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We present the details of a formalism for calculating spatially varying zero-frequency response func-
tions and equal-time correlation functions in models of magnetic and mixed-valence impurities of metals.
The method is based on a combination of perturbative, thermodynamic scaling theory [H. R. Krishna-
murthy and C. Jayaprakash, Phys. Rev. B 30, 2806 (1984)] and a nonperturbative technique such as the
Wilson renormalization group. We illustrate the formalism for the spin-2 Kondo problem and present

results for the conduction-spin-density —impurity-spin correlation function and conduction-electron
charge density near the impurity. We also discuss qualitative features that emerge from our calculations
and discuss how they can be carried over to the case of realistic models for transition-metal impurities.

I. INTRODUCTION

In an earlier paper' we introduced a formalism for cal-
culating spatially dependent, zero-frequency response
functions and equal-time correlation functions for a sin-
gle magnetic impurity in a nonmagnetic metal. We cal-
culated the response function measured in NMR
Knight-shift experiments in dilute magnetic alloys and
explained (from first principles) a significant feature of its
behavior. The purpose of this paper is (i) to describe the
details of the formalism and the calculation of the
response function measured in the Knight-shift experi-
ment and (ii) to present results for the conduction-
electron-spin-density —impurity-spin correlation function
and the conduction-electron charge density around the
impurity.

We consider the spin- —,
' Kondo Hamiltonian

Htc(Do) =H, (Do) —Jos(0) S,

where H, (D )odescribes conduction electrons with a
bandwidth of 2DD, S is the impurity spin at the origin,
and s(0) [=g„(0)(—,'o„„)g,(0)] is the conduction-electron
spin density at the origin. In the preceding, g„(r)
denotes a creation operator for a conduction electron
with spin p at position r. This model has been studied
extensively and thermodynamic quantities such as the
susceptibility y( T) and the specific heat have been calcu-
lated exactly for this and several related impurity
models. Approximate (large-degeneracy-expansion)
methods ' have been successfully used to compute trans-

port properties and spectral functions. In contrast,
spatially-varying properties have only been explored us-
ing perturbative methods until recently. Spatially vary-
ing correlation functions and zero-frequency response
functions provide important probes of the many-particle
state of the magnetic impurity system. Correlation func-
tions such as the conduction-electron charge density
at r given by (lit„(r)p„(r) ), and the itnpurity-
spin —conduction-electron spin-density correlation func-
tion (S s(r) ) are clearly of interest. We will also consid-
er ((s, (r);S, ))H o, where (( A;B ))H o denotes the

zero-frequency response function evaluated with the
Hamiltonian H: ((A;B)) is the Fourier transform of
the retarded double-time Green's function

(( A (t);B(0))),= —ie(t)( A (t)B(O)—B(0)A (t)), (2)

where A (t) and B (0) are Heisenberg operators and

(( )) —=Tr[e ~ ( )]/Tre

Indeed, some response functions can be measured
directly. For example, consider NMR Knight-shift ex-
periments in dilute magnetic alloys such as Cu-Fe. The
host NMR spectrum consists of a large, main resonance
line due to host nuclei far from the impurity and weak sa-
tellite signals due to nuclei near the impurity. The satel-
lites have their resonance field shifted from the main line,
and this extra Knight shift 15.K(r, T) at a distance r from
the impurity essentially measures the conduction-electron
spin-density response functions at the host nuclear posi-
tion r. It can be shown that

bK(r, T)
Ko

((s,(r);g, s, +gd S, ))H, —((s,(r);g, s, ))H

&(,( );g, , ))
(3)
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where, K0 is the Knight shift of the pure metal described
by the Hamiltonian H, and is proportional to the denom-
inator on the right-hand side which is simply the Pauli
susceptibility. The g factors of the conduction-electron
and impurity spins are denoted by g, and gd, respectively.
An interesting feature of the experiments is that the tem-
perature dependence and r dependence factorize. Our
method show how this factorization arises, permits a de-
tailed calculation of the spatial and temperature depen-
dences of hE/Ep, and provides an estimate of deviations
from factorization. We emphasize that our method
works only for r such that r «Dp/k+Tz ("Kondo
screening length" ). This condition is easily satisfied with
k~r & 10—15 which is, however, sufficient for comparison
with experiments. Recently, correlation functions have
also been calculated using quantum Monte Carlo simula-
tions and small-Uexpansion in the symmetric Anderson
model.

The rest of the paper is organized as follows. Section
II discusses the general formalism, and introduces the
perturbative, thermodynamic scaling method. In Sec.
III, we discuss the calculation of hE including the exten-
sion of Wilson's renormalization-group scheme' to the
calculation of zero-frequency response functions. In Sec.
IV, we present the results for (S s(r)) and (1(„"(r)f„(r)).
The extension to models with higher-spin impurities is
addressed in Sec. V. Some algebraic details are relegated
to the Appendices.

II. GENERAL FORMALISM

We begin with a brief outline of the physical motiva-
tion of our method for obtaining the temperature depen-
dence and r dependence of zero-frequency response func-
tions and correlation functions which we denote by
C(r, T) (r is the distance from the impurity). The r
dependence (for kyar «Dp/Tx, where k~ is the Fermi
wave vector) is determined essentially by the high energy
(near the band edge) degrees of freedom since only those
conduction electrons and holes can distinguish spatial
separations of a few lattice spacings. This permits the
spatial dependence to be determined by a perturbative
scaling method. The temperature dependence, in con-
trast, is primarily due to low-energy degrees of freedom
since T &&D0 the bandwidth. The difficulty in determin-
ing the T dependence is associated with the well-known
divergences of the Kondo problem and can be overcome
by using the Wilson renormalization-group (RG) tech-
nique.

Motivated by the above observation, we employ the
perturbative, thermodynamic scahng procedure to elimi-
nate iteratively the high-energy electron and hole degrees
of freedom, ' we emphasize that this procedure preserves
the free energy. We reduce the bandwidth from D0 to D,
and generate an effective Hamiltonian H(D) which de-
scribes the physics at lower-energy scales. Correlation
functions evaluated with the original Harniltonian with
cutoff Dp H(Dp ) become linear combinations of correla-
tion functions evaluated with H(D). When the band-
width is D, the most localized state that can be formed at
the origin by superposing conduction-electron plane-

C(r, &)= (P„(r)S(p,,y, ')P„(r)), (4)

where eV(}M,}u') is an operator in impurity space. For ex-
ample, if S(p,p')= —,'S a», we have the conduction-
electron-spin-density-impurity-spin correlation function.
S(p,p')=5» yields the conduction-electron charge den-

sity at r. For convenience, we will assume that the opera-
tor in the rhs of Eq. (4) is in normal-ordered form in
terms of electron and hole operators (normal ordering
here is equivalent to subtracting out a trivial constant).
This correlation function can be evaluated by introducing
an auxiliary field h as follows.

Define the Hamiltonian

H(Dp) =Hx(Dp) hP„(r)S(p, p')P„—(r)

and the corresponding free energy
—PH(D0 )F= kg T lnTre

The required correlation function is given by

C(r, T)=—

Similarly, a zero-frequency response function can be gen-
erated by introducing two auxiliary fields and using the
second-derivative of the appropriate free energy in zero
field (see Sec. III).

As discussed above, the first part of our procedure con-
sists in reducing the bandwidth from D0 to D to extract
the r dependence. This is accomplished by using thermo-

wave states has a spatial width approximately Av~/D,
which is much larger than r if rD/fiv~ &&1. Then, the r
dependent correlation functions evaluated with H(D)
reduce ta local correlation functions. Thus, the correla-
tion function of interest becomes a sum of terms which
are products of functions of r (essentially independent of
T) and local correlation functions that involve operators
with the same symmetry as C (r, T). Thus, by choosing D
sufficiently small for a given r, the r-dependence can be
extracted because precisely those high-energy degrees of
freedom, which determine this dependence, have been in-
tegrated out. Note that, in order that our perturbative
method remain accurate, D must satisfy the condition
that all dimensionless couplings are smaller than unity (in
effect, the Kondo temperature Tz and the temperature T,
must be smaller than D). Thus, D must be chosen such
that T, T~ «D «D, /k~r, which is possible for experi-
mentally interesting ranges of kyar and T&. The local
correlation functions evaluated with H (D) determine the
T dependence and these are evaluated by using the Wil-
son RG method. Thus, by a judicious combination of
perturbative and nonperturbative methods, C(r, T) can
be determined. Of course, the r dependence, in practice,
is determined only to leading order in perturbative scal-
ing, and thus has limited accuracy (proportional to pPp
for small pPp). For a typical value ppJp = —0. 1, the ac-
curacy is about 10%.

