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Onset of long-range order in a paramagnet
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The onset of 1ong-range order in a paramagnet is studied using an expansion in powers of 1/z, where z
is the number of nearest neighbors. Rather than expand the correlation function itself, we expand the
self-energy in powers of 1/z. For both the Ising and Heisenberg models of ferromagnetism, the long-
range correlations diverge at the true, shifted Curie temperaure. Therefore, the magnetic and paramag-
netic results of the 1/z expansion are consistent.

I. INTRODUCTION

Expansion techniques' are quite useful in the study of
ferromagnets, where exact results are difticult to obtain.
In a recent paper [by Fishman and Liu (FL}], we
developed an expansion for the thermodynamic proper-
ties of the Ising and Heisenberg models of ferromagne-
tism. As argued in FL, the spin correlations in a fer-
romagnet produce 1/z corrections to mean-field (MF)
theory, where z is the number of nearest neighbors in the
lattice. In this paper, we use a related approach to study
the onset of long-range order in a param. agnet. As ex-
pected, the long-range correlations of a paramagnet
diverge at the same Curie temperature calculated in FL.
So the paramagnetic and ferromagnetic results of the 1/z
expansion are consistent.

It is not immediately obvious that a 1/z expansion can
even be formulated for a spin-s paramagnet. In a fer-
romagnet, the MF Hamiltonian and the MF order pa-
rameter Mo=(S&, )M„are nonzero. Because the 1/z
correction to the order parameter is negative, the cou-
pling of fluctuations suppresses the Curie temperature
Tc/zJfrom its MF value of T =o( s+sI)/3. But, in a
paramagnet, the MF Hamiltonian and order parameter
vanish while the MF correlation function D,', ' is nonzero
only if i =j. So it may be dificult to incorporate long-
range correlations in a consistent fashion.

Indeed, when the 1/z expansion is applied to the corre-
lation function itself, the spin correlations remain short
ranged. If the correlation function D;. is expanded to or-
der 1/z, then the spin correlations vanish outside a
sphere or radius ma, where a is the lattice constant. So,
instead of directly expanding the correlation function
D(k), we expand a self-energy function X(k) which is
proportional to [D(k}] '. The self-energy embodies the
coupling of fluctuations omitted by MF theory. This
technique guarantees that the correlation function D," is

long ranged, even if the self-energy X,. - is not. The major
result of this paper is that the paramagnetic correlations
diverge at the same Curie temperature obtained in the

ferromagnet. So, the long-range correlations of a
paramagnet can be studied self-consistently.

In a companion paper, we use this expansion tech-
nique to study the dynamics of a ferromagnet below Tc.
Although the formalism of that paper is complicated by
the frequency dependence of the correlation function and
self-energy, the basic methodology is the same as here.
The paramagnetic calculations of this paper can be con-
sidered a test run of the self-energy expansion, prior to its
application to the more complicated problem of spin dy-
namics. Of course, the paramagnet also poses unique
challenges of its own.

Actually, the 1/z expansion in a ferromagnet has a
very long history, dating back to the work of Horwitz
and Callen, Englert, Stinchcombe, Brout, and Vaks
et al. Early work on the 1/z expansion was frustrated by
the discovery of "anomalies" in the 1/z corrections to the
order parameter and free energy at the MF Curie temper-
ature To. In FL, we demonstrated that these so-called
"anomalies" are required for the consistency of the
theory and have no physical effects. Another such
"anomaly" appears in this work: the 1/z correction to
g=(S„) is discontinuous across To. But, as shown in

the Appendix, the total value of g is continuous across
the true Curie temperature Tc, when both g and Tc are
evaluated to order 1/z. So, the discontinuity in the 1/z
correction to g is required for the consistency of the ex-
pansion.

