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Chirality-glass and spin-glass correlations in the two-dimensional random-bond XFmodel
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The nearest-neighbor XYspin-glass model on square lattices with both Gaussian and random +Jbond
distributions has been studied by Monte Carlo simulations and the results analyzed by finite-size scaling
methods. For both bond distributions, we find a power-law divergence of the spin-glass correlation
length, g- T ', as T~O, with v= 1. The exponent g, which describes the decay of correlations at zero
temperature, is =0 for the Gaussian bond distribution, but for +Jbonds, g attains a small positive value
-0.15, implying that the ground state is highly degenerate. The chiral degrees of freedom also exhibit
glass ordering as T~O, with the chiralities ordered randomly without any spatial periodicity. The
correlation-length exponent v, corresponding to the chiral glass ordering as T~O is =2 for both kinds
of bond distribution. The different values obtained for v and v, suggest that there may be two distinct
correlation lengths associated with this zero-temperature phase transition.

I. INTRODUCTION

In recent years there has been much interest in frus-
trated planar-spin systems because of their very close
analogies with arrays of Josephson junctions in a magnet-
ic field. It was pointed out by Villain' that frustrated XY
spin systems have two kinds of symmetry: the usual con-
tinuous O(2) symmetry associated with the global rota-
tional invariance of the Hamiltonian and a discrete sym-

metry associated with the invariance of the Hamiltonian
under a reflection of the planar spins about an arbitrary
direction. This discrete symmetry is manifested through
the chiralities of the plaquettes that are flipped by the
refiection-symmetry operation (see Ref. 2, for example).
A precise definition of chirality is given below in Eq. (11)
(but see also Ref. 3). Chirality can be regarded as the
sign of the magnetic moment produced by the current
flowing around the plaquette in the Josephson-junction
analog. For an isolated frustrated plaquette, there are
two degenerate ground-state orientations for the spins.
One ground state is associated with a clockwise-spin rota-
tion as one travels around the plaquette, and the other
ground state with a counterclockwise rotation, the hand-
edness determining the chirality of the ground state.
Thus an isolated frustrated plaquette can be associated
with an Ising-like up-down symmetry.

Numerical studies ' of the fully frustrated XY model
show that it has a phase transition at a finite temperature
T, . Long-range chiral order is observed in the low-
temperature phase. The transition is most unusual in
that there seem to be two diverging correlation lengths as
T~T, . One correlation length depends on temperature
in the manner predicted for the XY ferromagnet by Kos-
terlitz and is associated with the continuous symmetry
O(2), while the other is associated with the discrete Ising
symmetry and has a temperature dependence similar to
that of the two-dimensional Ising model.

However, unlike the fully frustrated case, little is
known about the situation where there is quenched ran-

dom disorder in the system and when, instead of being
uniformly frustrated, the system is frustrated randomly
as a consequence of the disorder. In such systems Vil-
lain' has discussed the possibility of a chiral ordering of
the spin-glass type —the chiral glass. A Monte Carlo
study by Kawamura and Tanemura of the spin-glass and
chiral-glass susceptibilities for the two-dimensional +J
XY spin glass indicated that both had a power-law diver-
gence of the form y- T ~, as T~O, with the susceptibil-
ity exponent y for the spin degrees of freedom estimated
to be 1.9+0.1, while that for the chiral variables was
determined to be larger than 4.5.

In this paper we present further results of Monte Carlo
simulations on the two-dimensional XY spin glass with
short-range interactions and in the absence of any exter-
nal magnetic field. We have studied both the +J and
Gaussian distribution for the bonds. For both distribu-
tions the spin-glass susceptibility seems to diverge as
T~O. Our finite-size scaling results imply a power-law
divergence of the spin-glass correlation length g-T ' as
T~0, and we estimate the exponents v and g which de-
scribe this transition. We find that v=1.0 for both distri-
butions, a value consistent with those obtained previous-
ly. ' For the Gaussian distribution g=0, but for the +J
case, g attains a small value =0.15. This implies that the
+J case has a high ground-state degeneracy. The chiral-
glass correlations are harder to analyze as the scaling re-
gime for them seems to occur only at rather low tempera-
tures where data points from the Monte Carlo simulation
can be obtained for relatively small systems. The data
points suggest a power-law divergence of the chiral-glass
correlation length g, —T ', with v, =2.0, for both bond
distributions. This implies that, as in the uniformly frus-
trated case, the randomly frustrated XY spin glass may
have also two distinct correlation lengths simultaneously
present in the system. Again, the two correlation lengths
correspond to the continuous and chiral degrees of free-
dom, but for the randomly frustrated XY model, they are
associated with a zero-temperature transition. Kawamu-
ra and Tanemura' have recently reached the same con-
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elusion from
analysis.