Now we embark on a more detailed description of the
calculation. Consider the evaluation of a general correla-
tion function
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dynamic scaling theory, a finite-temperature formalism
designed to handle irrelevant variables which are impor-
tant for calculating spatial dependence of physical quan-
tities. The formalism is an extension of a scaling method
due to Anderson. " We now provide a brief review of the
method to second order in the coupling constants which
is sufficient for the work presented here. Details can be
found in Ref. 9. We will first introduce the generalized
impurity Hamiltonian H which encompasses all the
forms of Hamiltonians including the auxiliary-field terms
needed in this paper. The conduction band of the metal
is assumed to be isotropic with a density of states po(s)
between +Do about the Fermi level. [We will choose
po(E) =po. ] The conduction-electron states are labeled by
(sp), where s is the energy and)u, stands for other discrete
or continuous labels, e.g., p=(ka), where k is the direc-
tion of the electron wave vector and cz its spin. The cor-
responding creation operator, denoted by c,„obeys the
anticommutation relation

{c,„,c;„j=5„„5(E—c,'}/po(E) .

In this representation the conduction-electron Hamiltoni-
an assumes the form

Hp =
g EC &pCzp

where f stands for g„fdEpo(e) and g„denotes ap-
CP

propriate sums and integrals [if p = (k, a), then
g„=g fdk]. The generalized impurity Hamiltonian

can be written as

Tr e ~ ' ', where Tr denotes the trace over only {~p ) j.
The states of the impurity are unaffected by the scaling
procedure. When this procedure is applied to generalized
impurity Hamiltonian H given in Eq. (8), to second order
in HI, the Hamiltonian H(D) can be represented in the
same form; it is different from H (Do) in that 'M and 4 as-
sume new "values" denoted by 'M~ and SD. Not only are
the values of the original couplings renormalized but also
different interaction terms that can be cast in the form in
Eq. (8) are generated.

An important feature of this scaling method is that it
can keep track of the energy dependences of the interac-
tions in QD and Sn. Such terms, while irrlevant in the
renormalization-group sense, are crucially important in
calculating spatially dependent quantities such as C(r, T).
The simple reason is that the irrelevant operators are ac-
companied by large coefftcients of the order of rD /UF and
must be included at least in the initial stages of the scal-
ing procedure (i.e., until D has been reduced sufficiently
to neglect them).

Differential recursion relations can be obtained for the
variation of G and p with D by scaling D down to D 5D—
to obtain QD &D and SD &D. The general recursion re-
lations are

dQD = f f [SD( pp, ;Dv)S—D(Dv; —pp)
PP

+SD( Dv;pp)S—D(pp, ; Dv)]—1
D+p

(9)
Hp +HI 00 +HI1+HI2+

Hli =0 (8)

HI2 — C ~pCq~p~ FP j E, P
EP KP

where 'M and 1 are operators in the finite-dimensional
space of impurity states. For example, Hz in Eq. (1) cor-
responds to

=0

and

dSD

dD D cp;Dv D Dv, e, 'p'
pp D

—13(D —c, ) 1
—P(D —c')

X +
D —c, D —c.

'

+SD( Dv;e'p')S—D(Ep, ; Dv)po( D)— —

and
1 1

D+c D+E, ' (10)

S(ea;E'a')= —
—,'JOS cr

The Hamiltonian is also assumed to be in the normal-
ordered form in terms of electron and hole operators.
The scaling procedure is defined as follows: One "elimi-
nates" the higher-energy scales, reducing the cutoff from
Dp to D, simutaneously changing the Hamiltonian from
H(DO) to H(D) so as to preserve the low-temperature
properties of the system. The eigenstates of Hp are divid-
ed into a set {~p ) j which contains no electrons or holes
of energy D & E & Do and a complementary set { ~ q ) j,
which contains at least one electron or hole of energy
D & E &Do. The energy of the state ~q ), Eo(q) is larger
than D, and we will be interested in temperature
T &(D (Dp. Now consider the evaluation of
Tre ~' o ~

' in perturbation theory in HI where the
trace is over all states. Neglecting terms of order—PEO(q)
e (&1, the partition function can be written as

where j~„stands for Q„J0po(+p )dp as appropriate.
These recursion relations will be employed extensively

in the rest of the paper. Their derivation can be found in
Ref. 9. Now consider applying this method to H(DO } in

Eq. (5). Perturbative scaling can be performed to reduce
the cutoff from Dp to D so as to preserve the free energy
to first order in h. This is sufficient since C depends only
on the first derivative of the free energy with respect to h

evaluated in zero field. In the course of the scaling pro-
cedure, new terms linear in h are generated. The most
general form of the effective Hamiltonian is given by

H(D) =Hx (D) —h {P„(r)SD (pp')g„(r )

+ [gt(r)PD(pp')P„(0)+H. c. ]

+gt (0)$'D (p,p')g„.(0)j —h %ED,
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where eVD, SD, SD, and O'D are impurity operators with
coefficients (or coupling constants) which are r depen-
dent.

Since the free energy is preserved we have

a
ln TrDe

aPh

—PH(DO )C= ln TrD e
aPh

Therefore, C becomes a linear combination of correlation
functions evaluated with Hx(D) due to the terms linear
in h present in Eq. (11):

C= & g„(r)SD(p,p')P„(r))It (D)

+ & g(r+D(p' p )ep'(0) ~H (D)

+ & P„'(0)&"(p, )u')g„(0) )„, , + &@ &„, , (12)

where k, =
~
k ~; we have made the energy dependence ex-

plicit. We remind the reader that f,= f Dpo(s) Since.

k, =kF+((}k/(}s)E for the linear dispersion relation, we
have k, =kr+s/vF. The maximum value of e is D; note
that kor =kFr+rD/vF =kFr since rD/vr «1. This re-
placement is valid, a fortiori, for all s. Therefore, one has

sin(kFr) sin(kFr)
g„(r) f c, „= f„(0) .

FI' Fr

Using this simplification, Eq. (12) becomes

sin (kFr)
C(r, T)=

2 &Q„(0)SD(p,p')gq(0))H (v)
(kFr)

sin(kFr)+ & g„(0)$~()M,)M'}g„(0}+H.c. )H (D)kFr K

+ & P)t(0)SD(P~P )4p' 0) Hs(D)+ +D ~H~(D)

(13)

While the spatial dependence of the correlation function
is explicit above, the temperature dependence is con-
tained in the expectation values of the local operators.
Thus, the calculation of the spatial and temperature

Assume that we can reduce the bandwidth from Do down
to D such that rD lvF « 1. Then, a further simplification
ensues: P„(r) can be replaced by g„(0}.To see this, note
that Htt(D) is spherically symmetric; only in terms in-

volving s-wave conduction electrons or holes can opera-
tors contribute to C. To be specific, we expand f&(r) in
terms of partial waves with respect to the origin:

g„(r)=f f„e'"'c,&„=f f„g I'( (k)c,t „.
kI, m

Because of the spherical symmetry, the expectation value
& c,t „Sc,t, „.) (here S is an impurity operator) gives
nonzero contribution only when i =m =l'= m

' =0.
Thus, we can replace g„(r) by

g„(r) f f„1' (k)c, „e'"'
E k

sin(k, r)
E,OOp

III. CALCULATION OF RESPONSE FUNCTION

In this section we discuss the details of the calculation
of the zero-frequency response function measured in
Knight-shift experiments. We also use this example to
demonstrate the general recipe for calculating spatially-
dependent correlation functions and zero-frequency
response functions. We evaluate

C(r), T)= « (sr);g Sd, g+, s, )) H(D ) (), (14)

where s, (r)= —,'gt(r)o„'„.f„.(r) is the z component of the
conduction-electron spin density at r and S, is the z com-
ponent of the impurity spin at the origin. The Kondo
Hamiltonian with cutoff Do is given by

Do
H~(DO)= f„c,q c,q =

—,'JOS 1()t(0)o„„.g„.(0), (15)K 0
k Ekg EkP 2 0 IJ

where

dependences has been separated. The calculation of the
expectation values with the renormalized Hamiltonian
can be performed using a nonperturbative technique such
as the Wilson renormalization-group method. Note that
the restrictions on r and T imposed by the necessity of
choosing D such that kFr(D/Do) «1 and D))T, Tz
have been made manifest.

The question of factorization can be investigated if we
note the following. The operator f„(0) in Eq. (13)
should have been written as )J)D„(0) to emphasize the fact
PD„(0) creates the most localized state that can be creat-
ed at the origin with bandwidth D. Indeed,

D
QD„(0)=f de po(s)c t„,

i.e., QD&(0) has reduced strength because the energy
scales between Do and D have been eliminated. If one
defines 1()„(0) to be the creation operator normalized to
satisfy I gt (0 ), g„(0)I

=
5&&., then g„(0)=QD/Do 1()„(0).

If one replaces P„(0) by the normalized operators one
finds a hierarchy of contributions to C with powers of
QD/Do multiplying them. Since D/Do =,~ in our cal-

culations only the terms with no conduction-electron
operators will dominate. In this example, C(r, T) tends
to be & UD )H (D) which is a temperature-independent

function of r, since no impurity operators exist with
nonzero expectation value in the Kondo model (except
the identity operator). Thus, Eq. (13) provides important
intuition about the spatial and temperature dependences
of C(r, T). In fact, this expansion of C(r, T) may be
viewed as an example of operator-product expansion' in
which the expansion is dominated by the expectation
values of the most localized operators (in our case, the
operators which do not contain conduction-electron
operators). It is easy to see that higher-order contribu-
tions to perturbative scaling preserve the general form of
the expansion. This procedure will be further exemplified
in the two specific contexts in Secs. III and IV. The com-
putation of the local correlation functions in Eq. (13) also
will be discussed at length.
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(16}

and

f 'f„=f '
dep f dQ /-4m. .