The original, unrenormalized 1/z expansion was aban-
doned because the Curie temperatures obtained from the
onset of long-range order and from the divergence of the
magnetic susceptibility were different. To remedy this
difficulty, the diagrams of the 1/z expansion were renor-
malized by the addition of higher-order terms. Unfor-
tunately, the renormalized formalism no longer provided
a well-defined expansion of the thermodynamic vari-
ables. So, aside from testing the self-energy formalism,
this paper serves another purpose: we demonstrate that
an expansion of the self-energy yields the same Curie
temperature as the expansions of the order parameter and
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susceptibility. So, we have finally established that the un-
renormalized 1/z expansion is a reliable tool in
condensed-matter physics.

Besides its applications to ferromagnets, the 1/z for-
malism has also successfully been applied to correlated
electron systems' ' and to granular superconduc-
tors. ' ' Indeed, it is possible to formulate the 1/z ex-
pansion for a general Hamiltonian' which reduces to ei-
ther a ferromagnet or a granular superconductor.

This paper is divided into five parts. Section II intro-
duces the basic formalism of the self-energy expansion.
In Sec. III, we apply this formalism to the correlation
function of the Ising model. Section IV is devoted to the
Heisenberg model. Finally, Sec. V contains a conclusion.
In the Appendix, we show that yt= (Si, ) is continuous
across the true Curie temperature, despite the discon-
tinuity in the 1/z correction to yt at the MF Curie tem-
perature.

D(k)=g e 'D„,

Di = —(S,,SJ, ), (7)

where the lattice sites are located at R; and R&=0. The
expectation value of any operator A is defined by

Z =Tr[e (9)

where the Hamiltonian H can stand for either Hz or H~.
By expanding the exponents e ~ in Eqs. (8) and (9)

and then collecting all the terms of a given order in 1/z,
we produce the 1/z expansion

The goal of this paper is to evaluate the correlation
function

II. FORMALISM
( A ) =A (0T') +—Ai(T")+1

(10)

This section describes the self-energy expansion tech-
nique, which can be applied to a general class of lattice
Hamiltonians. In this paper, we specifically treat the Is-
ing and Heisenberg models of ferromagnetism. The
Hamiltonians of those two models are

Ht= —J g S;,SJ, ,
(i,j )

Htt= —J $ S;S, ,
&i,j &

(2)

where J&0 and the sums run over all nearest neighbors
in the lattice. While the spins of the Ising model com-
mute, the spin operators of the Heisenberg model obey
the commutation relations

Assuming 3 is dimensionless, each coefficient A„ is a
function only of the dimensionless temperature
T*=T/zJ and of the spin s. The zeroth-order term Ao
is the MF result, evaluated with H =0. The higher-order
corrections embody the coupling of spin fluctuations on
neighboring lattice sites. In the next two sections, this
procedure is used to expand the correlation function of
Eq. (7).

For both the Ising and Heisenberg models, the MF
correlation function is given by

D J.
'= —

—,'s(s+1)5;J. .

Because the spin correlations vanish on different sites, the
Fourier-transformed correlation function

[Sai ST ]= i5ij sapySiy (3)
D' '(k)= —-'s(s+1) (12)

with A'=1. For future convenience, we define the opera-
tors

is independent of k.
In terms of the parameter t = —s(s+1)/3, the exact

correlation function can be written as
I

Rij =SizSjz

R+=S'S.ij ' j

(4)

(5) 1 —tX(k)
(13)

where the former commute but the latter do not. In a
paramagnet, the expectation values of S;, and S; vanish.
Hence, all the energy of a paramagnet is generated by the
coupling of spin fluctuations on neighboring lattice sites.

In the magnetic state, the mean field experienced by
every spin is zJMo, where the MF order parameter
Mo=(S&, )~F is evaluated with the MF Hamiltonian.
As z increases, the mean field also increases and the cou-
pling of fluctuations on neighboring sites becomes less
important. So, the effect of fluctuations can be studied
with a 1/z expansion about MF theory. But, in a
paramagnet, the mean field vanishes identically and this
justification is lacking. Yet the effects of fluctuations still
decrease with increasing z. In the limit z~ao, MF
theory becomes exact and the spin correlations become
short ranged. For finite z, the coupling of fluctuations in-
duces long-range correlations among the spins.

where the self-energy X(k) vanishes in MF theory. After
a simple rearrangement, Eq. (13) defines the self-energy as

X(k)=——1 1

D(k)
Equation (13) can also be written in real space as

D =tI+tXD,

(14)

(15)

where I is the identity matrix, D is the correlation matrix,
and X(k) is related to the self-energy matrix X by

X(k)=g e 'X„.