a domain-wall renormalization-group

II. MODEL AND SCALING ANALYSIS

We consider the XF spin glass described by the Hamil-
tonian

P (J, )=—,
' "[5(J,"—1)+5(J;J + 1)],

known as the +J distribution, or

P ( J;~ ) = —exp( —J;J l2),1

2n.
(2)

the Gaussian distribution. Temperature is always given
in units of the root-mean-square nearest-neighbor in-
teraction.

The scaling analysis follows that given by Bhatt and
Young. ' There is only one independent static exponent
if T, =0, and the ground state is nondegenerate (aside
from states related by a continuous rotation or a
reffection). If the ground state is highly degenerate, one
more exponent, g, is needed to describe the transition.
Other exponents can be determined from these through
scaling relations. We study the spin-autocorrelation
function

q(t)= —icos[8, (tp) 8 (tp+t)]
l av

(3)

where 8;(t) is the angle of the planar spin at site i and

time t, and N is the total number of spins in the system.
Here ( ),„indicates an average over the bond distribu-

tion. Thermal averages have been replaced by time aver-

ages, as is generally done in Monte Carlo simulations.
The time to should be greater than the relaxation time of
the system. For any finite system, q(t) —+0 as taboo.
Another important quantity is the four-spin-correlation
function

&q'(t)= icos[8—, (t, )
—8, (t, +t)] '1

t av

(4)

which provides an estimate of the spin-glass susceptibility

g (cos(8; —8, ))1

171 av

in the large tlimit. Here -( ) denotes the thermal
average. iso for an L XL system has the finite-size scal-
ing form'

ysG(L, T)=L' ~f((T T, )L' "), — (6)

H= —g J; cos(8; —8 ),
(ij )

where 8, is the angle of orientation of the planar spin at
site i of a square lattice and the sum is taken over
nearest-neighbor pairs (ij ). The exchange interactions
J; are independent random variables taken from either
the distribution

in the limit t~ ~, where

q'(t) =—4 1

N4
icos[8, (tp) —8, (t, +t)] '

av

In the paramagnetic phase where L ))g, q will have a
Gaussian distribution and u =3. At T=0 the spin
configurations at two different times may differ by a glo-
bal spin rotation or belong to different degenerate states.
If rotations are the only spin changes possible,
u =((cos 8) ),„/[((cos 8) ),„] =

—,'. The degeneracy
which arises from reffections, i.e., 8, ~$—8;, for arbi-
trary P, aff'ects the value of u by an amount which de-
creases as 1/N. We define the renormalized coupling
constant

g (L, T) = —,'(3 —u ),
which will then vary from g=0 at high temperature to
g =1 at T=O, provided there is no extensive ground-state
degeneracy and N is large. The variation of g is given by
the finite-size sca1ing ansatz"

g (L, T) =g(( T —T, )L ""), (10)

where g is a scaling function. This scaling form involves
only one exponent v. Equation (10) implies that g (L, T)
at T= T, is independent of L, so that all the curves for
difFerent L should intersect at T, . For T) T„g(L,T) is
a decreasing function of L, whereas for T & T, it is an in-
creasing function of L, becoming a step function at
T= T, in the limit L ~ oo. A reliable estimate of T, can
then be obtained from the point where all the curves in-
tersect each other. Once T, is determined, v is fixed by
finding which value for it makes all the data for different
L and T best fit the scaling form given by Eq. (10). The
scaling form [Eq. (6)] for the spin-glass susceptibility can
be then used to obtain the exponent g.

For the chiral variables, we proceed in the same way as
for the spins. Chirality k is the handedness of the spins
at the corners of an elementary plaquette. At a plaquette
o., the chirality k is defined by

k =sgn g J,- sin(8, - —8 )

(ij )

where the summation is taken over a directed closed path
along the sides of the plaquette. For the ground state of a
single isolated frustrated plaquette, the chirality defined
in the above way assumes the value 1 or —1.

We define the autocorrelation function of the chiral
variables as

(6). However, since this involves three unknown parame-
ters T„g, and v, the collapse of all the data on to a single
curve is not straightforward.