C, is then obtained as a second derivative of the corre-
sponding free energy:

C, (r, T) = —8 Fi IBh, Bh
I p, =i, ,

=o,

where

13H& (Do)
F( = —k~Tln Tre

(19)

(20)

The addition of terms proportional to h and h, to the
Hamiltonian necessitates some care in the application of
perturbative scaling; we describe this in somewhat
greater detail. The effect of h acting on the conduction
electrons (we will set g, =gd =g in the subsequent calcu-
lations for simplicity) can be incorporated in the calcula-
tion by introducing different densities of states for the up-
and down-spin electrons: p&(s) which is nonzero for c. in
the interval ( Do+gh l2—,DO+gh/2) and p&(s) which is
nonvanishing in ( Do —gh l2,—Do —gh /2).

It is important at this stage to emphasize that the
Hamiltonian used in the generalized scaling equations is
tacitly assumed to be normal-ordered. Normal ordering
the Hamiltonian in Eq. (18) leads to some extra terms.
The kinetic energy g„fdip„(e)act„c,„yields
—

pog h /2 which does not contribute to the response
function under consideration. The term

Note that c
&

creates an electron with energy c,~&P

wave vector along k, and spin p', the magnitude of the
wave vector is denoted by k, where we have made the en-
ergy dependence explicit.

We generate the response function C, (r, T} by intro-
ducing auxiliary fields h and h &.

Hi (Dp ) =H~(Dp ) h (gdS& +g&s& } h is&(1') ~ (18)

f, f, c,„S(sp,;s'p')c, .„contributes
Do+ gh p

g f dip„( —e)S( —sp; —sp}
P

which, for the Kondo interaction, gives rise to
—poJO(gh)S, /2. the term proportional to h i yields
—h, (gh )po/2. This last term contributes pog /2 to C,
and corresponds to the constant Knight shift due to the
Pauli susceptibility; this is subtracted out in the expres-
sion for b,K [see Eq. (3)].

Having normal ordered the Hamiltonian carefully, we
can use the generalized recursion relations to integrate
out the up-spin hole degrees of freedom with energies be-
tween Do ——gh /2 and Do+

—gh /2 and down-spin elec-
tron degrees of freedom with energies between Do+gh l2
and Do —gh/2 to obtain a symmetric, spin-independent
density of states. This yields contributions to both 8' and
eV to order O((poJO) ). For example, 5C contains a term
gh(ln2)(poJO) ( —,

' —S, )/2 that only leads to O((poJo) )

corrections (in overall multiplicative factor) to C~ (r, T).
Since we will focus on determining the r dependence of
C, to O(pJ), we can ignore these contributions. Thus,
we reduce the Hamiltonian to

H, (DO) =H (xD )ohgS, —h—,s, (r) —h ih(gpo/2) . (21)

The term of the form poJoghS, /2 is also ignored because
we are only interested in determining the r dependence of
C, to O(pJ).

Since thermodynamic scaling theory preserves the free—D/IcB T
energy [up to terms of O(e )], we can use the
effective Hamiltonian at the reduced bandwidth D to cal-
culate C, instead of H, (Do). We have retained terms up
to O(h), O(hi), and O(h, h, ) in applying perturbative
scaling formalism, since these are sufficient to evaluate
C, [see Eqs. (18)—(20)]. We use H, (DO) as the initial
Hamiltonian and apply the recursion relations to second
order. We find that several new terms proportional to h,
h&, or hh& are generated. The general form of the
effective Hamiltonian H(D) is given by

H(D}=f f„cs,-„c,q —
—,'J(D)S g (0)og(0)+ED+

(22)

P(8e
2

+E, hh, +S,[ Uoh+ U, (r, D)h, + U2(r, D )hh, ]

+hi [K,(r,D)S,Q (0)g(0)——,'J, (r,D)f (0)cr,g(0) —
—,'K, (r,D)S, [g (r)f(0)+g (0)g(r)]

,'J„(r,D)ic "S—[—g(r)o„itj(0)—g (0)o„g(r)]——,'P (r)o.,i)'j(r)} .

A brief note on notation: Eo and E, refer to ground-
state energies. Terms that involve only impurity opera-
tors (S, ) have coefficients Uo, U, , and Uz. Couplings
denoted by K involve (impurity-spin-independent) poten-
tial scattering of conduction electrons while J's refer to
scattering which depends on conduction-electron spins.
The subscript t indicates a transfer of a conduction elec-
tron from 0 to r vice versa and the subscript x refers to
the cross-product nature of the interaction. We have ex-
plicitly separated out the dependence on h, h, , and hh, .
Except for the constant terms and J, which has dimen-

I

sions of energy, all other couplings (Uo, U, , U2, K, , . . . )

are dimensionless.
The recursion relations can be derived by straightfor-

ward, tedious algebra using Eqs. (9) and (10). In the no-
tation of the generalized impurity Hamiltonian in Eq. (8),
the operators 4 and S' are given by

'MD =Eo+( —pog/2+E, )hh, +S,( —h —U, h, —U2hh, )

(23)

and
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SD(Egp;s'g'p') = — S (T„„+K,(D)h, S'5„„J(D)
2

[J (D) z +It Szg (eikgr+e —k g'r')+iJ s3™S™(eikgr e ik—g'r') +ei(kg —k'g)rir
1 1 PP t PP X PP PP (24)

where g denotes k r and g' denotes k'. r' Substituting
Eqs. (23) and (24) to Eqs. (9) and (10) and performing spin
sums and angular integrals which lead to the r depen-
dence of the coupling constants, we obtain the recursion
relations. The reader interested in the details of the alge-
braic drudgery involved in the derivation of such recur-
sion relations may write to the authors. The coupling
constants evolve according to the following differential
equations:

(25)

PO 2J1J+JJx D+ E —D —E

(30)

As in the earlier section, we have PD =sin(kDr)/kDr,
p, =sin(k, r)/k, r, and k, =kF+sluF N.ote that it is
through the functions PD and P, that the coupling con-
stants develop r dependence. We have not displayed the
recursion relation for E1 because its explicit form will

not be needed; it is complicated and its order of magni-
tude is estimated later in this section.

dE, p()J
P(r J +

2 (4D 4 D)—

dJ-
2PO( JJ J&r }+ PuJ(da —0 D}—

dJ1D=——
—,'po(())D —

()I) D)(JJ, ——,'JK, ),

dE1D=——
—,'po((t)D+(t i) )JJ, ,

(26)

(27)

(28)

(29)

A. Response function within scaling theory

Consider integrating the second-order recursion rela-
tions from an initial bandwidth of Dp down to D where
the conditions described in the previous section, i.e.,
kFr «Dp/D and T, Tz «D are satisfied. This is, as em-
phasized earlier, within the range of validity of the per-
turbative scaling equations. None of the couplings has
grown large, but the separation of spatial and thermal
dependences is nevertheless possible. As described in
Sec. II we can keep only s-wave conduction-electron
operators because of the spherical symmetry of the origi-
nal Hamiltonian; this leads to

sin(kFr ) D
C, (r, T)=pog/2+E, + U, ((S„S,))H (D)+ I(, +E, — ((S,;S,C„(0))I(„(0}))

+ J1+
2

sin(kFr )

kFr
((S,;(Ii„(0)(-,' „'„.)(Ii„(0)))„, , (31)

where 4, defined by

%(0)=QD /D() t(0),

obeys the canonical commutation relations. Observe that
the running coupling constants U1, E1, E„J1, etc.,
themselves have r dependence, obtained from integrating
the recursion relations Eqs. (25)—(30). It is important to
emphasize that no singularities occur in the transforma-
tion relating C, (r, T) to the local response functions; in
particular, there are no singularities in the r dependent
coefficients. Thus, this expression is valid for T & Tz as
well. The logarithmic divergences that plague the pertur-
bative calculation of the response functions and correla-
tion functions (see, for example, Ref. 13) are now buried
in the local response functions which, therefore, have to
be calculated nonperturbatively.

The expression for dU) IdD [in Eq. (30)] is only accu-
rate to first order in J because the energy dependences
that are generated in second order have not been includ-

I

ed. We have identified all the second-order contributions
to dU1/dD; they can be calculated if greater quantitative
accuracy is necessary, but this involves considerable tedi-
um. Howerer, the first-order result is sufficient to deduce
the generic features of C, (r, T) and demonstrate the re-
markable accurate factorization of spatial and thermal
dependences. Higher-order corrections will only modify
the spatial dependence but will not affect the factoriza-
tion. We have estimated and shown in this particular
case that the second-order contribution is small.