Equations (13) and (15) are entirely general expressions
for the correlation function, provided that [D(k)] ' is
nonzero for all k or, equivalently, that D is invertible.
No other assumptions are made.
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As discussed above, a 1/z expansion of the correlation
function itself would never yield long-range order. If the
correlation function D is expanded to order 1/z", then
the spin correlations would vanish outside a sphere of ra-
dius na. But, if the self-energy X is expanded to any finite
order in 1/z, then the spin correlations immediately be-
come long ranged. Since the condition for long-range or-
der is that [D(k=0)] '=0, an expansion of X(k) in
powers of 1/z makes eminent sense.

The 1/z expansion of the self-energy X(k) is performed
as follows. First, every correlation function D» is ex-

panded to the required order in 1/z. Then, Eq. (15) is

used to solve for the real-space self-energy X, . Finally,
the Fourier transform in Eq. (16) yields the 1/z expansion
of X(k):

X( k)= cr 0(T*) +—cri(T*)+ ' ' '1 (17)

Each coefficient cr is a function of the dimensionless

temperature T*, the spin s, and the dimensionless func-
tions

(n) y eik s"
yk Af""n 5(tt)

(18)

where the sum runs over the JV„different n-nearest-

neighbor vectors 5'"'.
Each function y&"' equals 1 when k=O and reaches a

minimum somewhere on the zone boundary. For exam-

ple, in a cubic lattice with the lattice constant set to 1,

yz~"= —,'[ cos(k„)+ cos(k~)+ cos(k, )] (19)

equals 1 when k =0 and equals —1 when
k=(+m. , +n., +n). Of course, JV, =z by definition. To
lowest order in 1/z, the number of nth-nearest neighbors
is given by JV„=z"/n! and yI,"'=(yI, ')". While the self-

energy of the Ising model involves only the nearest-
neighbor function y&", the self-energy of the Heisenberg
model also involves yz

' and yk '.
Unlike the MF term A o in the expansion of ( A ), the

zeroth-order term oo in the expansion of X(k) is not the
MF self-energy. In fact, o-p vanishes in MF theory but is

nonzero due to the coupling of spin fluctuations on neigh-
boring sites. To calculate o.p, we must first evaluate D&

to order 1/z", where R. is the nth-nearest neighbor of
R, . Then, Eq. (15) is inverted to obtain X, . to order
1/z". Finally, the Fourier transform in Eq. (16) sums
over the z "/n! equivalent lattice sites oriented about R&

to yield the zeroth-order term o.
p To evaluate o.„we

must expand D, to order 1/z""+', then invert Eq. (15) to
solve for the self-energy, and Fourier transform to obtain
the final result.

Among the nth-nearest neighbors of R&, only lattice
sites R which are linear combinations of n different 5"'
contribute to o.

p and o. &. For example, among the next-
nearest neighbors in a two-dimensional square lattice,
only the lattice sites R- =+x+y fall into this class. The
matrix elements D&. with R.=+2x or +2y contribute to
the 1/z correction o.

2 but not to the 1/z correction o.&.

Since we are only interested in o.
p and o.

&, the correlation

function may be evaluated within this subclass of the
nth-nearest neighbors. Because D

&

- and X
&

. are the same
for every nth-nearest neighbor in this subclass, we define

D„ to be the correlation function D
&~

and X„ to be the
self-energy X». Note that D„and X„are matrix ele-
ments of the correlation function and self-energy, not
coefficients in the 1/z expansions of these quantities.

