lcm ) 2 Yk (32)

To this order in the expansion of the self-energy, the
correlation function is

2M0
D+ (k ice )=

i cu —b,o(1 —y„"')
(33)

which vanishes when k=0. Thus, the pole in the MF
correlation function at h0 is shifted by the coupling of
transverse fluctuations to bo(1 —

yI,").
To evaluate the 1/z corrections to co&, we must calcu-

late the 1/z"+' corrections to D„(ico ). These correc-
tions are represented by Figs. 1(b)—1(f). Each of these di-
agrams modifies the backbone diagram in Fig. 1(a). In
Fig. 1(b), a loop connects any site on the backbone to the
z —2 sites around it. Since the contribution of the loop is
proportional to zJ =(zJ) /z, it lowers the order of the
diagram from 1/z" to 1/z"+'. In Fig. 1(c), the loop is
disconnected from the backbone. Because the loop can
occupy Nz/2 positions in the lattice, D„"(ice ) includes
extensive terms from both the numerator and denomina-
tor of the expectation value in Eq. (14). The extensive
terms from the numerator and denominator cancel, leav-

ing a finite contribution of order 1/z"+'. As shown in

Fig. 1(d), lines in the 5 directions may be inserted at
any two points of the backbone. Since 5 can lie in z n-
different directions, the contribution of these inserted
lines is proportional to zJ =(zJ) /z. So D„' '(ico ) is of
order 1/z"+'. Replacing any line of the backbone by a
loop generates Fig. 1(e), which is also smaller by a factor
of J = (zJ)/z compared to the backbone diagram.

The final class of diagrams is shown in Fig. 1(f}. In this
diagram, a tadpole consisting of m 1 lines terminating
in a loop can be attached to any point on the diagram.
Tadpole diagrams previously appeared in FL, where they
renormalized the order parameter from M0 to
M=M0+M, /z. In this calculation, the tadpole dia-

grams replace M0 by the shifted order parameter M in

Eq. (33) for D+ (k, ice ) and in Eq. (34) for cok.

Because the full spin commutation relations are re-
tained, Wick's theorem cannot be used to calculate the

Analytically continued to real frequencies, the correlation
function has poles at the SW frequencies of the random-
phase approximation'

(34)
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P 1CO 7
d»(iso )= dre d»(r)

0
n2

d 12

FIG. 2. Using the theorem proved in the Appendix, all other
diagrams can be expressed in terms of these two basic diagrams.

contribution of these diagrams. A direct calculation of
the correlation function is simplified by the theorem
proved in the Appendix. Consider the contribution
A '(iso„) of a diagram with m lines coupling R; with Ri
in an arbitrary fashion. If another line is inserted be-
tween Ri and Rk, then the contribution A k~+"(ice„) is

f1 ( T"}=2& S 1. &MF (38)

f2(T')= I4&S „&MF+&Si+S, &MF&S) Si &MF] .

(39)

+2, &Si. &MFI &Si. &MF+f i(T*)j
(zJ} 2

ZV0

(37)

where the dimensionless functions f, and f2 are defined

by

A (m+1)($~ )
zJM0

Up
(35)

As expected, zJd» (i co„) is a dimensionless function of or-
der 1/z.

%e can similarly evaluate the contribution of d &2
..

d, 2 (r}= ,' J (r —p—) e '—
& R 12S )+S2 & M„

So, adding a line to one of the end points of a diagram
simply multiplies that diagram's contribution by—uM, /v, .

Therefore, the 1/z"+' diagrams in Figs. 1(b)—1(f) can
be simply evaluated in terms of the core diagram and the
two building-blocks d» and d, 2, shown in Fig. 2. Both
of these basic diagrams can be evaluated without too
much difficulty. Because d

& &
can be oriented in z

different ways, its contribution is of order zJ =(zJ) /z.
Diagram d12, on the other hand, is of order J = (zJ) /z .

After cancelling the extensive terms which arise when
the loop is disconnected from site 1, we find that

—
—,'zJ r e ' &S,+R12S2 &MF

+zJ r(r p)e '—&R12S,+R,2S2 &MF .

Integrating over ~, we find

P l CO 7
d)2(iN )= dre d)2(1)

0

J 2

f2(T")—2 &Si, &MFf, (T'),
Z Vp Z Vp

(40)

(41)

dii(r)= ,'zJ (r p) e——'&R —2S+S, &MF

—
—,'zJ r e &S,+R12S1 &MF

+zJ r(r p)e &R—12S1+R12S1 &MF

+—,'zJ p e ' &S,+S, &M„&R)2&M„. (36)

Notice that the time ordering automatically symmetrizes
the R &2 and spin operators. Integrating over v. with Eq.
(14), we find that

which, aside from a couple of missing terms, is identical
to dii(lcm ).

Both f, and f2 are easy to evaluate in terms of the 6„
function defined in Eq. (22). Each function is positive
and vanishes like e ' in the limit of small tempera-
tures. As T' approaches the MF Curie temperature
To =s (s + 1)/3, both f, and f2 approach the finite limit
2s (s + 1 ) /3.