Now consider the various terms on the right-hand side
of Eq. (31). We remind the readers that all opeartors that
appear in the Harniltonian and in the response or correla-
tion functions are in normal-ordered form. Because
the original Hamiltonian is particle-hole symmetric,
((S„S,C' (0}4'(0)))H (D) is zero. Even if the Hamiltoni-

K

an is not particle-hole symmetric, the contribution due to
this term is down by a factor of D/Do. We will comment
on the effects of the violation of particle-hole symmetry
later.
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As a result, the recursion relation for E, has an addition-
al factor of 1/D compared to that for U, (r, D). Conse-
quently, after integrating the recursion relations, E

&
is of

the order of

ppln(Dp/D)(ppf p ) = (1/D p )lil(Dp /D)(p(yJp )

compared to the term U, (r, D)((S„S,)) which is of the
order of pgp[1/max(T, Tz )] (see next section for this es-

timate). E, is down by roughly a factor of
p pJpm ax(T, T )r)ln(D p/D)/D p,

and is negligible. [For a
typical Kondo system, Fe in Cu, one has
T~ /D() = (1—5) X 10, ppJp = —(0. 1 —0.2); with
D/Dp-0. 01 this factor is of order 10 .] Thus, only
two terms remain:

C, (r, T) = U, ((S,;S, ))H (D)

+—J +1
1

sin(kFr )
'2

kFr
D

Do

(32)

Here, we have redefined C, (r, T) as C, (r, T) ppg/2, —
which is proportional to b,IC(r, T) with the constant
Knight shift due to the conduction electrons being sub-
tracted out [see Eq. (3).]

B. Factorization of the spatial and temperature dependences

It was argued in the previous section that the terms as-
sociated with local response (or condition) functions in-

volving conduction-electron operators can be neglected.
We verify the argument in the context of C, (r, T) by es-

timating the magnitude of two terms in the rhs of Eq.
(32) explicitly. We will show that the second term is
indeed down by a factor of D/Dp and can be neglected;
hence, we have

C, (r, T)=U, ((S„'S,))H (D) . (33)

We outline the argument below: The first term, U, (r),
can be estimated from the recursion relations and is of
the order of ppjp. It is clear that ((S„S,))H (D) is essen-

K

tially the same as the response function ((S,;S, ))H (D )

calculated with the original Hamiltonian at cut off Dp for
T «D. More explicitly, ((S,;S, ))H (D )

is proportional
K 0

to the impurity susceptibility which, in turn, has the form

f (T/TK)/T, where f (T/Tx ) is a universal function [Tk
for Hx (Dp) and that for Hz(D) are slightly different due
to the neglect of the higher-order terms in perturbative
scaling]. Thus, ((S,;S, ))H (D) is essentially the iinpurity

K

susceptibility and is of order of [1/max(T, Tk)]. Conse-
quently, the first term is of order of pgp[1/max(T, Tx )]

We will now argue that the contribution due to the
constant term E, in Eq. (31) can be ignored. To do this
we estimate the order of magnitude of E, . The depen-
dence on the field h in the term —E~ hh

&
comes from the

corresponding h dependence in the energy denominator

1/(D+h/2)=(1/D)+(h/2)(1/D ) .

C. The Wilson RG method

We introduce some of the relevant notation used in
Wilson's nonperturbative renormalization-group ap-
proach (the reader may consult Refs. 10, 14, and 15 for
details) and present an outline of the extensions required
to compute local, zero-frequency response functions and
correlation functions, some of the details being relegated
to the Appendices.

1. Discretization

Consider the Kondo Harniltonian Hz. It is convenient
to measure energies in units of the bandwidth Dp. The
energy interval from —1 to 1 is then discretized logarith-
mically: the nth interval for positive c extends from
A " ' to A ", where A) 1. Wilson then replaces the
continuous set of energy levels in each interval by single
levels and rewrites the Hamiltonian in terms of operators
that create these discrete levels. A further tridiagonaliza-
tion leads to the following form for the Hamiltonian:

(34)

where J=4(1+4 ') 'ppjp and g„ is given by

A
—n —1)(1 A

—2n —1)1/2(1 p —2n —3)1/2 (35)

whose value rapidly approaches unity for large n. We re-
call the physical interpretation of the new basis. The

If„„]create electron states with mean energy zero (i.e.,

at the Fermi level) with a spread in energy A ";the
states have a spatial extent A" (in units of kF ') around
the impurity. Note that the impurity spin only couples to
the state created by fp, while the state created by f„only
couples to those created by f„+,and f„

In order to solve the Hamiltonian in Eq. (34), we
define a sequence of Hamiltonians H(v where [H(v ] is ob-
tained from H defined in Eq. (34) by truncating the upper
limit of the summation at n =N and multiplying by a re-
scaling factor

for small r.
Now consider the second term. The coefficient is of

the order of D/Do, and, hence, if the response function
can be assumed to remain bounded as the temperature is

lowered then it can be neglected. We have calculated the
response function ((S„q/„(0)(—,)o„'„)%„(0)))H (D) using

K

Wilson's nonperturbative, numerical RG method. We
will show below that this response function is proportion-
al to ((S„S,)) and is of the order of

pPp ((S„S,)) =p pJ p[ 1 /m ax( T, T~ ) ] .

Thus, the second term is indeed a factor of D/Dp small-

er. This immediately implies factorization [Eq. (33)]; the
form of the spatial dependence will be evaluated later.
The thermal dependence is obviously proportional to the
susceptibility.
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HNI kN(ftipf++1, p+fN+], @fits) for N ~ 1 ~

This recursion relation defines the renormalization-group
transformation. Beginning with Ho, which contains the
coupling to the impurity spin, we can successively gen-
erate and diagonalize H„H2, . . . . The RG structure is
determined by the way the low-energy levels (which
determine the low-temperature behavior) evolve. ' The
truncation of the high-energy states can be performed at
each step without affecting the low-energy levels, and this
is the essence of the RG transformation.

Now we recall the basic scheme of the recursive pro-
cedure: Let ~l, N) denote the eigenstates of Hit, where
l=O, . . . , L& (l =0 represents the ground state of Htv).
Lz will be given by 2' + ' if we retain all the states.
The Hamiltonian H~+, can be diagonalized in a basis
generated from the eigenstates of Kz using the operators

fthm+». Thus, the eigenstates ~I, N+1) of HN+& and
their energies E(l,N+ 1) are determined. Now one is
ready to solve for Hz+2, and so on.

In order to make this procedure numerically feasible,
we truncate the matrices so that only low-energy states
(energy smaller than 10, for example) are retained and we
exploit various symmetries of the Hamiltonian. Since the
total charge and spin are conserved, every eigenstate of
Hti can be classified according to its value of Q, S, and

ms (the z component of the total spin) at the ¹hstage of
the iteration:

n=0
N—1

S/v
=

T P fnp+pvfnp+ Simp .
n=0

(36)

One can avoid having to keep track of m& by using
Clebsch-Gordan coefficients and working entirely in
terms of the reduced matrix elements (Q, S~~fz(~Q', S').
The energy eigenvalues will be independent of mz.

For the details of this procedure, see Appendix B in the
paper by Krishnamurthy et al. ' The corresponding de-
tails for the case when S is not conserved are given in
Appendix B of the present paper.

2. Thermodynamic quantities

It is easy to see that the sequence [H~] satisfies the fol-
lowing recursion relation:

Km+i —A ' He+Her

where

where S, is the z component of the total spin and So, is
the z component of the conduction-electron spin. The
original Hamiltonian Hz is recovered by

—1—(M —1)/2 ++
M~ oo 2

(3&)

Obviously, one cannot calculate expectation values in
the limit M~ ao directly. We can only evaluate the ex-
pression at finite values of N. Consider the problem of
evaluating y(T) at a low temperature T to a chosen accu-
racy. Given a A, we choose an appropriate small P and
an N such that p~=p. Consider M &N. We split H~
from HM and the operators Sz from S~ by separating
the set of operators [ S,fo, . . . ,fJv ] from

I fit+&, . . . , fM ]. The part of the Hamiltonian that cou-
ples Hz to HM is treated as a perturbation Hr. At zeroth
order in Hr, the susceptibility is given by

Tr [S~,exp( PH~ )]-
Ttiy(Ttv ) =

Tr exp( PH& )—
Tr[Sox,exp( PHott )]-

Tr exp( PHo& )— (39)

This can be evaluated quite accurately, if we keep all en-

ergy levels with pE&~ 10. The perturbation correction
to first order in Hr can be shown to vanish. The second-
order contribution involves matrix elements of fthm, which
are calculated and stored at each stage of the RG pro-
cedure. The details are contained in Appendix B of Ref.
14. Thus, we can compute p at a sequence of tempera-
tures determined by pz =p,

—1

T D A (N —1)I2/P—
2

to an accuracy of p/A. N defines a logarithmic tempera-
ture scale.

In practice, one cannot choose p to be very small since
we must keep all energy levels up to an energy of roughly
about 10/P to avoid large truncation errors. On the oth-
er hand, large p makes the inclusion of HJ to second or-
der in perturbation theory insufficient. The compromise
adopted in practice is to choose p to be around and small-
er than 1.