The 1/z corrections to the correlation function are
evaluated by expanding Eq. (7) in powers of I3H and then
collecting all the terms of a given order in 1/z. To lowest
order in this expansion, D„ is of order 1/z". The 1/z"
contribution to D„ is represented by Fig. 1(a). A solid
line represents a factor of JR;. which couples neighboring
sites i and j. Because R is the linear combination of n

different vectors 5"', each of the n different lines in Fig.
1(a) must be oriented in a different direction. Hence, this
diagram is proportional to P"J"=P'"/z".

Because the expectation values (Si„S„) and
(S,~S„) both vanish, only the longitudinal terms in H
contribute to Fig. 1(a). So, for either the Ising or Heisen-
berg models, D„" involves the product of expectation
values (Si, )MF'= —( —1)"t"+'. After a straightforward
calculation, we find that

(20)

1 p+
z

(21)

Finally, after summing over the z-nearest neighbors in the
Fourier transform of Eq. (16), we find that

Pay(1) (22)

Because the other self-energy matrix elements X„&&
are of

order 1/z"+' or higher, they do not contribute to cro

The Curie temperature is obtained by setting

/Ri /Ri

(a)
R, Q

(b)

Rg

CO
(c)

R)

R, y (cI)
Rg

FIG. 1. The diagrams which contribute to the correlation
function D„. (e) is absent in the Ising model.

The factor of n! reflects the different possible orderings of
the n lines which join R& to R . For n =0, the contribu-
tion of this diagram equals t, as expected from MF
theory. By inverting Eq. (15), we solve for the self-energy
matrix elements X„. To order 1/z", the only nonzero
matrix element is
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D (k=O) '=0, with the result

Tc =T()—
—,'s(s+1) . (23)

III. ISING MODEL

It is straightforward to apply this formalism to the Is-
ing model. To order 1/z"+', the contributions of Figs.
1(b)-1(d) are

D(b) (
( 1)n pen +2 tn +2(9 t+ 1)

n +1&!
n

10 n+1

D(c) (n +1)
( 1)npnn+2tn+3

2 "+'

(d) n ()t + 1) nn+2 n+3
Ln

(24)

(25)

(26)

As mentioned earlier, D„"=0for the Ising model. The
total correlation function D„ is obtained by simply add-
ing Eq. (20) for D„"with Eqs. (24)—(26).

For n =0, the total correlation function is given by

Since the self-energy X(k) is only accurate to order 1, this
MF expression for the Curie temperature neglects 1/z
corrections.

To evaluate the 1/z corrections to the Curie tempera-
ture requires the 1/z"+' corrections to the correlation
function D„. These are represented by Figs. 1(b)—1(e}. In
Fig. 1(b}, a loop connects any site on the "backbone" to
the z —2 sites around it. In Fig. 1(c), this loop is discon-
nected from the backbone. Since the loop can occupy
Nz/2 different positions on the lattice, Fig. 1(c) includes
extensive terms from both the denominator and the
numerator of Eq. (7). The extensive terms in the numera-
tor cancel the extensive terms in the partition function,
leaving a finite contribution. As shown in Fig. 1(d), lines
in the +5 directions may be inserted at any two points on
the backbone. In Fig. 1(e), a line is replaced by a loop.
Because three lines join at one point, the contribution of
this diagram is proportional to (S„),which vanishes in

the Ising model.
Compared to the backbone diagram, each of these dia-

grams is smaller by a factor of 1/z. For example, the
contribution of the loop in Fig. 1(b) is proportional to zJ
or to 1/z in dimensionless units. In Fig. 1(d), the dark-
ened lines may be inserted at any two lattice sites in z
different directions. So, the contribution of these inserted
lines is proportional to zJ or to 1/z in dimensionless
units. In the same way, it can be shown that Figs. 1(c)
and 1(e) are also of order 1/z"+'. These diagrams are
evaluated in the next two sections.

spin components. Since this identity is absent in the Ising
model, rt only reaches the MF value of s (s+ 1)/3 in the
limit of infinite temperature. In the Appendix, we evalu-
ate g& below T0. Although g, is discontinuous across T0,
the total value of q is continuous across the true, shifted
Curie temperature.