Figures 1(b)—1(e) can now be evaluated by multiplying
Eqs. (37) and (41) by the appropriate factors of—zJMO/vo. Adding the contributions of Figs. 1(a)—1(f),
we arrive at the final result

~„( .)=( —1)" ', &S„&"'„'
n n+1

0

!n( z)J"+( —1)" ~, +1 &S„&MF' (n +1)p* &Si, &MF&S),R12 &MF+2nf2(T" )
1 —f3(T')

n1 zJ "+'
+( —1)" '+, +2 &Si, &MF (n +1)p* &Si, &MF&S),R)2 &MF+2nf 1(T*)+2(n +1)f2(T*)

1 —f3(T')
)~n+2

(42)
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The scaling function f3 previously appeared in our calculation of the 1/z correction to the order parameter. Defined

by

f i(T*)=p'( S„)M„= f, (T*), (43)

this function vanishes at T*=O and reaches a maximum value of 1 at To. The terms in Eq. (42) proportional to
1/(1 f3 )—are produced by the tadpole digrams in Fig. 1(f}.

Unlike the expressions in the preceding paper for the correlation function of a paramagnet, Eq. (42) for D„(iso ) is
valid for any n &0. Such a general expression for the correlation function is now possible because the time-ordering
operation automatically symmetrizes the spin operators, even when n =0 or 1.

We now use Eq. (26) to calculate the self-energy matrix elements X„(iso ). To order 1/z"+', only Xo(ice ) and

X,(iso ) are nonzero:

Xo(lm~ )(Si~ )Mp p (R i~S]~ )Mp+ fi(T )(Siz )Mp
z "0 ,z 1 i — (zJ)

4z I —f3(T*) 2zvo

+ P' (S„)Mp(R,zSi, ) Mp+2f i(T')
4z 1 —f3(T~)

(44)

X,(i ro~)(S„)Mp= — (Si, )M„— ~ f, (T')(Si, )Mp
—

q f (zT') .(zJ), zJ
2Z 2z Uo 2z2

Therefore, the 1/z correction to the self-energy X(k, iso ) is

(45)

)= P" , (R' S, ) 1+ (S, ) +—f,(T')+ (S„) „f,(T') (1—
yi,"). (46)

Like Eq. (32) for o 0, this result is formally exact.
Inserting the results for o o and o, into the definition of the correlation function in Eq. (24), we find that

—1J 2

D+ (k, iv) )=2M ice b(1 —yii, ') — —(1—y'i,") . fi(T')+ —f (Tg')
Z l COm

(47)

where M is the corrected order parameter MD+M, /z.
Up to order 1/z, we may also replace Mo by M in o,

Finally, we construct the correlation function
D+ (k, co) by replacing iso ~co+i5 in Eq. (47). The
transverse mode frequencies are given by the poles of this
correlation function. Due to the f, term in o i, the corre-
lation function can be written as 2M (co —b ) divided by a
quadratic equation. The two roots of that quadratic
equation must be solved to obtain the mode frequencies.
One root of the quadratic equation is close to the RPA
frequency of Eq. (34), but shifted by terms of order 1/z.
Much more unexpectedly, the second root of the quadra-
tic equation is close to the frequency h. Since the corre-
lation function is proportional to (co—6), the residue of
this second pole is of order 1/z. In the limit z~ ao, the
second pole disappears and the RPA frequencies become
exact. As T*~O, f, becomes exponentially small and
the pole at 5 again disappears. At a given temperature
T* & 0, the residue of the pole at 6 is a maximum when
yz" =0 and decreases as the magnitude of y&" increases.

The transverse mode frequencies are plotted as func-
tions of y&" in the solid lines of Figs. 3 and 4. At low

temperatures, both f, and f& are of order e '~ and the
mode frequencies are very close to the RPA frequency
6(1—yk") and to A. Of course, the residue of the pole at

5 is also very small in this limit. But as the temperature
increases, the correction terms f, and fz also increase
and the modes repel. As T'/s(s+1) increases from
0.075 to 0.150, the repulsion between the transverse
branches becomes quite evident.

When y&"=0, the splitting between the two branches
is given by

2.0

1.5

0.5--

0.0
-1.0 -0.5 0.5

FIG. 3. The transverse mode frequencies co/zjs vs yq for
z=12, s = —,and T*/s(s+1)=0.075. The dashed line is the

Dyson-Maleev prediction.
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FIG. 4 Same as Fig. 3, except with T*/s (s+ 1)=0.15.

b,co=2zJQ(1/z)f &(T~) . (48)

Because cv b, enters t—he denominator of the f, term in
the self-energy, the splitting hco/zJ is of order I/z'~
rather than of order 1/z. Because fz produces a 1/z
correction to hco/zJ, we neglect its contribution in Eq.
(48). As expected, the splitting between the branches
tends to zero as T*~O or as z —+ 00, when MF theory be-
comes exact.