Crudely speaking, information about the many-particle
energy-level structure of Kz at energies
[2/( I+A ')]A ' "~ D is contained in the level struc-
ture of H~ at an energy scale of 1. This motivates the
definition of an inverse temperature

P =P[—'(1+A ')]D A

3. Calculation of local response functions
and correlation functions

We use calculation of the impurity susceptibility as an
example to illustrate the formalism for calculating ther-
modynamic quantities. The susceptibility is defined by

We have generalized the approach outlined above to
the calculation of local correlation functions and zero-
frequency response functions. The additional complica-
tion arises from the need to keep track of the matrix ele-
ments of operators: Consider the calculation of the corre-(37)

Tr[S, exp( PHx )] Tr[So2, ex—p( PH,)]-
Ty; (T)=

Tr exp( PHx ) Tr exp—( PH,)—
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lation function ( 3 ). At the Nth iteration we have
to keep track of the matrix elements of
( Q, S ll

A
ll
Q', S' ), in addition to the matrix elements

(Q, Sllf&llQ', S') and the eigenenergies E(Q,S).
Following the earlier discussion, we split the operator

A

y (Q,S,rl~lQ, S,r)e
Q, S, r

—PE~(Q, S, r)
e

Q, S, r

(40)

The contribution to first order in Hzl vanishes while
the second-order correction is quite complicated, particu-
larly when A does not commute with Hz. It is presented
in Appendix A.

The calculation of local zero-frequency response func-
tions is more complicated since the total spin S is no
longer conserved in the cases of interest. We need to
change some of the details of the original procedure of
Wilson. To illustrate the basic idea, we discuss the calcu-
lation of g which is the impurity susceptibility of the
Kondo Hamiltonian, if the conduction-electron g factor
is set equal to zero: g= ((S,;S, )), where S, is the z com-
ponent of the impurity spin. We have seen that the im-

purity susceptibility can also be defined as
Tg = (S„)H —(S„)H, where S„ is the total spin of the

K C

system, and H, is the conduction-electron Hamiltonian
only. This is the expression Wilson used to calculate the
impurity susceptibility.

We start with the expression

(s, &„((S„S,)) =(B(s, )H/Bh )& 0= lim
h~0

where H=H~ —hS, . When h && T, Tz, the expectation
value (S, )H is linear in h. We have verified this explicit-
ly in our numerical calculations.

The presence of the term hS, in the Hamiltonian im-
plies that the total spin S is no longer conserved and,
hence, we can only diagonalize the Hamiltonian in

(Q, ms) subspace. As a consequence, one has to diago-
nalize larger matrices than before. The details of the re-
cursive procedure and the expressions for the second-
order contribution to the response functions are given in
Appendix B.

A notable numerical fact is that the second-order con-
tribution to the susceptibility f( = ((S„S,)) ) is very
small, smaller than 1% for P as large as 1.5 (although the
second-order contribution to the partition function is not
small). In contrast, the second-order contribution cannot

AM Ax+ AM, %+1

where A~ is the part containing the operators

[fo . ~ . f~ ] and A~+, M is the part containing the
operators [f~+„.. . ,f~]. For the local correlation
functions we have considered, Az+& M =0.

We can write ( A ) to zeroth order in H~~ as

—pHN
Tr( Ae )

—f3H~
Tre

This can be shown easily as follows: Recall that g is
defined as

q= «s, +,;s,+,))„—«,;, )&„

= ((S,;S, ) +2((S,;s, ))

+(&(s,;s, )&„,—«s„,)) (42)

Here s, refers to the z component of the total
conduction-electron spin. The second term on the rhs of
Eq. (42) can be written as

((S„s,)) = — ln Tre
1

(43)

with H& =Hz —h &S hs, . As in the case for calculating

C, (r, T) [see the discussion which leads to Eq. (21)], we

normal order the Hamiltonian H„ integrate out the up-

spin hole and down-spin electron degrees of freedom with
energies between Do+gh /2 and Do —gh /2 and obtain

H, =Hr. —h &S,
—[2pgo+O((pofo) )]hS, .

This immediately leads to

((S,;s, )) =[—,'poJ +O((poJ ) )]«S„S,» .

By the same method we can show that

«s„s, »=O((pg ) )((S„S,)) .

Substituting these results into Eq. (42), we obtain Eq.
(41). At very low temperatures, we believe that this new

procedure for calculating y is more reliable because of
the smaller second-order contribution to y.

D. Results of calculation

Numerical calculations were done for poJO= —0.075,
—0. 10, and —0. 15. The corresponding Kondo tempera-
tures determined by

be neglected in the procedure used by Wilson, particular-
ly at low temperatures, even for P as small as 0.5. A
probable reason for this fortutious occurrence is that the
conduction-electron states [f„„]for n )N do not con-
tribute directly to (S, )H while they do to the total spin

ms of the many-body states in Wilson's calculation.
Because P can be taken as large as 1.5, we can keep

fewer energy states. Typically, we retained 150—270
states; 13 was taken to be 1.501, 1.308, 1.140, 0.994, and
0.867. The calculation was done for A =3 and
h =10 T~.

In order to check the validity of this method numeri-
cally, we have compared the susceptibility calculated by
this method with that obtained from Wilson's original
method and found that the differences are less than 2%
for the temperature range T/Tz = 1.0X 10+ to
1.0X10 (the calculation was done for poJO= —0. 1 and
P=0.866). In making the comparison, we relate y to f
by

X=I:I+p(A+O«poJO)')Ã .
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—i/IpoJ0I
Tg =DoV'Ipgole

are Tg/Do=4. 11X10, 1.44X10, and 4.93X10
respectively. At the reduced cutoff D =10 Do, the cor-
responding values of pof(D) calculated from second-
order scaling are pg(D) = —0. 114, —0. 185, and
—0.485.

We have calculated the response function « S,;o,(0) ))
with both Hg(Do } and Hg(D}, where o,(0)
=4'„(0}(—,'o„'„)0'„.(0} is the conduction-electron spin

density at the origin. In all cases,

«s, ;~,(0) && „-,/&&s, ;s, &&

-0.02

A -0.04A

~-0.06
Co
V
V
A
A. -0.08Co™

v -0. 1

-0.12
10 10

(A)

(c)

10
T/D

10 10

(where D =Do or D) is constant (variation with tempera-
ture smaller than 1%}for T&D/10. Therefore, at low
temperatures,

«S,;,(0})&,—,=g[poJ(D)]«S„S,»„„-,. (45)

The values of g [pg(D ) ] for two sets of values of the cou-
pling constants J(D ) (one set consists of values of the ini-
tial coupling with cutoff Do and the other set of the
values of the corresponding couplings with cutoff D ob-
tained from perturbative scaling) are given in Table I.
For comparison, we also list in the table the results from
perturbative scaling: Substituting r =0 in our result for
«S„o,(r})) in Eq. (32},we have

«s„~,(0)&&=U, (o)&&s,;s, && .

A
A -0.1

C)

-0 ~ 2
Co
V
V
A
A 0 3

Co

M

-0.4
-(b)

-0.5
10 10

(A)

(c)

10
T/D

10

U, (0) can be calculated from the recursion relations
[Eqs. (25)—(30)] and is listed in the table. We see that
perturbative scaling theory yields qualitatively correct re-
sults, i.e., (&S„'o,(0))) is proportional to «S, ;S, )) at
low temperatures (T«D). The proportionality con-
stant is also quantitatively reasonable to first order in J
(the difference between g and U, is within 10% for
pJ=0. 1). From our nonperturbative numerical results
we found that

g(pd(D })=gopoJ(D }+gi I poJ(D)]' (46)

with go=0. 65 and g, = —0.7.
In our numerical calculations, we have used A=3. Be-

cause g(pof (D ) ) is not an universal quantity, we expect it
to display stronger dependence on A than in the case of
universal quantities. We have performed calculations for
A=2. 1615 and 3.948 to check the A dependence of g.
For pP~ = —0. 1, g(poJ(D })= —0.0695 when calculated
with A=3.948 and g(poJ(D ))= —0.0727 when calculat-
ed with A =2. 616 [remember that g (pg(D ) )= —0.0718

FIG. 1. (a) The ratio of two response functions
((S„o,(0}))H Ini/((S, ;S, ))H Ioi as a function of temperature

(in units of Do }for poJ(D }=(A}—0.075, (B}—0. 10, (C} —0. 15
at D =Do. (b) The ratio of two response functions
((S„o',(0}))H ~n, /((S, ;S, ))H, n, as a function of temperature

(in units of Do) for the corresponding renormalized coupling at
D=D=DO/100 for pg(D}=(A} —0.114, (B} —0.185, (C}
—0.485.

when calculated with A=3]. We can see some variation
(smaller than S%%uo) in the range A=2. 6—4.0. However,
the fact that « Scr, ( )0)) is proportional to ((S,;S, ))
for T &D/10 holds very accurately for all the A' s. This
proportionality is another example of the operator-
product expansion alluded to in the Introduction. For
completeness we have displayed (& S„'o',(0) )) /«S„'S, ))
as a function of temperature in Fig. 1.

