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Antiferromagnetic Heisenberg-Ising ring in the presence of a magnetic flux:
Relevance of domain-wall dynamics

G. Gomez-Santos
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We consider a system of charged spinless fermions in a ring governed by the antiferromagnetic
Heisenberg-Ising Hamiltonian and in the presence of a magnetic flux, We find that the two broken-
symmetry ground states evolve adiabatically with increasing flux with a period corresponding to two flux

quanta, while the period of the total spectrum is one flux quantum. This behavior, already observed for
this system in the gapless regime [B. Sutherland and B. S. Shastry, Phys. Rev. Lett. 65, 1833 (1990)], is

shown to be a natural consequence of the relevant degrees of freedom involved in the low-energy physics
of this system: antiferromagnetic domain walls or solitons, with half the charge of the original particles.
A space-time approach is introduced to describe the dynamics of these objects, affording a complete to-
pological classification of space-time histories of the system. This allows a physically complete under-

standing of the ground-state-subspace evolution with increasing flux in the antiferromagnetic broken-

symmetry regime. In this case, the flux period doubling can be explained in terms of the Berry s phase
gained by the two degenerate broken-symmetry ground states upon adiabatic switching of the flux.

I. INTRODUCTION

The one-dimensional spin —, XXZ (Heisenberg-Ising)

Hamiltonian occupies an important role in many-body
physics as one of the nontrivial, highly correlated systems
for which a solution can be constructed. In spite of its
being solvable, the solution is neither technically nor
physically simple. This difficulty explains the long histo-
ry between Bethe's work, ' paving the way for solution
and obtaining information for physically relevant proper-
ties such as long-range static correlations. In fact, our
knowledge of properties such as dynamical correlations is
still incomplete. In spite of these difficulties, the low-

energy physics of this problem can be considered to be
well known, and the results are physically very in-
teresting. There is, for instance, a gapless fermion phase
with no Fermi-liquid behavior (Luttinger liquid ' ), while,
in the antiferromagnetic insulator regime, unusual kink-
like excitations' *" replace the otherwise expected tradi-
tional spin waves. From an experimental point of view,
this Hamiltonian is relevant for describing magnetic exci-
tations of quasi-one-dimensional magnetic insulator'
where very faithful representations of this model in
different regimes can be found.

In a recent paper, Sutherland and Shastry' (hereafter
referred to as SS) have studied this system in the presence
of a magnetic flux. They have shown that, in the gapless
regime, the continuous evolution with increasing flux of
low-lying states shows a flux periodicity which doubles
the spectrum periodicity. As mentioned by SS, this sug-
gests that the underlying dynamics corresponds to objects
with half the charge of the particles coupled to the flux in
the normal representation.

The purpose of this work is to provide an explanation
for the above-mentioned period doubling by identifying
the fractionally charged objects as domain walls (DW's),
or solitons, between opposite antiferromagnetic (AF)

domains. Based on a previously developed mapping of
the problem in terms of DW's, " we analyze the effect
of the flux on the DW dynamics by means of a
space-time description. This scheme allows a topological
classification of space-time histories of the system in
terms of closed DW loops. We show that the period dou-
bling is a rather general property of DW dynamics, valid
not only in the gapless regime but also in the broken-
symmetry AF regime. In this latter case, the analysis can
be pursued further to obtain the wave function with flux
from the wave function with no flux, relating the physi-
cally relevant (gauge-invariant) effect of the flux to a class
of space-time paths. Finally, in the AF regime, the
period doubling admits a simple explanation as the
different Berry's phase' acquired by both degenerate
broken-symmetry ground states (GS's) upon piercing the
flux slowly in time.

The paper is organized as follows. In Sec. II, different
representations of the Hamiltonian in the presence of
magnetic flux are described, and the mapping in terms of
DW s is reviewed, introducing the space-time picture for
their dynamics. Section III analyzes the effect of a mag-
netic flux on the DW picture and studies the flux evolu-
tion of the ground-state manifold in the AF broken-
symmetry regime. Section IV shows the period doubling
as a general feature of D% dynamics, and demonstrates
how the space-time picture can be used in the AF regime
to obtain the GS wave function with flux from that in the
absence of flux. Section V interprets the period doubling
in the AF regime as a manifestation of Berry's phase un-
der adiabatic time evolution. The work is summarized in
Sec. VI.