After inverting Eq. (15), we solve for the matrix ele-
ments X„. To order 1/z"+', the only nonzero matrix ele-
ments are

Xo= p' ( —6t + 1),1

10z

1x = ——p'.
1

(29)

(30)

While Eq. (29) neglects the 1/z corrections to Xo, Eq.
(30} neglects the 1/z corrections to X). Finally, after
Fourier transforming with Eq. (16), we find that the
coefficients in the 1/z expansion of the self-energy X(k)
are

pny(1)

0,= —,',p' ( 6t+1—) .

(31)

(32)

Setting [D(k=O)] '=0, we find that the Curie tempera-
ture of the Ising model is

T =T + T—:—'s(s—+1)— s(s+1)—1 1 1
C 0 1 3 Sz 10z

' (33)

ra'=1(1 1 2

z
(34)

in agreement with FL.
The self-energy expansion technique is totally different

than the method used in FL to evaluate the Curie tem-
perature. In FL, we calculated the lowest-order correc-
tion M) /z to the MF order parameter Mo. The 1/z ex-
pansion of the Curie temperature is obtained by demand-
ing that the total order parameter M()+M, /z vanishes at
Tc. In the paramagnet, however, the MF correlation
function is short ranged and the MF Hamiltonian van-
ishes. Nonetheless, an expansion of the self-energy in the
paramagnet yields the same Curie temperature as the ex-
pansion of the order parameter in the ferromagnet.
Therefore, the results of the 1/z expansion for the
paramagnet and the ferromagnet are consistent.

Using Eqs. (31) and (32) for the self-energy, we now
solve for the correlation length of a paramagnet. In a d-
dimensional hypercubic lattice with z =2d nearest neigh-
bors, the long-wavelength limit of rz" is given by

D()—=D„=t+ P* t (4t+1),1

10z
(27) where the lattice constant is set to 1. So, when

~ R~ ~
) ) 1, the correlation function becomes

1a=no+ —ni *z
(2&)

which is valid to order 1/z. Rewritten as the 1/z expan-
sion of 21 —=(S„),Eq. (27) becomes

where

k k +]c
(35)

where 2)o= t and 2)) = —p' t (4t —1)/—10. In the
Heisenberg model, 2) =s (s +1)/3 is exact because of the
identity S,. S;=s(s+1) and the equivalence of all three

T*
n =z —1 + —,', P*(—6t+1)

0
(36)
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defines the correlation length a '. Near the Curie tem-—~fR. fperature, (S(,S~, ) is proportional to e ' /~RJ-~. So
the spin correlations persist within a sphere of radius—1
K

Near Tz, the correlation length diverges like the
square root of 1/(T* —Tc). Hence, the critical ex-
ponents are not changed by the 1/z expansion. This is
not really surprising. Because the critical exponents are
nonanalytic functions' of 1/z, they are not shifted by a
1/z expansion. The shifts in the critical exponents can
only be obtained through a nonperturbative,
renormalization-group analysis.

The basic idea of this calculation is to expand the in-
verse of the correlation function rather than the correla-
tion function itself. Expanded to any finite order in 1/z,
the correlation function never diverges. But if the self-
energy is expanded in powers of 1/z, then the correlation
function diverges at the true Curie temperature, expand-
ed to the same order in 1/z.

IV. HEISENBERG MODEL

D(b) = pn2t3=3
2z

D(c) pn2t33

2z

(37)

Since Figs. 1(d) and 1(e) do not contribute for n =0, we

I

This same technique can easily be applied to the
Heisenberg model, which contains both transverse and
longitudinal fiuctuations. The 1/z"+' corrections to the
correlation function D„now involve four diagrams in-
stead of three and the correlation functions with n =0
and n =1 must now be treated separately from the gen-
eral case n &2.