The proportionality of ((S,;o,(0))) to ((S,;S, )) with
a coefficient pJ to leading order justifies the neglect of the
second term in Eq. (32), which is down by an additional

TABLE I. Ratios g/p+(D }at low temperatures for two sets of couplings at D =Do and D =D, re-
spectively. The corresponding ratios Uo from perturbative scaling are also listed for comparison.

poJ(D }

g/poJ(D }
U, (0)

—0.075
—0.0525

0.700
—0.0557

Bandwidth Do

—0.10
—0.0718

0.718
—0.0767

—0.15
—0.114

0.760
—0.124

—0.114
—0.0830

0.728

Bandwidth D

—0.185
—0.145

0.784

—0.485
—0.462

0.952
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factor of D/Do. We have thus given a first-principles
proof of the factorization of the r and T dependences of
the response function which describes the extra NMR
Knight shift. The remaining term is proportional to
y=((S, ;S, )) with a coefficient U, (r) that is discussed
below. The temperature dependence arises from the
zero-frequency response function. As we have seen to
leading order in perturbation theory, g = (1 —pojo )y.

In Fig. 2, we have plotted the r dependence of U& to
first order in pJ, which is displayed below,

(47)

This r dependence of F, (r) has the Ruderman-Kittel-
Kasuya-Yosida (RKKY) form except for a change of sign
[see Ref. 17 for the justification that F, (r) represented in
Eq. (47) has RKKY form]. Because of the antiferromag-
netic interaction between the impurity spin and
conduction-electron spin density at the impurity site, the
conduction-electron spins near the impurity site tend to
be antiparallel to the impurity spin and hence F, (r) is
negative for small r. In the case of the RKKY interac-
tion, which is induced by the conduction electrons, each
impurity spin tends to be antiparallel with the
conduction-electron spins around it. Therefore, two im-
purity spins like to be parallel when they are close, and as
a consequence, the RKKY interaction [which is propor-
tional to (pP) for obvious reasons] is positive when r is
small. In short, it is not surprising that F, (r) has a
different sign from the RKKY interaction.

There are many sources of corrections that can affect
simple factorization. Particle-hole symmetry breaking
typically leads to small corrections, as it does not gen-
erate a new local response function which involves only
impurity operators; the term involving the local response
function ((S„S,)) still dominates. A similar statement
may be made in regard to spatial anisotropy of the con-
duction band. In general, we expect the factorization to
be quite robust. Even though the method we have used
above fails when the initial coupling is sufficiently large

0.004

0.002

that one cannot integrate out degrees of freedom until the
spatial dependence has been separated out, one expects
factorization to hold as long as kFrT/Do ((1. The spa-
tial dependence of Ci (which is essentially the RKKY in-

teraction), on the other hand, will depend on, for exam-
ple, the high-energy part of the band structure, spatial
anisotropy, etc. Recently Pollwein et al. ' have calculat-
ed the response function using the 1/N expansion. They
have verified factorization by calculating both the
response function and the susceptibility and showing that
they are proportional to each other at all interesting tem-
peratures. Their calculation does not provide any insight
into the mechanism for factorization. On the other hand,
their method has validity for large r in contrast to ours;
however, they have not explored the asymptotic behavior
in any detail.

IV. CALCULATION OF CORRELATION FUNCTIONS

In this section we present the results of our calculation
of the conduction-electron spin-density —impurity-spin
correlation function (S o(r)) and the conduction-
electron charge density (%„(r)%„(r)) in the spin- —,

' Kon-
do model. Using the procedure outlined earlier, it is
straightforward to carry out the calculation. We will re-
strict our discussion to presenting the basic results and
omit the details.

A. Spin-spin correlation function in the Kondo model

1. Perturbatiue scaling to separate out the spatial
and thermal dependences

In this subsection, we will discuss the conduction-
electron spin-density-impurity-spin correlation function

C, (r, T)= (S tr(r)) .

For early attempts to calculate this correlation function
within perturbation theory, see Refs. 13 and 19.

We begin with the following expression for the correla-
tion function C2(r, T) (C2 will not depend on the direc-
tion of r, because the Hamiltonian is spherically sym-
metric):

F
-0.002

C2(r, T)=— 0 F
Bh

(4g)

-0.004

-0.006

where F= —k~ T ln Tr exp[ PH(Do)] is the—free energy
of the Hamiltonian, given by

-0.008 H(Do ) =Hlr(Do ) —h S o (r) . (49)

2 3 4 5 6 7 8 9 10
kr

FIG. 2. The spatial dependence (first order in J) of the
response function ((S„u,(r))), F, (r). 'The couplings pro are
(A) —0.075, (B) —0.10, (C) —0.15.

Reducing the bandwidth from Do to D as before by in-

tegrating out the electron and hole degrees of freedom
with energies between Do and D using second-order per-
turbative scaling theory leads to the effective Hamiltoni-
an of the following form to linear order in h:
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H(D)= J sC,~„C,~„——,'J(D)[%„(0)o„„,~P„,(0)] S
E(I

—
—,'hS {J,% (0)oilI(0)+J, [% (0)crilI(r)+iP (r)oqI(0)]+qi (r)o.%(r)]

+h {K,%' (0)%(0)+K,[V (r)'l(0)+Vt(0)%'(r)]] + Uo+ U', h . (50}

The notation is similar to that used earlier. [See Sec. III
after Eq. (22).]

The recursion relations for the coupling constants can
be derived and are displayed below:

I

another specific example of the general idea described
earlier.

J
dD

dJ,D—= PoJJ,—,'PoJ(—go—+P ri ),

(51)

(52)

(53)

2. Numerical data

We have integrated the recursion relations to obtain
the r dependent coefBcients in front of the local correla-
tion functions in Eq. (57) and calculated the local correla-
tion functions using Wilson's RG method (Refs. 10, 14,
and 15) described in the previous section.

Calculation of the local correlation function

dJ& = —2POJJi poJJ, (f—o+P —gj )

—2poJKi (Po P o)—
dE,—D
dD

=
,',poJ(ka——0 c)»—-

dU& 2 & dc=—', pp 2JiJ+JJ, ~+,+ g)+
p D+c,

+J( PD 0—+0 Dk. )l—

(54)

(55)

(56)

sin(kF r)
C2(r, T) = —Ui(r)+ —Ji +2J,

sin(kFr)+
kyar Dp

X (S'4 (0)o'%(0) )H (o) . (57)

We have followed the discussion presented in Sec. III:
First, we have replaced %(r}by [sin(kFr)/kFr]%(0) as a
result of angular averaging; second, since
k, r =kF r (1+E/kF vF ) =kF r, the correlation functions
evaluated with H~(D) reduce to local correlation func-
tions; third, %(0) is replaced by t(0)=Q(DO/D)~II(0)
which is normalized. We have invoked particle-hole
symmetry to eliminate the term ( t (0)4(0) ). We will
show below that (S.@~(0)ot(0)) is of the order of
poJ(D) and, consequently, the second term is of the order
of (D/Do)poJ(D), while the first term is of the order of
pg(D). Hence, the first term dominates the second term,
and we can write

C2(r, T)= —U', (r), (58)

which is a temperature-independent function. This is yet

Recall that p, =sin(k, r )/k, r with k, =kF+s/uF
We integrate Eqs. (51)—(56) from Do down to D such

that rD/uF « 1, and T~ &&D (see Secs II and . III), and
we calculate C2(r, T) using the effective Hamiltonian at
D. This leads to

using the nonperturbative RG method is relatively simple
compared to the calculation of the response function.
We can use Wilson's original diagonalization procedure
in each subspace (Q,S,ms). The corresponding second-
order perturbation (in HNz) is worked out in Appendix
A. Again, the second-order perturbation contribution to
the local correlation function is small compared to that
for the susceptibility in Wilson s procedure. Therefore,
we take P large, and we need only keep a few energy
states to maintain good accuracy. We use A=3 and the
same set of P (P= l.501, 1.308, 1.140, 0.994, and 0.867) as
we did in calculating the response function. It turns out
to be sufhcient to retain about 120 states in this case.

We have calculated both (S o(0) )H ~o ~
with the ini-

K 0
tial Hamiltonian and (S o (0) )H ~o~ with the renormal-

K

ized Hamiltonian. We have computed this correlation
function for POJo(DO) = —0.075, —0. 1, and —0. 15, with
corresponding Kondo temperatures (in units of Do )

4.93 X 10, 1.44 X 10, and 4. 11 X 10, respectively.
D is taken to be 10 Dp. For kyar

& 10, the conditions for
D discussed in the previous sections (T, Tx «D and
kFr «Do/D) are satisfied. The result for this local
correlation is shown in Fig. 3.

From these curves, one can see that (S o(0})H ~o~K

(D =Do or D) approaches a constant very quickly when
the temperature is lowered. The crossover to a constant
occurs around T=D/10. It is clear that this constant
depends on the initial coupling, and, hence, we can write

(S o(0)) .—=c2(POJ(D)) (59)

for T &D/10. The values of c2(pg(D }) are listed in
Table II.