II. FORMAI. ISM

A. Hamiltonian in the presence of magnetic flux

The spin- —,
' XXZ Hamiltonian has the following form:
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N

hi i+1
i=1

N= g [—,
' (s; s;+, +H. c. }+b.s,-'s,'+, ],

where s are the operators corresponding to the spin- —,
'

algebra and the sum runs over N sites in a closed ring.
We restrict ourselves to an equal number of up and down
spins (N/2) and, as usual, each up-spin site can be con-
sidered as a particle (hard-core boson or Wigner-Jordan
fermion ) in a background (vacuum) of down-spin sites.
In this particle representation, the first term in % models
the hopping of particles between nearest-neighbor sites,
while the last term represents, apart from a trivial addi-
tive constant, the interaction between nearest-neighbor
particles.

If we pierce a flux 4 through the ring, each particle
(unit charge) picks up a phase Ct upon completing a loop
around the lattice. The effect of this flux can be account-
ed for by either appropriate boundary conditions or by
suitable modification of the hopping term. Adopting the
latter procedure, the presence of the flux modifies the
original Hamiltonian in the following way:

N —1

gf', (4)= g h, , +,+ ,'(e' sN s—, +H. c. )+b,sNS;, (2)

Another useful gauge representation (gauge 3) is the
following:

N —2

&3(N)= g h;;+1+ 2(e' sN tsN +H. c. )

+~SN —1SN+ (e SN $1 +H. c. )

+ESN$1 (4)

where the total flux has been evenly distributed between
two adjacent bonds. Gauge transformations relating
equivalent Hamiltonians can be thought of as local rota-
tions around the z axis in Eq. (1), such that the total rota-
tion moving along the ring equals the flux. The 2~
periodicity of the spectrum with flux, as is evident from

where the ring geometry amounts to imposing periodic
boundary conditions. The Bethe-ansatz solution of
%,(4) can be shown to be completely equivalent to the
treatment of SS.

There are, in fact, infinitely many gauge-equivalent
Hamiltonians for a fixed flux 4, reflecting the fact that
what matters is the total flux picked up in a closed loop
around the lattice, irrespective of the particular amount
gained in every elementary hopping event. In &, all the
flux is gained in the bond between sites N and 1. We call
this %, the gauge-1 representation. If, for instance, we
distribute the flux homogeneously through the lattice, we
arrive at the following gauge-equivalent, translational-
invariant version of the problem (the gauge-2 representa-
tion):

N N

&z(C&)= —,
' g (e' s;+s;+, +H. c. }+6,g s,'s +, . (3)

&1, corresponds to the particular values of Aux that can
be accommodated without discontinuities in this process
of local rotations.

B. Antiferromagaetic domain walls or solitons

Following previous suggestions, it has been shown that
the relevant degrees of freedom controlling the low-

energy physics of this problem are DW's between oppo-
site AF domains. This was done by performing an exact
mapping" of the original & in terms of these DW's and
showing that an approximate solution of the resulting
Harniltonian reproduces the basic features of the known
exact solution, providing a clear physical image of the
physics involved.

The mapping of & [Eq. (1)] in terms of DW's can be
summarized as follows (for details see Ref. 11). There are
t;wo degrees of freedom per site and, correspondingly,
two degrees of freedom per nearest-neighbor bond.
These two bond degrees of freedom correspond to either
antiferromagnetic (t 1 or $1) or ferromagnetic (11 or J, 1)
alignment of the sites defining the bond. If we associate a
spin- —,

' algebra (cr ) to each bond, with the up degree of
freedom corresponding to ferromagnetic-bond status and
the down degree of freedom to antiferromagnetic-bond
status, each ferromagnetic bond can be viewed as a DW
or soliton between opposite AF domains. The Hamiltoni-
an in this representation is