IV. THE TRANSVERSE MODE FREQUENCIES

To understand the physics of this new transverse mode,
we examine the origins of the f &

term in the self-energy.
This term, which is responsible for the new pole in the
correlation function, appears in the basic diagrams d&&

and d, z. In d, z, f, arises from the antisymmetric com-
bination of expectation values

(R fzS(+Sz )~p+(S+, R fzSz )stp

the transverse and longitudinal fluctuations becomes
signi5cant above the cro'ssover temperature T.

Like f„the second correction term fz also contains
contributions which couple the longitudinal and trans-
verse fluctuations. But, unlike the f, contribution, the

fz contribution to the self-energy neglects the dynamical
eÃects of that coupling. In addition, fz also includes
contributions which couple the transverse fluctuations to
themselves.

At temperatures much lower than T, both f &
and fz

are exponentially small and spin waves are the only trans-
verse modes of the lattice. As the temperature increases,
longitudinal fluctuations become more common and the
propagation of the spin waves is disrupted. A longitudi-
nal fluctuation on site i forces the local spin to precess
with the frequency 5 rather than with the S% frequency
co&. Because the wave function of a spin wave contains a
superposition of eigenstates, a spin wave with energy far
from 6 can propagate through the longitudinal distur-
bance with a slight shift in energy. But when co& is close
to 5, the coupling between the spin waves and the longi-
tudinal fluctuations induces a dramatic shift in the SW
energy. This shift is evident in Figs. 3 and 4.

The precessional mode is excited by longitudinal fluc-
tuations of the spin above T. If a spin is decoupled from
its neighbors, it precesses about the local mean 6eld with
frequency 6, independent of momentum. The pole in the
MF correlation function at 6 is produced by such a local
precession. Because the magnitude S; S;=s (s + 1) is
constant, a longitudinal fluctuation on site i coincides
with the precession of S; about the z axis. Due to the
coupling between S; and the surrounding spins, the pre-
cessional mode can propagate through the lattice with a
frequency which depends on momentum. In a hypercu-
bic lattice, the dispersion of the precessional mode for
small momentum is given by

—2( R )zS )+R,zSz )Mp, (49)
(51)

which generates the r contribution to d&z(w} and the
1/vo contribution to d, z(i co ). Each expectation value in

Eq. (49} involves the product of a single longitudinal fluc-
tuation and two transverse fluctuations on sites 1 and 2.
In d», f, arises from the antisymmetric combination

—(R fzS,+S) )~p —(S)+R fzS) )~p

+2(R12S1 R12S1 )Mp, (50)

which generates the r and 1/vo contributions to d»(r)
and d»(ice ). Although the expectation values in Eq.
(50) contain products that involve the transverse spin
operators alone, the f, term appears only when the com-
mutation relations between the longitudinal and trans-
verse spin operators are scrupulously applied.

So, f&
is produced by the coupling between the trans-

verse and longitudinal fluctuations of the spin. At low
temperatures, longitudinal fluctuations are suppressed
and f& is exponentially small. But, at higher ternpera-
tures, longitudinal fluctuations are allowed and f, is
non-negligible. As shown below, the coupling between

2zJ fi(T*}
z M

(52)

Because (co—b, ) is of order 1/z, the precessional mode
survives even when y&

= —1. Moreover, transverse(&)

modes cannot propagate with frequencies between
2zJf, /zM and b, . This s—mall forbidden gap is created

by the coupling between the transverse and longitudinal
fluctuations.

In the long-wavelength limit y&"=1, the precessional
mode cannot propagate and the SW modes are the only
transverse excitations. But, for non zero momentum,
each branch of transverse excitations contains a mix be-

As expected, this frequency tends to 6 as T*~O or as
z~ 00. Because the residue of the transverse pole is pro-
portional to (co—b, ), the local precession of the spin can-
not propagate through the lattice in the long-wavelength
limit.

At the other edge of the Brillouin zone, when
y&"= —1, the frequency of the precessional mode is given
by
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S, ~+2s a;

s;,~(a,ta; ) —a,ta;,
where a; and a; obey the commutation relations

(53b)

(53c)

tween the SW and precessional modes. The mixing be-
tween the modes increases as yz" decreases from 1,
reaching a maximum at the mode-crossing point yk"=0.
When y&")0, the lower branch of the transverse modes
is predominantly spin wave in nature; the upper branch is
dominated by the propagating, precession of the spin.
When yk" &0, the lower branch is dominated by the pre-
cessional mode and the upper branch is dominated by
spin-waves.

To lowest order in 1/z, only a pair of longitudinal fluc-
tuations couple with the spin waves. As the order of the
calculation increases, the number of possible longitudinal
fluctuations grows. The likelihood of four longitudinal
fluctuations disrupting the propagation of a spin wave is
1/z times smaller than the probability for a pair of such
disturbances.

We emphasize that the precessional mode is a highly
nonlinear fluctuation which only appears at high temper-
atures. While the spectral weight A (k, co) now contains
two peaks instead of one, the integral of A (k, co) over fre-
quency is not changed by the precessional mode. So the
spectral weight of the transverse fluctuations is now
shared among the SW and precessional modes of the lat-
tice.