In Table II, we display the values for cz for two sets of
coupling constants: one is for POJO= —0. 15, —0. 10, and
—0.075 with cutoff Dp, and the other set is obtained by
integrating the recursion relations (to second-order) down
to D =Do/100, i.e., poJ(D =D)= —0.485, —0. 185, and
—0. 114, respectively. The values are calculated exactly
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FIG. 4. The spatial dependence (Srst order in J) of the corre-

lation function (S.o(r)}, F2. The coupling constants are (A)
—0.075, (B) —0.010, (C) —0.15.
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ted in Fig. 4. In these figures, we have only plotted the
first-order contribution to ( S.cr(r}), which we denote as
F,(r),

F (r)= —' dD' f, J(/DE, +p Dp) . (60)2 4 0 D
-0 ' 6

10 10
T1D

I

10
I

10

FIG. 3. (a) The local spin correlation function (S a(r) ) as a
function of temperature (in units of Do) for poJ(D)=(A)
—0.075, (B) —0. 10, (C) —0. 15 at D =DO. (b) The local spin
correlation function (S o(r) ) as a function of temperature (in
units of Do) for the corresponding renormalized coupling at
D=D =DO/100 for poJ(D)=(A) —0. 114, (B) —0. 185, (C)
—0.485.

It also has the RKKY form (apart from a minus sign) as
explained in Ref. 17. Therefore, the correlation function
(S o(r)) and the zero-frequency response function
((S,;o,(r) )) have the same spatial dependence in leading
order. However, their temperature dependences are
dramatically different.

B. Conduction electron charge density in the Kondo model

1. Perturbative scaling to separate out the spatial
and temperature dependences

using Wilson's RG method given poJ(D } (where D =Do
or D). For comparison we present cz= —UI(0) evalu-
ated using second-order scaling equations [see Eqs.
(51)—(58)]. Note that, for small poJ(D), the differences
are only about 10%. We also investigate the propor-
tionality of cz to poJ(D ). From the values in the table for
c2[poJ(D) ], we find

c21[poJ(D)]=c20+c2l poJ(D)

with c20 = —0.40 and c2& = —3.0. In this case the
second-order contributions are quite significant.

The results for (S.cr(r) ) at zero temperature are plot-

We begin with the following expression for the correla-
tion function:

C3(r, T)=(q'„(r)p„(r))H„(D )=— 8 F
A=0

(61)

where F= —ks T ln Tr exp[ PH(Do)] is t—he free energy
of the Hamiltonian given by

H(Do)=Hx(Do) —h%„(r)%„(r) . (62)

The most general effective Hamiltonian at cutoff D witnin
second-order scaling theory assumes the following form
to linear order in h:

TABLE II. Values of cz(poJ(D) ) at low temperatures for two sets of couphng at D =Do and D =D
The corresponding values from perturbative scaling are also listed for comparison.

poJ(D )

Cp

c2/poJ(D )
I

C2

—0.075
—0.0461

0.615
—0.0501

Bandwidth Do

—0.10
—0.0679

0.679
—0.0755

—0.15
—0.128

0.853
—0.167

—0.114
—0.0823

0.722

Bandwidth D

—0.185
—0.179

0.968

—0.485
—0.526

1.08
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H(D)= J eC,&„C,&„——,'J(D)[%„(0)cr„„.+„.(0)] S—
—,'hS [J,% (0)n+(0)+J, [+t(0)0+(r)+%t(r)cr+(0)]]

—h [K,% (0)%(0)+9' (r)%'(r)]+ Uo'+ U", h . (63)

The recursion relations for the coupling constants can be
derived as usual and are given below:

(64)

dJ,—D
dD

= PoJ +Po—i ~0D 0 D»-
dEi

', PoJt(N-D 0 n—»-
(65)

(66)

dJiD=——
2PoJ& PoJ~(PD+P D)— (67)

dU, =
4P0 2J1J+Jt D+ E+ —D+

We have invoked particle-hole symmetry to eliminate
the term (4 (0)4(0)). It is clear that the second term is
down by a factor of D/Do compared to the first term.
Thus, C3(r, T) is temperature independent and is simply—U", (r).

2. Numerical data and discussion

The spatial dependence of the charge density

p(r) = —U", (r)

is plotted in the Fig. 5. From the recursion relations, one
can see that the leading-order contribution to the charge

0.002

Now we calculate the charge density C3(r, T) with the
effective Hamiltonian H(D), and we obtain,

sin(kFr)
'

D
C3(r, T)= —U", (r)+ —J, +2J,

2 ' kFr D0

X (S t (0)cr+(0) )H ~D) . (69)

I

density is second order in the coupling constant poJo
which is small as shown in the figure. However, our
leading-order (second-order) result is not exact due to the
neglect of the energy dependence of the coupling con-
stants (particularly in J, ). We believe that inclusion of
the energy dependences of the coupling constants will not
change the qualitative conclusions.

Our main conclusion is that the charge density is in-

dependent of the temperature. The Kondo effect does
not show up in the conduction-electron charge density at
this level. However, for an impurity system which has a
high Kondo temperature, the above conclusion may not
be valid. In that case, D cannot be sufficiently small (but
still D ))Tz in order that the perturbative scaling be val-

id) so that the second term (temperature-dependent term)
cannot be neglected. This is the case for AlMn, and
AlCr, where the Kondo temperatures are about 530 and
1200 K, respectively. In this case, the temperature and
spatial dependences are complicated and one does not ex-
pect the factorization of the temperature and spatial
dependences.

As far as the spatial dependence is concerned, one can
see clearly the usual 2kFr oscillation. Due to the limited
range of kF r, we cannot see the power-law dependence of
the amplitude of the oscillation. In addition, because we
do not know the large-r asymptotic behavior for the Kon-
do model (our method is only valid for kFr «Do/D and
T, TK «D), we do not know if there is suppression of the
charge-density oscillation near the impurity. These to-
pics remain to be investigated. It is more interesting to
examine the charge density in the asymmetric Anderson
model and examine the charge-density oscillations. We
have done so using the same formalism, and we have
found that in various regimes (in particular, the mixed-
valence regime) the amplitude of charge-density oscilla-
tion around the impurity depends strongly on the impuri-
ty energy level cd. We also found that when the system
goes from the mixed-valence regime to the Kondo regime
as cd is varied, the corresponding charge-density varia-
tions are suppressed significantly. This will be reported
elsewhere.

-0.002

P(r)
-0.004

V. MODELS WITH HIGHER-SPIN IMPURITIES

-0.006

-0.008

-0.01

k r

10

FIG. 5. The spatial dependence of the conduction-electron
charge density p(r). The coupling constants are (A) —0.075, (B)
—0. 10, (C) —0.15.

We now comment on how the mechanism for factori-
zation that we have outlined for the spin- —,

' problem can
be carried over to more realistic models. A commonly
occurring situation is one in which the orbital angular
momentum of the impurity is zero: this is the case for Mn
impurities in Cu where Mn++ is an S-state ion with
S=—,'. The assumption of zero orbital angular momen-
tum L is also a reasonable approximation when crystal-
field effects quench L as appears to be the case for Fe in
Cu. The appropriate Hamiltonian is then given by
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PPH = —J g Sc, „™c,
m, E, C.

'
(70)

((s„s,')) /((s, ;s, )) = —", . (71)

For arbitrary S the ratio is ((S,;S, ))0/((S„S, ))o, where

( )o denotes a free-spin average. Note, however, that the
term proportional to ((S„.S,')) is accompanied by an ex-

tra factor of (pJ) in the expression for C&(r, T) since it

appears in higher order in the perturbative scaling expan-
sion. Thus, when Tz &&Do and, hence, pJ is small, the
term ((S„'S,)), which is the susceptibility, dominates.
For example, if pJ=0. 1, the term proportional to
((S„'S,)) will be of order 10% of the term proportional
to the susceptibility. Similar arguments apply for higher
spin and the scaling J ~(1/S) alluded to earlier ensures
that the other terms remain quantitatively small for small

pJ. Thus, the factorization of the Knight shift argued to
hold for the spin- —,

'
problem can be expected to be valid

for more general Hamiltonians relevant to transition met-
al impurities with calculable corrections.
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APPENDIX A: SECOND-ORDER
PERTURBATION CALCULATION OF ( A )

In the appendix, we give the second-order perturbation
formalism for calculating the average ( A ). We consider
the case that A commutes with the total spin and charge,
but not necessarily the Hamiltonian itself. We write the
total Hamiltonian as

H =HN+HB+H

where

(Al)

N

He=A' "" g A ""k.(f'g. +i„+f'+i+.„)
n=0

(A2)

p(N —1)/2
B

M —
1

A " g„(f„g„+,„+H.c. )
n =N+1

HI =A'~ (f~g~+,„+H.c. ) .

We want to calculate

(A3)

(A4)

Z =Tr exp( PH ), —

Y=Tr[ A exp( PH )] . —

We will use the following well-known identity:

(A5)

(A6)

—P(H +H )0 I 'T exp —f dkHI(k), (A7)

where T denotes ordering with respect to A, and

XHO —
A, HO

H~(A, ) =e 'Hie

The partition function can be written as

Z =Z(0)+Z(2)

(A8)

(A9)

where Z' '= Tre ' with Ho =HN+HB. Z' ' is the
second-order contribution to the partition function,
which has been calculated in Appendix F in Ref. 14. We

simply quote the result here:

Z"'/Z' '= —g ns~(k~~f~~~k') ['e ~ u(E E'), —
K7 K

(A10)

where ns =2S+1, k denotes the state (Q,s, r), i.e., the

(a)= Tr[A exp( PH)]-
Tr exp( PH)—

This involves evaluating the traces to second order in HI.
Define
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V
2

u(5E)= g
1+e

(A 1 1)
6E —c. .