~DW ~even +~odd +~constraint &

where

g (o,+o, +~+o,+a,++2+H. c. )+—Q o', ,
i even i even

i%odd= —,
' g (cr,+o, +2+o,+o,++2+H c )+

2 g. .cr;',
i odd i odd

and

constraint 2 X (Oi+I

( t+ 1&i+1 oi loi~+—1+H c' ) '—
Notice that the index i runs over bonds (not sites), and
only alternate bonds are coupled in &,„,„dd. This means
that the bonds are divided into even and odd sublattices,
the action of the Hamiltonian being the same within each
sublattice. &Dw represents a system of solitons (fer-
romagnetic bonds) being created and annihilated (in
pairs} and hopping within each sublattice in a back-
ground of AF bonds (vacuum), plus a static contribution
measuring the energy associated with the number of soli-
tons. &,„,„,dd are, in fact, the well-known, exactly solv-
able and physically interesting Ising+ transverse-field
model, ' ' the one-dimensional (1D) quantum version of
the classical 2D Ising model at finite temperature.
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lCNS2&=lt l1g1 (10)

Path 2 represents a local quantum fluctuation of one of
the two vacua. There is no continuous deformation be-
tween both classes of paths, whereof their being called to-
pologically inequivalent. Within each class, a further dis-
tinction can be made according to whether the path runs
within the even or odd bond sublattices.

The physical image of the low-energy physics of % in
the AF regime (b ) 1) afforded by the previous mapping
is very clear. There are two degenerate, broken-
symmetry ground states [quantum Neel (QN) states
~QNS1 &, ~QNS2 &], which can be thought of as the quan-
tum renormalized version of the corresponding classical
Neel states:

QNS1 &
=

~

CNS1 & +quantum fluctuations,

~QNS2&=~CNS2&+quantum fluctuations . (12)

The many-body nature of this problem manifests itself
in the contribution %„„,«„„„which couples DW s in
different sublattices. This term can be interpreted as a
geometrical constraint which forbids world lines (in the
space-time image to follow) of solitons in different sublat-
tices to cross each other. "

A useful picture of DW dynamics can be obtained in a
space-time diagram which, in our ring geometry, be-
comes a space-time cylinder. A DW moving in the vacu-
um, classical Neel (CN) state, is represented by a world-
line on the surface of the space-time cylinder. This world
line separates domains with opposite AF order. There
are only two types of topologically different closed
soliton-antisoliton loops in space time, described as path
1 and path 2 in Fig. 1. Path 1 represents a particular
space-time history of the system, interpolating between
the two vacua of this problem: the two opposite classical
Neel states, ~CNS1 & and ~CNS2&,

ICNS1& = ill 1 1 l

These quantum fluctuations can be interpreted as the
dressing of the CN states with virtual (bound) soliton-
antisoliton pairs (path 2 in Fig. 1). This dressing does not
destroy long-range order but renormalizes the CN states
providing a finite correlation length (g) for the fluctua-
tions of the order parameter. This correlation length can
be viewed as the characteristic spatial size of the quan-
tum fluctuation created by the soliton-antisoliton type-2
closed loop.

There is a gap between the GS's and excitations. These
are (massive) free domain walls (though dressed with
soliton-antisoliton pairs) running through the lattice.
The number of these excitations is always even due to
periodic boundary conditions, but they behave as in-
dependent entities (no binding).

The existence of two degenerate GS's (~QNS1& and

~QNS2&) is valid in the limit of an infinite ring or, for a
finite ring, in the presence of the appropriate staggered
fields. For a large, but finite, ring without staggered field,
the true GS is known to be nondegenerate. This means
that the two broken-symmetry QN states are coupled,
whereof their splitting in energy. This coupling can be
visualized as the probability amplitude for these QN
states reaching each other upon application of the Hamil-
tonian. In our space-time picture, this coupling is
identified as the probability of having an odd number of
closed soliton loops of type 1 in the space-time cylinder
between the two QN states. This coupling can be
thought of as a quantum fluctuation in which a soliton-
antisoliton pair delocalizes and runs through the lattice
to merge again upon completing a cycle. It is immediate-
ly obvious that the existence of a gap for the creation of
free (massive) solitons implies that such an event has a
probability decreasing exponentially with size in the form
exp( N/g), wher—e g is the correlation length for fluctua-
tions in the GS. It is also clear that, for large lattices, the
events picturing this probability amplitude are those with
a single closed loop of type 1 (contributions from paths
with 3,5,7, . . . loops are exponentially small corrections
to the probability amplitude of one loop).