It is therefore particularly useful to look at the dimen-
sionless parameter"

4'(t)

where L is the linear size of the lattice and f is the scaling
function. The exponents g and v can be determined by
collapsing the data onto the scaling form as given by Eq.

= 1r(t)=, gk (t, )k (t, +t)
a av

(12)
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where k (t) is the chirality of the plaquette o', at the time
t and the summation is over all the plaquettes.
denotes the total number of plaquettes in the system. k
behaves like pseudo-Ising spins and in the long-time limit
r (t)~ 0 because of the sampling of states in the limit
which are related by reflection and which cause the
chiralities to fiip. Higher moments of r (t), defined by

the system 8,' and 0; with the same realization of the
bonds. At any temperature the two systems are simulat-
ed in parallel for to steps and the instantaneous mutual
overlaps for both the spins and chiralities are then deter-
mined for successive zo steps. We thereby get the
replica-averaged values (denoted by the subscript r) of the
quantities q "(to) and r "(to):

r "(t)= 1

(N')" gk (t, )k (to+t)
a av

(13)

(14)

have been studied. The chiral susceptibility is then
defined as y, =N'r (t). We define the dimensionless pa-
rameter

1 '
1

q„"(t,) = —$ —$ cos[8,'(t, +r) —8', (t, +r)]
~o, ) N

1
'

1r„"(t,) = —g —gk ' (t, +r)k'(t, +r)
vo,

av

n

av

(17)

g, (L, T)= —,'(3 —
U ), (15)

which behaves similarly to g (L, T) and obeys the finite-
size scaling ansatz of Eq. (10). The transition tempera-
ture and chiral correlation-length exponent v, can then
be determined in the same way.

III. NUMERICAL METHOD

Our numerical procedures closely follow those of Bhatt
and Young. ' The time-dependent overlap q(t) and r(t)
and their higher moments are determined for planar spins
situated at the sites of an L XL square lattice. Periodic
boundary conditions are used so that N =N'. The system
is simulated for to time steps, and the overlap is then
determined by simulating the system for a further t steps.
Each time step corresponds to one Monte Carlo step per
spin. to and t should be large compared with the equili-
briation time of the. system. In practice, we make t =to
and compute q "(to) or r"(to) by taking the overlap be-
tween the toth value of the respective quantities to the
(2to+r)th value of the same and then averaging over
successive ro number of observations:

which will vary from 3 in the paramagnetic phase at high
temperature to 1 at zero temperature (in the absence of
degeneracy effects). The analog of g (L, T) for the chiral
case is

where k' (t) and k (t) are the chiralities of the plaquette
a in the two systems 1 and 2 at time t. In the case when

to is sufficiently large and the system reaches its equilibri-
um state, q "(to) or r "(to) becomes equal (within the lim-
its of statistical error) to q„"(to) and r„"(to), respectively.
Obviously, to will depend on the system size L and tem-
perature T and varied from 3000 for small L and high T
to as much as 75000 for large L and low T. We could
not go to much lower temperatures because of the
difficulties in equilibriation. For the Jbonds, the lowest
temperature that could be attained was T=0.25 for
L =6, 8, and 10 and T =0.275 for L =12 and only 0.3
for L =16. The equilibriation difficulties also restrict us
to the maximum size L =16. For the Gaussian bond dis-
tribution, the maximum size simulated was L =10, and
for the smaller system sizes, we could go to temperatures
as low as T=O. 15. To perform bond averaging, 150-300
different bond configurations were generated for each of
the distributions.

IV. RESULTS

The scaling form of g (L, T) and g, (L, T) as given in

Eq. (10) suggests that the curves for different L and T
should intersect each other at T=T, . Figures 1 and 2
show the data for g (L, T) for various values of L and for

r"(to)= —g —gk (to)k (2to+r)
~o

n

q "(to)= —g —g cos[8; (to ) —8;(2to+ r)]
&o .=)

n

av
(16)

0.8

0.6

O 4

~ L=t
L=6

v L=8
o L =10

We have varied ro from 5000 to 10000 steps, depending
on the size and temperature of the system. We have to
use bigger values of v.

o for the larger L values and the
lower temperatures T.