Because of the condition S; S;=s (s+ 1), the longitudi-
nal and transverse fluctuations of a ferromagnet are inti-
mately related. This close relationship is embodied in the
commutation relation between the various spin com-
ponents. In the SW approximation, the spin operators
are replaced with the Boson creation and annihilation
operators a; and a,~:

S;+~&2sa;, (53a)

The first momentum summation in Eq. (55) contains the
change in the order parameter due to fluctuations. To or-
der 1/z and at low temperatures, the order parameter
s —gqnq/N is equal to MD+M&/z. The second term in
Eq. (55) is generated by the interactions among the spin
waves. As expected, the DM theory ignores the coupling
between the longitudinal fluctuations and the spin-waves.

To compare the DM theory with the 1/z expansion, we
expand the SW frequencies of Eq. (55) in powers of 1/z.
The difference between the first-order, DM frequency
co& and the exact, first-order frequency co& is plotted in
Fig. 5 for yk"= —1. As shown, the deviation between
co& and ~& is exponentially small at low temperatures.
But, as the temperature increases above a threshold, the
difference between the two frequencies grows rather rap-
idly. In units of T'/s (s+ I), this threshold temperature
scales like 1/s. Therefore, the DM theory becomes very
accurate below a crossover temperature T, which scales
with the spin like zJs.

The arrows in Fig. 5 denote the crossover temperature
T=0.2zJs calculated previously in FV. In that paper,
the free energy of the RPA approximation was compared
with the exact free energy, up to order 1/z . The devia-
tion between the free energies becomes significant only
above the crossover temperature T. Below T, the
differences between the RPA and exact free energies are
exponentially small and the SW approximation is accu-
rate.

As seen in Fig. 5, the SW frequency of the DM theory
deviates from the exact frequency above a crossover tern-
perature very close to T. Since this crossover is not
sharp, we need not distinguish between the thermo-
dynamic and dynamic crossover temperatures. One of
the most important results of this paper is that the ther-
modynamic and dynamic crossovers coincide. In FV,
Fishman and Vignale found that the thermodynamic
crossover is marked by a peak in the fluctuation specific

[a, ,at]=5;, . (54) 0.30

With these replacements, the commutation relations be-

tween the spin operators are profoundly altered. For ex-

ample, the commutator of S+, and S
&

becomes 2s instead

of 2S&, . Thus, the SW approximation grossly simplifies

the dynamics of the longitudinal spin components.
If the spin operators in Eq. (49) or (50) are replaced by

boson operators with the prescription of Eqs. (53a)—(53c),
then Eq. (49) would vanish and the f &

term would not ap-
pear in Eq. (50). Hence, the SW approximation ignores
the precessional mode of the lattice. On the other hand,
only the transverse contributions to fz survive when the
spin operators are replaced by Boson operators. So the
SW approximation does include the coupling between the
transverse fiuctuations.

In the Dyson-Maleev ' (DM) version of the SW ap-
proximation, the SW frequencies are

0.25

~ 0.20
N

0.15

8
I

3 0.10

0.05

0.00
0.00 0.05 0.10

T*ls(s+ 1)

0.15 0.20

zJ (1) (1j

q

(55)

FICx. 5. The difference (co&
—co, )/zJ between the exact 1/z

frequency and the Dyson-Maleev result, evaluated to order l/z,
vs T*/s(s+1). The differences plotted are for s = —' (solid),

s =
—,
' (dashed), and s = —(small dash). The arrows denote the

thermodynamic crossover temperature T =0.2/(s+ 1).
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heat. Now we find that the dynamic crossover is marked
by a much more spectacular effect: the splitting of the
spin-wave resonance into two peaks.

At low temperatures, the difference between m& and
the SW co„ is Tc —T*

(57)

as Mo/s ))1/z. Using the MF expression for the order
parameter near Tc, we find that the expansion of the
self-energy to order 1/z is valid when

Tc z
(1)

co„—co„=———y, )
+0(y ),DM 2& 1 —rk'

2 (56)

where y =e ~ . This difference is caused by the f i

term in the self-energy, which is absent from the DM
theory. Because the two branches of transverse excita-
tions repel at yI,"=0, Eq. (56) cannot be used near the
mode crossing. Since y is a function of T'/s, Eq. (56)
confirms that the crossover temperature T scales like zJs.

While the DM theory ignores the f, term in the self-
energy, it does include the f2 term. Expanded in order
1/z and evaluated at low temperatures, the second term
in Eq. (55) agrees with the fz term in our theory. There-
fore, this term does not contribute to the difference in Eq.
(56). Notice that fz simply shifts the SW frequency while
maintaining its proportionality to (1—

yI, ').
An obvious weakness of the self-energy expansion is its

failure to yield the observed power-law corrections to the
SW frequencies at low temperatures. These power-law
corrections arise very naturally from the DM theory.
For example, it can be shown that, for small k and T,
cok

—sk /2z scales like T . Instead of power-law
corrections, the 1/z expansion yields mode frequencies
with exponential corrections of order y =e

As demonstrated in FV, the power-law corrections to
thermodynamic quantities such as the free energy and
specific heat can only be recovered by summing a selected
group of exponential corrections to all orders in 1/z.
Such an unregulated summation is performed by the SW
approximation and is justified below the crossover tem-
perature T ~ zJs. Similarly, in order to recover the
power-law corrections to the SW frequencies at low tem-
peratures, a selected group of self-energy terms must be
summed to all orders in 1/z. Such a summation is impli-
citly performed by the DM theory for the SW frequen-
cies. Obviously, the 1/z results of Eq. (47) are not physi-
cally meaningful in this low-temperature regime. But the
1/z expansion is still mathematically rigorous at all tem-
peratures. So the results of the 1/z expansion can be used
to test the validity of the SW approximation. In this sec-
tion, we have demonstrated that the unregulated 1/z
summation of the SW approximation is only justified
below the crossover temperature T.