For n =0, the contributions of Figs. 1(b) and 1(c) are

find that D0=t. So, as expected, fluctuations do not shift
2) = (S (, ) from its MF value of s (s + 1)/3.

For n = 1, we find that

D = — P* t (9t+1),1

3Z2

D (c) pe3t4=3
Z2

D(d) pn3t41

Z2

D( ) — pn2t21

4z

(39)

(40)

(41)

(42)

Finally, for n ~2,

D(b) (
( 1)npnn+2tn+2(9t +1)n +1)!

6z"+ '

D(c) 3
( '

( 1)np nn+2tn+3pg + ll

n
2 n+1

D(d) tt (tt + 1) pnn+2 n+3
2z"+'

D(e) ~ n pnn+(( 1)ntn+(n!n
12Zn +1

(43)

(44)

(45)

(46)

(R (2S2,S), )Mp — ,'t—— (47)

with R12 operating to the left of the spin operators. But
for n ) 1, D„"is proportional to the symmetrized sum

Once again, the total value for D„ is obtained by adding
the contributions of Figs. 1(a)—1(e).

The cases n =0 and n =1 must be treated differently
from the general case n ~2 because D0 and D, involve
the unsymmetrized expectation values of operators. For
n = 1, D", is proportional to

—,
'

I (R )2S2zS(e )M„+ (R)2S2,R,2S), )MP+ (S2eR (2S)e ) MPI
——

—,'t (48)

Hence, an additional factor of —,
' appears in the expression for D„'&,. Similarly, D„' &0 is proportional to the symrnetrized

average

—,
'

I (R )2S), )Mp+ (R,2$„R(2S(e )Mp+ (S»R,2S(e )Mpj = —
—,'t (9t + 1) . (49)

But, for n =0,

(c) 1 .2Do" +Do = — P* (R (2(S» (S]e )Mp) )Mp=0,
2z

(50)

I

tation values are different than the unsymmetrized ones
and a general expression for D„ is not possible.

In order to calculate the self-energy, we invert Eq. (15)
and solve for the matrix elements X„. To order 1/z"+',
the nonzero matrix elements are

with R12 operating only to the left. So, unlike the corre-
lation functions with n )0, the correlation function D0 is
not affected by fluctuations.

Because the operators in the Ising model commute, the
unsymmetrized expectation values are equivalent to the
symmetrized expectation values. Consequently, a general
expression for the correlation function D„ is possible. In
the Heisenberg model, on the other hand, the R; opera-
tors do not commute. Therefore, the symmetrized expec-

.2x = p"t, ——
0

X = ——pe+ pn2 — pn 3t,1 1 1

z 4Z 3Z

pn4t 2+ pe3t,1 2
3z' 3Z3

X = p'4t21
3

(51)

(52)

(53)

(54)



45 ONSET OF LONG-RANGE ORDER IN A PARAMAGNET 5411

Once again, Eqs. (51)—(54) ignore corrections of order
1/z, 1/z, 1/z, and 1/z, respectively.

Using Eqs. (16) and (17) for the Fourier transform and
1/z expansion of the self-energy, we find that

(1)p»

p»2t+~(1)p»2t ) ) p»

+~(y(2)p»3t [ 1 )p»t ] + ) y(3)p»4t3

(55)

(56)

where the functions yk"' were previously defined by Eq.
(18). After setting [D(k=O)] '=0, we finally obtain the
Curie temperature

T'=T + T—:——'s(s+1)— s(s+1)—1 1 1
C 0 1 3 3z 4z

' (57)

in agreement with FL.
While the self-energy of the Ising model only involves

the nearest-neighbor function yk", the self-energy of the
Heisenberg model also involves the functions yk

' and

y& '. Hence, a self-consistent treatment of the Heisenberg
model must incorporate next, next-nearest-neighbor
correlations in the self-energy. Actually, the correlation
function of the Heisenberg model can be simplified con-
siderably if the special cases n =0 and n =1 are treated
as corrections. An alternative self-energy II(k) is then
defined through the relation

t 1 e2 p (I) (58)