The value of to is chosen to remove effects due to none-
quilibriation of the system. To fix its value, we again fol-
low Bhatt and Young' and calculate the mutual overlap
between spins or chiralities from two identical copies of

0.2

OO 0.2 04 0.6 0.8

FIG. 1. Plot of g(L, T) against T for various lattice sizes for
the Jdistribution. The lines are guides to the eye.
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FIG. 2. Plot of g (L, T) against T for various lattice sizes for
the Gaussian distribution. The lines are guides to the eye.

FIG. 4. Scaling plot of g(L, T) against (T —T, )L' ", with
T, =0 and v=1.0, for the Gaussian distribution.

+J and Gaussian bond distributions, respectively. In
both the figures, curves for different L values seem to
meet each other only at T=O. This behavior is precisely
what is expected at a zero-temperature transition. In Fig.
1, for the +J bond distribution, the values of g for
different L, instead of heading toward unity, seem to at-
tain a saturation value which is less than unity and
remain constant as the temperature is lowered. Though
we could not go to very low temperature, especially for
larger system sizes, the nature of the curves in Fig. 1 is
strongly reminiscent of the behavior that is expected in
the presence of high ground-state degeneracy in the sys-
tem (see Ref. 10). This feature is absent in Fig. 2 for the
Gaussian bond distribution, where all the curves are
directed toward unity at T=O.

Scaling plots for g(L, T) against TL'~' are given in
Figs. 3 and 4 for the +J and Gaussian distributions, re-
spectively. From Eq. (10) all the data should collapse
onto the same curve if T, and v are chosen properly. We
find this occurs with T, =O and v=1.0+0.06 for both
distributions. The error bars associated with the ex-
ponent values are the estimates that demarcate the region
beyond which the quality of the collapse deteriorates,
given the statistical errors. They do not, however, allow
for any systematic errors which may occur due to correc-

tions to scaling, etc.
The spin-glass susceptibility iso(L, T) for +J and

Gaussian bond distributions are shown in Figs. 5 and 6
and their scaling plots in Figs. 7 and 8, respectively. The
susceptibility data support the scaling relation as is given
by Eq. (6) with T, =0 and v=1.0. However, for the +J
case, we find that a small value of g=0. 15+0.05 im-
proves the collapse, while for the Gaussian case the best
value is g=0. The finite value of g for the +J model in-
dicates the presence of high degeneracy in the ground
state of the model, resulting in a power-law decay of the
correlations at T=0, whereas for the Gaussian distribu-
tion there is a unique ground state (up to rotations and
reflections), and so ri should be zero.

For the chiralities we present the curves for g, (L, T) in
Figs. 9 and 10 for both bond distributions. Unlike those
for the spins, g, (1., T) remains small down to quite low
temperatures and then increases sharply. The increase of
g, (L, T) at low temperature indicates the buildup of
chiral correlations. However, as for the spin-correlation
case, we have not found any indication of a finite-
temperature transition. All the curves for g, (L, T) for
different L values seem to converge to unity only at T=0.
The curves of g, (L, T) for the +J and Gaussian distribu-
tions are very similar to one another, unlike for the spin
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FIG. 3. Scaling plot of g(L, T) against (T —T, )L' ', with

T, =0 and v= 1.0, for the +Jdistribution.
FIG. 5 Plot of ps'(L, T) against T for various lattice sizes for

the Jdistribution. The lines are guides to the eye.
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FIG. 6. Plot of ysG(L, T) against T for various lattice sizes
for the Gaussian distribution. The lines are guides to the eye.

FIG. 9. Plot of g, (L, T) against T for various lattice sizes for
the Jdistribution. The lines are guides to the eye.
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FIG. 7. Scaling plot of iso(L, T) /L ' "' against
(T—T, )L', with T, =0 v=1.0, and g=0. 15, for the +J dis-
tribution.

FIG. 10. Plot of g, (L, T) against T for various lattice sizes for
the Gaussian distribution. The lines are guides to the eye.

X (L,T)

2

024 — o

0.2—

0. 16

0.12—

0.08—

0.04—

b
4

(Gaussian )

Jk0

a L=0

L= 6

v L=8

o L =10

I

8

g (L, T)
0.6

p 4

0.2

Op
'

gk
( f

R
0.5

~ L=4
L=6

v L=8
o L=10
a L =12

L =16

~ ~ 5
IQC. i(A~ rm &hi i~i I i% i i+i s « i (

1.5 2 2.5 3 3.5

FIG. 8. Scaling plot of ysG(L, T)/L" "' against
(T—T, )L ', with T, =0, v= 1.0, and q=0.0, for the Gaussian
distribution.
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FIG. 11. Scaling plot of g, (L, T) against (T—T, )L ', with