J

rth state in the subspace with quantum numbers Q and

S, with energy E, and k' denotes state (Q', S', r') with

energy E'. The function u (5E) is defined by

p(5E —c . )
e

fN+1p XUjaj
J

The following is devoted to the calculation of

Y=Tr(e 1 A)= Y' '+Y' '

(A13)

Hjj = geja, „aj„,
J

(A12)

where [s., v ] are obtained from the diagonalization of
H~. where Y' ' and Y' ' are zeroth- and second-order contri-

butions, respectively. Because A does not commute with

H~, the calculation is a little bit involved. Y' ' can be
written as follows:

Y' '=Tr e e T f dj1HI(j, 1)f ,de, 'HI(A, ')A
0 0

Z(0)
y f 'd

A, f dA, '[(f"„(A,)f,(A, ') A )„(f,„(A,)f t „„(A,') )
p, v

&fNp( )fNv( )A )N&fN+1p(~)fN+1v(~ ))B] i

where ( )„and ( )s are the average in the subsPaces defined by HN and Hjj, resPectively.

(A14)

We can write

1. Evaluation of the trace involving HN

Tr[e "fN„(A)fN„(A,')A]= g g e ~ (kIIfN(&)IIk')(S', ms; —,
' plS, ms)

m m mS, S S

x(k'IIfN(A, ')IIk")(s', ms, ,', vIs"—,ms')(k"
II

A IIk), (A15)

where k, k', k" denote eigenstates of HN. IQ, S,r ), IQ', S",r'), and Q, S,r") with energies E, E', and E", respec-
tively. Because A commutes with total spin and charge operators, Ik ), Ik") lie in the same (charge, spin) subspace.
similarly, we have

Tr[e "fN„(A, )fN, (A, ')A )]= g g e ~ (kIIfN(A)IIk')(S, ms, ,',@IS,ms)—
k, k', k" ~

x (k'IIfNt(k')IIk")(s, ms', —,', vIs', ms) (k"
II

A IIk ) . (A16)

2. Trace involving H&

From Appendix F in Ref. 14, it is easy to show that
—(A, —A, ')c, .

&fN+ 1„(~)fN+1.(~') )a =&„.XU,'e
J 1+e

(A17)

—PE.
(A, —A, ')E.

&fN+1„(~)fN+1 (~ ))s ~p QUJ'e
1+e

(A18)

3. Summation over spin indices

Now, combine all equation from Eqs. (A15) to (A18), and sum over 1M, v, ms, ms. We have

Z(a) f d~f dk' 2 e ~'&kllfN'(~)llk')&k'IlfN(~')Ilk")&k"IIAllk)&sXUge
0 k k'k" 1+e

—pc.

+e 1 (kIIfN(g)IIk')(O'IIfN(A, ')IIk")(k "IIA IIk)ns gee
J 1+e

(A19)
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—(A, —A. ')c-
X gv, e

J 1+e
X & k "II W Ilk )(n, & k II&'ilk') &

k" II&'Ilk' &+n, , & k'll f„'Ilk ) & k'llfrt Ilk" & ), (A20)

where we have substituted the expressions for f(v(A, ), f(v(A, '):
Ho —

A, HO
frv(A, )=e 'free ', etc.

Changing s ~—E - in the summation over j in the second term in the bracket (M —X is taken to be odd in our calcula-
tion, consequently, vr

=v. and s, = —E, ), and extracting the common factors, we obtain

z(B) pY(2) j d)( I dg g e rrE—er.(E E—)e'r.'(E' —E )"
A o k, k'k"

4. Integration over A, , A.
'

The integration over k and A,
' can be performed easily obtaining the following expression for Y' ':

z(B) 1Y'2'= g „[e ~ u(E" E') e—~ u—(E E')j—
&«k "II~ Ilk &[ns&kllf(vllk'&&k"II&'ilk'&+ns &k'II&'ilk &&k'llfNllk" &l .

Now the second-order contribution of A can be obtained as follows:

& A ) =( Y' '+ Y' ')/(Z' '+Z' ')+higher-order terms

= Y' '/Z' '+ Y' '/Z' ' —(Y' '/Z' ')Z' '/Z' '+higher-order terms .

(A21)

(A22)

In this equation, the first term is the zeroth-order contri-
bution and the second and third terms constitute the
second-order contribution.

In the actual calculation, we tabulate u(5E) and the
corresponding derivative u'(5E) [u'(5E) is needed to
calculate those terms in the final expression for Y' ' in
which E=E")and use simple linear interpolation.

lg, m, «, I& = g+i, ms, «)~,

l g, s «, 2)~+(=tv ~(t l g ms, «) N,

l(g, ms, «, 3)rr+(=frr+(1 lg, ms+ —'

kg ms» )rr+(=frv+((far+(i lg —l, ms, «)(v .

(B2)

APPENDIX B: RG PROCEDURE
IN THE SUBSPACE (Q, ms )

1. Iterative diagonalization in the snbspace ( Q, ms )

These basis states are the eigenstates of H~ with eigenval-
ues Erv ( Q + 1,ms, «), Err ( Q, ms —

—,', «), Erv ( g, ms + —,', «),

and Err(g —l, ms «), respectively. The recursion relation
is given by

Hrv+(=A'"Hrv+4Hrvr . (B3)
When we calculate «S, ;(7,(0) )), we need to calculate

the average & o, (0) )H (see Sec. IV), where

H=H~ —hS, .

The total spin of the Hamiltonian H is no longer con-
served. Therefore, we have to diagonalize the Hamiltoni-
an in subspace (Q, ms ) instead of (Q,S,ms ). However,
the basic structure of the procedure remains the same;
thus, we follow closely Appendix 8 in Ref. 14.

Let [ ~ Q, ms, «) ) denote the eigenstates of Hrv with
charge Q and z component of spin ms. The recursive
procedure generates new states due to the addition of the
operators frv+(t and frr+(i. We define basis states of
Hrr+, that are eigenstates of Q~+, , Sz+ „as follows:

The diagonal matrix elements of Hz+ &
are given by those

of Hz, and the off-diagonal parts are given by those of
H~l. The only nonvanishing matrix elements of Hzl are
given by

& Q, ms, «', 1~H»~g, ms, «, 2

= &Q+1 ms «'l(frrt lg ms

& g, m. .., I la»lg, ms .»
=

& Q+ 1,ms, «'~ fbi ~g, ms+ —,', «),

& Q ms "' 2IH(vr lg ms «4&

g ms —l, «'If~t, lg —l, ms «&
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& Q ms r' 3IHnrr lg ms " 4&

= —(Q, ms+ ,', r—'Ifttt Ig —l, ms, r ) .

given by

Ig, ms, to) = g U& (to, r, i)Ig, ms, r, i ) . (B4)

This completes the set up of the matrix elements of HN+ &

in subspace (Q, ms). Diagonalization of this matrix gives
a set of eigenstates of HN+, which are related to the old
basis set defined in Eq. (B2) by a unitary transformation

The corresponding eigenenergy is E~+ &(Q, ms, r, i ).
Knowing U& (to, r, i}, we can calculate the matrix ele-

S
ments of fN+t in the basis formed by the eigenstates of
H~+, . It is easy to verify that

(Q, ms, tol fthm+)„Ig', msto') = g [U(2 (to, r, k)U, ,(to', r, I) U(J (to, r, 4)U, ,(to', r, k')], (B5)

where the + sign, k =2, and k'=3 are used if
~s=~s ~s+2 p= —,','the —sign, k =3, and k'=2
are used if mz=m& —

—,', p= —
—,'.

The notation is same as that in Appendix A, except we
have replaced Htt by Htv hS, — (h =R N h
= [2/( I+A ')]A' "~ h, where R)v is the rescaling fac-
tor defined in Sec. III}. Z' ' is given by

2. Second-order perturbation formalism for ( A )

z =z"'+z"'
z'"=z z, .N 8

(B6)

(B7)

I

We now simply state the result of the second-order per-
turbation calculation of ( A ) when only Q and ms but
not S are good quantum numbers [e.g. , in the case when
the Hamiltonian given by Eq. (1)] since the derivation is
completely parallel to that in Appendix A. The partition
function can be written as

Za g g I(Q ms rlftt Ig I ms p" )I
g, m, ,I rr

X u (E E')e— (Bg)

(B9)

where Y' 'is given by

Let ( A ))v denote the average value evaluated with Htt
(the zeroth-order contribution). Then, to second order in
perturbation theory, we have

Y() Z()
&A &=&A &„+

z (.8)
1Y' '= g g „[e~ u(E" E') E~ u(—E E—')](Q, ms—,r" I

A Ig, ms, r )
A g „„,„„E—E"

X [& Q ms r"Ift't„lg —I ms-)I r'&& 0 ms r ft't„l g 1 ms+i r'&-
+ & 9+1 ms+@, r'Iftv„lg ms "&&9+1 ms+@ r'IfNp IQ ms ""&] (B10)
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