Since the DM frequency differs from the exact frequen-
cy by a term of order y/z, the unregulated summation of
the SW approximation must be abandoned above the
temperature T, when y becomes of order 1. Instead of y,
1/z becomes the relevant expansion parameter at high
temperatures. So, above T, the mode frequencies ob-
tained from the correlation function of Eq. (47) become
physically meaningful.

The 1/z expansion of the self-energy implicitly assumes
that o. , is smaller than o-o. This restriction can be written

Hence, the results of the previous section cannot be ex-
trapolated arbitrarily close to T&, where they would im-

ply that the SW frequency co& vanishes like b rather than
like h. As the order of the expansion increases, the range
of validity of the expansion also grows. If the self-energy
were expanded to order 1/z, then Eq. (57) would be
modified by replacing 1/z by 1/z . But, even to order
1/z, the range of temperatures satisfying Eq. (57) is quite
large.

A self-energy expansion has also been used by Gros
and Johnson' to study the dynamics of a spin- —,

' antifer-

romagnet at zero temperature. For s =
—,', the spin opera-

tors can be conveniently replaced by a set of fermion
operators on each site. Wick's theorem can then be used
to evaluate the correlation diagrams. Like the technique
employed in this paper, the method of Gros and Johnson
is a formally exact expansion of the self-energy in powers
of 1/z. Not surprisingly, they find that to lowest order in
1/z, the RPA yields the correct mode frequencies of the
antiferromagnet. Because they work at zero temperature,
Gros et al. find that longitudinal fluctuations only renor-
malize the velocity of the SW mode.

V. DAMPING OF THE TRANSVERSE MODES

Unfortunately, the self-energy expansion does not pro-
vide any information about the widths I i(k, co) and
12(k, co) of the SW and precessional modes. Since the
imaginary part of Eq. (47) contains two 5 functions, one
at each pole, the widths I; of the modes must be nonana-
lytic functions of 1/z which vanish to any finite order in
the 1/z expansion This .is confirmed by Vaks et al. ,
who use a different technique to calculate the self-energy
X(k, ico ). To order 1/z, their result for X(k,i co ) agrees
with ours. Moreover, their result for the width I, of the
SW mode is a nonanalytic function of 1/z.

Obviously, the momentum-space technique of Vaks
et al. is related to the 1/z expansion. Although Vaks
et ah. replace the spin operators by a set of fermion
operators on every site, they preserve the original spin
commutations by using Lagrange multipliers in the Ham-
iltonian. Rather than expand in powers of 1/z, Vaks
et al. expand the self-energy in powers of 1/ro, where ro
is the range of the ferromagnetic coupling. When the
coupling only extends to nearest neighbors, ro is equal to
the lattice spacing.

An expansion in powers of 1/ro is really an expansion
in the number of momentum integ rais. Since each
momentum integral is proportional to 1/ro, the zeroth-
order self-energy contains no momentum integrals and
each contribution to the 1/r 0 self-energy contains a single
momentum integral. The real-space diagrams which con-
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tribute to the 1/ro correction are obtained from Figs.
1(b)—1(f) by replacing every loop with a sum over rings
and by allowing each chain of lines to deform in any
direction. As shown in FV, performing this procedure on
the 1/z free energy yields the 1/ra free energy calculated
by Vaks et al. In the 1/ro self-energy and free energy,
every ring or chain diagram is allowed to intersect itself
arbitrarily many times. Yet, each ring or chain diagram
is evaluated as if only two lines couple at every point.
Clearly, this procedure is exact to order 1/z. But, be-
cause the contributions of self-intersecting rings or chains
are not subtracted to higher order in the 1/ro expansion,
this expansion cannot be exact to order 1/z .

The 1/z expansion has many advantages over the 1/ra
expansion of Vaks et al. Unlike the 1/z expansion, the
1/ro expansion lacks any formal expansion parameter
As previously demonstrated by Fishman and Vignale,
and 1/z expansion of the RPA free energy rapidly con-
verges above the temperature T, ~ Js. An examination of
the first three terms in the 1/z expansion of the exact free
energy suggests that the exact 1/z expansion also con-
verges above T, . So, above T„ the 1/z expansion is prob-
ably convergent while the 1/ro expansion has no formal
justification. Another advantage of the 1/z expansion is
that its consistency can be verified order by order. For
instance, as shown in the previous paper, the 1/z expan-
sion of the Curie temperature for the ferromagnet and
paramagnet are consistent.