The additional term in this expression guarantees that
Eqs. (37)—(42) for Do and D, are satisfied but does not
affect the correlation functions D„with n & 1. Compar-
ing Eqs. (14) and (58) for D(k) and using Eqs. (55) and
(56) for X(k), we find that

11(k)=—P*) „(" 1 — P' + P"[,' t]— -—~z )

12z z
(59)

k k +K
(60)

where

a =z —1 + —,'P*( 6t+1)——1
6 12'

(61)

defines the correlation length K '. Once again, K

diverges at the Curie temperature like the square root of
1/(T* —Tc ), with the Curie temperature now given by
Eq. (57).

Since 1)=s(s+1)/3, the correlation function of the
Heisenberg model must satisfy the sum rule

only contains the nearest-neighbor function yk". The
denominator of D(k=O) still vanishes at the Curie tem-
perature given by Eq. (57).

Us1ng Eq. (59) for the self-energy, we can solve for the
correlation function of a hypercubic lattice in the long-
wavelength limit. When ~RJ.

~

& & 1, the last term in Eq.
(59) does not contribute and

—QD(k)=D = ——'s(s+1) .
1

N 0
k

(62)

Summing the correlation function over all momentum,
we find that this sum rule is violated to order 1/z . How-
ever, the correlation function D(k) of Eqs. (58) and (59) is
only exact to order 1/z. Therefore, D„ is only exact to
order 1/z"+' and Do is only exact to order 1/z . Of
course, the identity in Eq. (62) could be ensured by add-
ing the appropriate constant term to the right-hand side
of Eq. (60). But that procedure is not justified by a 1/z
expansion.

Although the 1/z correction to ri= (S„)vanishes in
the paramagnet, g, reaches a finite value as To is ap-
proached from below. But, as shown in the Appendix,
the total rio+2))/z is continuous across the shifted Curie
temperature Tc given by Eq. (59). So the discontinuity in

gl at To is required for the continuity of q across Tc.

V. CONCLUSION

Xo T
~ (64)

This expression for the susceptibility diverges at the Cu-
rie temperature of Eq. (57). For the Ising model, the sus-
ceptibility diverges at the Curie temperature of Eq. (33).

In a companion paper, we use the self-energy expan-
sion to study the dynamical correlation function D(co, k)
in a Heisenberg ferrornagnet. Although complicated by
the frequency dependence of the correlation function, the
formalism of that paper is quite similar to the one demon-
strated here. First, we construct a self-energy X(co,k)
which is proportional to the inverse of the correlation
function. Then, after expanding the real-space correla-
tion functions D„(co) to order 1/z"+', we evaluate the
self-energy matrix elements X„(co) to the same order. Fi-
nally, a Fourier transformation yields the 1/z expansion
of the self-energy X(co,k). The mode frequencies cok are
determined by the poles of the correlation function. Us-
ing this technique, we find that the coupling between the
longitudinal and transverse fluctuations causes a splitting
of the spin-wave resonance above the crossover tempera-
ture' T=0.2zJs.

A related expansion technique has been used by
Johnson, Gros, and von Szczepanski' to study the mode

This paper has demonstrated a method for studying
the onset of long-range order in a paramagnet. After ex-
panding the self-energy X(k) in powers of 1/z, we find
that the inverse correlation function [D(k=O)] ' van-
ishes at the same Curie temperature obtained in FL.

There are, or course, other ways to study the onset of
long-range order in a paramagnet. The 1/z approach can
also be used to calculate the linear susceptibility y=M/h
in the presence of a small magnetic field h. After expand-
ing the order parameter M = (S„)to order 1/z, we have
evaluated' y ' to order 1/z. For the Heisenberg model,

1+tp' — tp'2( 4t +1)—1 1 ~ 1
(63)

X Xo 4z

where the MF susceptibility is
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frequencies of a spin- —,
' antiferromagnet at zero tempera-

ture. For s =
—,', the spin operators can be replaced by a

set of fermion operators and Wick's theorem can be used
to evaluate the correlation diagrams. Unlike the ap-
proach of Johnson et al. , the technique described here
can be used for any value of the spin. Wick's theorem is
not needed to evaluate the correlation diagrams because
each contribution factors into the product of expectation
values on single sites. For the Heisenberg ferromagnet,
each expectation value is evaluated with the full commu-
tation relations of Eq. (3).