T, =0 and v, =2.0, for the +Jdistribution.
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FIG. 12. Scaling plot of g, (L, Tj against (T—T, )L ', with

T, =0 and v, =2.0, for the Gaussian distribution.

case, indicating that the degeneracies of the ground state
for +J bonds have less consequence for g, . The scaling

f/v,
plots for g, (L, T) against TL ' are shown in Figs. 11
and 12 for the +J and Gaussian cases, respectively. We
see that the data obey the scaling relation given by Eq.
(10) with T, =O and v, =2.0+0. 15 for both bond distri-
butions. The high-temperature data show systematic de-
viations away from collapsing to a single curve, presum-
ably because these data are not in the scaling regime,
whereas for the spin plots, data at the same temperature
lay in the scaling regime. The chir al susceptibility
remains Bat down to a quite low temperature and then in-
creases sharply. The larger the system size, the sharper is
the increase of susceptibility. The scaling of the suscepti-
bility data is, however, not good, as only a few points are
found in the scaling regime.

V. CONCLUSION

We have carried out a Monte Carlo study of both the
+J and Gaussian XY spin glasses on square lattices with
nearest-neighbor interactions. Finite-size scaling analy-
ses were used to understand the results for different lat-
tice sizes from L =4 to 16. We find that the results are
consistent with a spin-glass transition only at tempera-
ture T=O. A power-law divergence of the spin-glass
correlation length g-T ' as T~O was found with
v=1.0 for both distributions, in agreement with earlier
estimates. ' For the +J distribution, the results indicate
the existence of high ground-state degeneracy leading to
a power-law decay of the correlation at T=0 described
by the exponent g, which we estimate as g=0. 15. In
fact, a large number of degenerate states have been
directly observed in a separate simulation of the +Jbond
system, where in each step of the simulation the spins
were orientated in the directions of the internal field at
their respective sites until no further change was possible.
Degeneracies have been observed for lattice sizes as large

as 20X20. However, at this stage, we do not fully under-
stand the origin of the degeneracy. The spin-glass sus-
ceptibility exponent y can be obtained through the scal-
ing relation y=(2 —g)v=1. 85, which agrees well with
the estimate of Jain and Young and Kawamura and
Tanemura.

An important aspect of our work has been the study of
the behavior of the chiral degrees of freedom. In the case
of the uniformly frustrated XY system, there are two
correlation lengths, one XY like, driven by the spins and
the other Ising like, mediated by the chiral degrees of
freedom (see Ref. 5 and references therein). We find that
in the XY spin glass, which is randomly frustrated, there
also apparently exist two length scales in the system cor-
responding to the spin and chiral degrees of freedom.
The chiralities exhibit a glass transition at zero tempera-
ture simultaneously with the spins. There is no sign of
any finite-temperature transition. However, we would
like to mention that, because of the unavailability of
very-low-temperature data, a transition at very low tern-
perature cannot be ruled out. We have found a power-
law divergence of the chiral correlation length as T~O
with an exponent v, =2.0 for both the +J and Gaussian
bond distributions. The exponent values indicate that the
spin- and chiral-glass transitions belong to different
universality classes and suggest that there are two dis-
tinct correlation lengths associated with the zero-
temperature transition in the XY spin-glass systems. Un-
like for the spin case, we do not find any indication of the
effects of ground-state degeneracy for the chiral variables.
We would like to stress that the number of low-
temperature data points in the scaling regime for the
chiral-glass correlations are rather few, and at this stage
the suggestion of two correlation lengths should really be
accepted with reservation. Kawamura and Tanemura'
have recently reported domain-wall renormalization-
group studies of chiral ordering in the J XY spin glass
in both two and three dimensions. In both dimensions
they also find evidence for the presence of two different
correlation lengths in the system, corresponding to the
spin and chira1 degrees of freedom. For two dimensions
they obtain v=1.2+0. 15 and v =2.6+0.3 which are
slightly higher than those estimated by us. However, it
should be observed that if extensive degeneracy is present
for the +J model, as we believe, then the distribution
function for the domain-wall energy would not achieve a
fixed shape, which makes the analysis for v, and v some-
what problematic. ' Kawamura and Tanemura' report
that in three dimensions there is evidence for a finite-
temperature chiral-glass transition, but with no XY spin-
glass ordering —a most intriguing situation.
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