On the other hand, the 1/ro expansion yields the
correct power-law corrections to the free energy, order
parameter, and SW frequencies at low temperatures. As
discussed above, the power-law corrections cannot be
recovered by a finite expansion in powers of 1/z. So, the
method of Vaks et al. provides a useful interpolation be-
tween the low-temperature results of the SW approxima-
tion and an expansion to order 1/z.

Because the 1/ro expansion is exact to order 1/z, the
results of Vaks et al. provide a useful check on the re-
sults of the previous section. As mentioned above, our
self-energy X(k,ice ) agrees with the self-energy of Vaks
et al. , evaluated to order 1/z. Because their 1/ro self-

energy also contains terms of arbitrarily high order in a
1/z expansion, Vaks et al. failed to notice the second
pole in the correlation function. Although their result
for the width I of the modes is not rigorous above the
crossover temperature T, it does provide a useful estimate
for the lifetime of the excitations. Their expression for
I, is given by
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FIG. 6. The line shape of the transverse resonance for z=12,
s = z, T /s {s+1)=0.075, I =zJf, /2, and y„=0.

125

100
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and transverse fluctuations. It neglects the damping due
to spin wave, spin-wave interactions, which dominate the
attenuation below T. Above T, however, the damping
due to the SW interactions may be neglected compared to
the damping produced by longitudinal fluctuations.

Generally, the damping of the precessional and SW
modes may be quite different. But at the mode crossing,
the two modes are completely mixed and I,=I z—=I.
So, to estimate the effect of damping on the observability
of the precessional mode near the mode crossing, we sim-

ply replace co by co —iI in the correlation function. Us-

ing the result of Vaks et al. as a guide, we estimate
I'=zJf

&
/2. The imaginary part of D+ (k, co) is plotted

in Figs. 6—8 for z=12 and s =
—,'. The two resonant peaks

in Fig. 6 are plotted for yI,"=0 and T"/s (s +1)=0.075,
which corresponds to a temperature of about 1.9T. If I
was 10 times larger, only a single peak would be observed
at this temperature. With the same values for I and T',
but with y&"=0.05, the peak of the precessional mode is

barely observable in Fig. 7. Hence, the splitting of the
SW resonance may be observable only very close to the
mode-crossing point yk"=0. As I z increases, the mode

splitting becomes observable in a rapidly diminishing
window of yk". If the temperature is increased to
T'/s(s+1)=0. 15, as in Fig. 8, then the splitting of the
resonance peak may also be difficult to observe because of
the large attenuation.

zJ 2% ', 1 —)'„g,(T*)

(58)

3~" 75
O

~ 50E

N

where n& is the RPA frequency of Eq. (34). As expected,
this expression vanishes to any finite order in 1/z. Be-
cause I', is proportional to f I (T'), the width of the SW
mode becomes exponentially small as the temperature de-
creases.

As discussed by Vaks et al. , I, includes only the
damping due to the coupling between the longitudinal

25
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FIG. 7. Same as Fig. 6, except with @k=0.05.
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FIG. 8. Same as Fig. 6, except with T*/s (s + 1)=0.15.

VI. LONGITUDINAL CORRELATION FUNCTION

As discussed above, the precession of a spin about the
local mean field with frequency 6 coincides with the fluc-
tuation of the longitudinal spin from s to s —1. Hence,
the precessional mode involves both longitudinal and
transverse fluctuations of the spin. Yet this mode is fun-
damentally a transverse excitation which enters the trans-
verse correlation function. To gain a better understand-
ing of the longitudinal modes of a ferromagnet, we study

Consequently, the splitting of the transverse resonance
may be observable only in a narrow window of tempera-
ture and momentum. For the coupling term f& to be
significant, the temperature must be above the crossover
temperature T. But, for too large a temperature, I is of
the same order as 6 and the splitting is not observable.

The splitting of the resonance is also more easily ob-
served when the spin s is small. Although T/Tc ~1/s
increases as the spin decreases, longitudinal fluctuations
couple more strongly to the transverse fluctuations for
smaller spins. For example, with the same parameters
used in Fig. 6 for s =

—,', the mode splitting hco/zIs in-

creases by a factor of about 3 when s =
—,'.

Under some conditions, the splitting of the resonance
may be unobservable at any temperature. For example, if
the precessional mode is overdamped so that
I z

—I, &&5, then the SW mode will be relatively
unaffected by the existence of the precessional mode, ex-
cept in a very small region of energies around the mode-
crossing point when I &=I,. This appears to be the
case" for EuO, which has a spin of —,

' and a face-
centered-cubic structure.