To summarize, this paper has shown that the 1/z ex-
pansions of the paramagnet and of the ferromagnet are
consistent. The self-energy expansion technique has wide
applications to problems in ferromagnets and paramag-
nets, including the study of spin dynamics below Tc and
the study of spin correlations above Tc. In future papers
we also hope to apply this method to other systems, such
as granular superconductors.
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FIG. 2. The diagrams which contribute to the 1/z correction
to g= (s'„).

e
P mM

(A3)

,'p* (R,—~(S„—G, ) )MF

+ ,'p' (P(R1—2R23)S„)MF (A4)

where

Of course, the MF order parameter Mo is equivalent to
Go.

For either model, g& involves the sum over diagrams
shown in Fig. 2. Each diagram in Fig. 2 is of order 1/z.
For example, the "bubble" diagram has two lines joining
site 1 with any of the z neighboring sites. So its contribu-
tion is proportional to J z =(zJ) /z or, in dimensionless
units, to 1/z.

While the "bubble" diagram is simple to evaluate, the
infinite sum over "tadpole" diagrams reduces to a
geometric series. In terms of the R; operators, g, is
given by

APPENDIX
f=p*(G) —Mo) (A5)

DGi(T'), (Al)

where the functions G„(T" ) are defined by

S

G (T*)= g m"+'e
m= —s

(A2)

In this appendix we show that g= (S„)is continuous
across the Curie temperature Tc, when both g and Tc
are evaluated to order 1/z.

For both the Heisenberg and Ising modes, the MF
value of g is given by

and P sums over the three distinct permutations of
R,zR z3. In the Ising model, the R; operators commute
so that P simply multiplies the last term by 3. The bubble
diagram is responsible for the first term in g&, the sum

over tadpole diagrams produces the second term. Below

To, the MF expectation values are evaluated using the
MF Hamiltonian H,ff= —zJMOQ, .S;,. Since f equals 1 at
the MF Curie temperature To, 1 f vanishes at —To and
the second term in g& tends to a finite value as T* ap-
proaches To from below. But this term vanishes above

To, where MD=0. So g& discontinuous across the MF
Curie temperature.

But the total discontinuity of g across the true Curie
temperature is given by

b rj=q(Tc+ ) —g(TP )

=go To+ —Ti + e —
go To+ —Ti —c + —

[ r)i( To+a) —qi( T oe) }
1 1 1

z z z

dG, dG, 1
Tll „,}+ jul(T0 ) nl(T0 )} . (A6)
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So b,q contains two 1/z corrections: one due to the
discontinuity in g& across To, the other due to the shift in
the Curie temperature from To to To+ Tt /z. Above To,
G, = —t is a constant and the derivative of G, vanishes.
Just below To, the derivative of G

&
is given by

So, using Eq. (33) for T;, we find from Eq. (A6) that
kg=0, as expected.

For the Heisenberg model, g& now contains the effects
of the transverse terms in the fluctuation Hamiltonian.
Since g& vanishes above To, we find that

4s(s+1}—3
dT* r, 2s(s+1}+1 (A7)

g, (To }—g, (TO )= —,', [4s(s+1)—3)
2s s+1 +1

ir, ( T 0)
—

)7(tT o) = —,'0 [4s (s + 1 )
—3 ] . (A8)

Of course, the discontinuity in g& is different for the two
models.

For the Ising model, the discontinuity of g, across To
is given by

(A9)

Using Eq. (57) for the Curie temperature, we again find
that Ay=0. So, for either model, the discontinuity of g
vanishes across the true Curie temperature.
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