Of course, if I &~ 6, then both modes will be highly
damped when yz"=0. So, even if a splitting of the trans-
verse resonance is not observable, the damping of the
spin waves should become anomalously large at the
mode-crossing point yk"=0. Unfortunately, this effect
can be observed only in a very narrow window of momen-
tum around yz" =0. As I z/6 increases, the size of this
window rapidly decreases. In the absence of a mode
splitting, it may also be possible to observe the systematic
deviations of the SW frequencies from the DM predic-
tions. But, as I z/6 increases, those deviations also be-
come unobservable except very close to yz" =0.

zJd„(ice ) = f4(T'),
z (i co )

1
d, z(ice ) = — d» (i co )—,

(59)

(60)

where

f4(T*}= (S) S)+ )Mp(S)+S) )Mp .
2

So for m %0, the longitudinal correlation function is

(61)

D„(k,ice )=
q f4(T )(1—

yI,") .
z(iso )

(62)

Analytically continued to real frequencies, the longitudi-
nal correlation function has a second-order pole at zero
frequency. The longitudinal correlation function was
also calculated by Vaks et al. Expanded to order 1/z,
their expression for D„(k,iso } agrees with Eq. (62).

As discussed in the previous section for the transverse

the longitudinal correlation function directly.
Because the MF correlation function D,', '(iso } van-

ishes when m %0, a self-energy cannot be defined in terms
of the longitudinal correlation function. But D (k, i co )

may be expanded directly without employing a self-
energy. The longitudinal mode frequencies are then
given by the zeros of [D„(k,co)]

Such an approach was also possible for the transverse
correlation function. However, the evaluation of the
transverse mode frequencies was simpler with a self-
energy. Because we used a self-energy, we could neglect
matrix elements D&J (iso~) if RJ was not a linear corn-
bination of different nearest-neighbor vectors. If
D+ (k, iso ) was expanded directly, all matrix elements
would contribute to the Fourier-transformed correlation
function. Evaluating the self-energy matrix elements to
order 1/z ", we discovered that only Xo(i co ) and

X,(iso } were nonzero. Hence, the liz expansion of the
self-energy only involved the function y&" and not the
higher-order functions y&" ". A direct expansion of the
correlation function would involve those higher-order
functions and require that we expand y&"' in terms of yj,".

But a direct expansion of the longitudinal correlation
function is actually very straightforward. Because it does
not involve the transverse spin components, the MF lon-
gitudinal correlation function is static. The longitudinal
dynamics are caused by the interactions between the lon-
gitudinal and transverse fluctuations. The diagrams that
contribute to the longitudinal correlation function are the
same as in Fig. 1, where operators S„and S, now occu-

py sites 1 and j. In this section, we evaluate the dynamic
contributions to D+ (k, im ) which are nonzero when
co %0. Using a modified version of the proof in the Ap-
pendix, we have shown that the contribution of any dia-
gram with a single line between neighboring sites must
vanish for nonzero co . So, the only diagrams which con-
tribute to the dynamics of the correlation function are
identical to d» and d, z of Fig. 2, except that the S;*
operators are replaced by S;, operators on sites 1 and 2.

Evaluating these diagrams, we find that



5426 R. S. FISHMAN AND S. H. LIU 45

correlation function, the expansion of the longitudinal
correlation function to order 1/z is only valid for temper-
atures above T, and satisfying Eq. (57). Hence, Eq. (62)
does not imply that the longitudinal pole at zero frequen-
cy persists even at the Curie temperature.

As T*~0, f4 becomes exponentially small and the dy-
namics induced by the transverse fluctuations disappears.
But at finite temperature and for nonzero momentum the
longitudinal correlation function diverges at zero fre-
quency. Due to the coupling with the transverse fluctua-
tions, the longitudinal mode has zero frequency: an arbi-
trarily small rotation of the spin from the z axis requires
no energy if the neighboring spins rotate in response.

Hence, we must carefully distinguish between the pre-
cessional mode and the longitudinal mode of the lattice.
While the precessional mode involves the quantum fluc-
tuation of the longitudinal spin from s to s —1, the longi-
tudinal mode involves the small rotations of the spin
from the z axis. Another major difference is that, unlike
the precessional mode, the longitudinal mode does not
propagate through the lattice. This is easily seen from
the diagrams which contribute to the longitudinal and
transverse correlation functions. The diagrams d» and
d, z which contribute to D„(k,ice ) only couple neigh-
boring lattice sites; the diagrams in Fig. 1 which contrib-
ute to D+ (k, ice ) span the whole lattice. So, a longitu-
dinal fluctuation on site i can only travel as far as its
neighboring site, while a transverse fluctuation can tour
the whole lattice.

Experimentally, ' ' longitudinal fluctuations have
been observed only very close to the Curie temperature.
Using polarized neutron scattering, Mitchell, Cowley,
and Pynn' and Boni, Martinez, and Tranquada' have
measured the quasielastic peak due to longitudinal fluc-
tuations centered around zero frequency. As expected
from our discussion, the longitudinal fluctuations are
diffusive and do not propagate through the lattice. The
integrated intensity of the longitudinal peak decrease as
the temperature is lowered and as the wave vector in-
creases. Sufficiently far away from the Curie tempera-
ture, the longitudinal peak cannot be resolved. While the
dynamical calculations of this paper cannot be applied in
the region of the Curie temperature, they do confirm that
longitudina1 modes do not propagate above the crossover
temperature T.

predictions of the SW approximation. Indeed, it is re-
markable that the high-temperature, nonlinear excita-
tions of a ferromagnet have frequencies so close to the
RPA frequencies. The result of the RPA is incredibly
robust. It survives as the lowest-order term in a high-
temperature, 1/z expansion and as the lowest-order term
in a low-temperature, SW approximation. Only the
next-order corrections to the mode frequencies distin-
guish the nonlinear regime above T from the linear re-

gime below it. Understandably, the accuracy of the RPA
has inspired great confidence in the SW approximation.
While that confidence is surely warranted below T, it is
almost certainly misplaced above that crossover tempera-
ture.

ACKNOWLEDGMENTS

We would like to acknowledge support from the U.S.
Department of Energy under Contract No. DE-AC05-
84OR21400 with Martin Marietta Energy Systems, Inc. ,
from the National Science Foundation under Grant No.
DMR-8704210, and from the EPSCOR program in
North Dakota. Useful conversations with Dr. M.
Johnson, Dr. J. Fernandez-Baca, and especially with Dr.
G. Vignale are also gratefully acknowledged.

APPENDIX

This appendix proves Eq. (35), which allowed us to
evaluate the diagrams in Fig. 1 in terms of the two basic
diagrams d» and d, 2 of Fig. 2. In Fig. 9(a), A,' ' is the
contribution of a digram with m lines joining sites i and j
in some arbitrary fashion. Inserting a line between site j
and site k leads to the second diagram, A k

+", with
m+1 lines joining sites i and k. Transverse spin opera-
tors act on the sites i, j, and k, as shown. In this appen-
dix, we show that A P+"(ico„) is equal to A,' '(iso„)
times the factor —zJMO/vo.

The contribution of A,', '(r) is given by

r=0

(Al)

VII. CONCLUSION F,~)
'"'= (P(R . . RS;+R RS ))MF,

1

m!
(A2)

The fundamental assumption of this work is that the
1/z expansion of the self-energy converges. If this expan-
sion does converge, then the transverse correlation func-
tion must have two poles instead of one. The existence of
the precessional mode has many consequences for the
high-temperature properties of a ferrornagnet. The most
dramatic consequence awaits experimental confirmation:
the splitting of the transverse resonance peak near A.
Another consequence may be more dif5cult to observe: a
gap of order 1/z in the frequency spectrum of the trans-
verse modes.

Away from the mode-crossing point, we have found
small but significant shifts in the SW frequencies from the

(m) m+1)

FIG. 9. A, ' represents a diagram with m lines coupling S;+
and S, . A z

+" represents the same diagram with an addition-
al line between S,+ and Sk .

where Eq. (A2) contains the product of m rdifferent—
R ~ operators before S,-+ and r different R operators
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m+1 m+1
X

r=0
p)m+1 r( )r—

after. The permutation operator in Eq. (A2) does not
move the spin operators S;+ or S, but does sum over
distinct permutations of the m different R operators
which join sites i and j. Fourier transformed, A'J. '(ito„)
is given by

~,',-'(i~„)=f'dre "A,' '(r). (A3)

Similarly, A k +"(r) is given by

g(m+1)( ) ( 1)m+1( J)m+1
ik

where now the first group contains m+1 —r operators
and the second group r —1 of the R z operators. In ad-
dition, the permutation operator now operates on S:.

We now perform the permutation operation on S in

Eq. (A5). If S moves among the r positions to the right
of S,+, then a rearrangement of the R,, operators yields
a sum over F ' from s=O to s =r —1. If S moves
among the m+1 —r positions to the left of S;+, then
rearranging the R

&
and SJ operators produces a sum

over F 'r+'e ~ from s=O to s =m —r. So, after per-
forming all possible permutations of the S operator, we
find

F(m + 1, r)
ik (A4)

where F(k +'"' is obtained from Eq. (A2) by replacing m

by m+1.
Since 3 k

+"contains a single line coupling sites j and
k, we may replace R k in Fk

+'"' by Si Sk+/2. Hence,
we find that

1

2 m+I

s=0

m —r
F(ms)+ —QP ~ F(m, r+s)

ij ~ lJ
s=0

(A6)

1
Fik

2( + 1)!(Sk Sk )MP

X(P(R RS; R . . RSJ ))Mp, (A5)
After Fourier transforming A,.(k +"(r) with Eq. (A3) and
integrating by parts, we find

A' +"(ito )= (
—1) (zJ) (S+S )

1 1

2(rn +1) 1 1 MF

m m+1
X f dre "'e ' g (r—p) "( —~)"(m+1 r) gr—(r —p) +' "( r—)"—

0 r=0 r=1

m+1 r —1 m —r
F(m, s) + —QP ~ F(m, r +s)

ij ~ iJ
s=0 s=0

m m
1

( 1)m+1(zJ)m+1(S+S —
) d7e e ar y (& P)m

—
r( &)r ( F(m, r)+e —aPF(m, r))

2 1 1 MF p ij EJ
UO 0 r=0

ZJMO

UO

where Uo =iso„—b. If a line were added to the other end point of 3 ', the same result would be found

(A7)
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