Therefore, the effective Hamiltonian describing the
coupling between the states ~QNS1 & and ~QNS2 & is given
a 2X2 matrix of the form

Eo

V Eo (13)

where Eo represents the energy of the two QN states and
V their coupling. This V is exponentially small
[exp( N/g)], and cor—responds to paths between QN
states with a single type-1 loop. Taking into account the
two-sublattice nature of the domain-wall Hamiltonian,
this V can be further decomposed according to whether
the path follows the even or odd sublattice:

Veven + Vodd (14)

FIG. 1. Topological classification of closed space-time soli-
ton loops. Each line represents a soliton world line moving in
the background of a classical Neel state. The shown history in-
terpolates between the two classical Neel states. The discrete
nature of the lattice is not explicit.

where, on symmetry grounds, V„,„=V,dd.
In analogy with the electron-phonon problem, one can

consider the 2X2 matrix describing the ground-state
manifold as the effective Hamiltonian controlling the
slow degrees of freedom (interplay between the two QN
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states) once the fast degrees of freedom (dressing of CN
states with quantum fluctuations) have been integrated
out. In our case, the existence of long-range AF order
guarantees that such a decoupling between slow and fast
degrees of freedom becomes asymptotically exact in the
limit of large lattices.

—29.98305
q

—29.98315—

III. DOMAIN WALLS IN THE PRESENCE OF FLUX

Eo

V o (&0/2)

V cos(@/2)

Changing the gauge representation modifies this matrix
in a trivial way. Thus, for instance,

Eo

V(1+e ' )/2

V(1+e' )/2
(16)

The presence of a flux through the ring modifies trivial-
ly the DW Hamiltonian in those terms involving soliton
dynamics. Assuming, for instance the gauge-2 represen-
tation, creation of a pair of solitons (a,+a,++&) adds a
phase (e' ~ ). Motion to the right of the right soliton
and to the left of the left soliton adds the same phase.
Motion in the reverse sense changes the sign of the phase
(e ' ~ ). Finally, annihilation (cr, , o, +z) of a pair of
solitons (restoring the original vacuum) changes the sign
of the creation phase. This is true for action in a given
sublattice. The corresponding actions in the other sublat-
tice have opposite signs in the phase. The rule for motion
of solitons defined with respect to the opposite vacuum
and for other gauge representations can be inferred
straightforwardly. In general, to get the phase of an ele-
rnentary event involving DW's, it suffices to remember
that, in the spin picture of &, any event is always the in-
terchange of two nearest-neighbor up and down spins,
from where the phase to be picked up is obvious.

The effect of the flux on the closed paths of Fig. 1 is
very simple. Assuming the gauge-2 representation for
simplicity, the total phase picked in a type-1 loop is
e+—' ~, corresponding to half the total flux (the sign de-
pending on the path sublattice). This reflects the fact
that, for each sublattice, only N/2 elementary events are
required to complete a cycle. In this sense, we can think
of a DW or soliton as a particle with half the charge of an
up spin in the original representation. This phase is not
gauge invariant, but any gauge transformation amounts
to merely adding a constant phase to all type-1 paths, ir-
respective of sublat tice.

The phase associated with a type-2 closed loop is zero,
irrespective of the sublattice involved and gauge invari-
ant. Therefore, the probability amplitude of this class of
paths is the same whether the flux is present or not.

We can now analyze the evolution with flux of the two
quasidegenerate ground states, ~QNS1) and ~QNS2), of
the AF regime (b ) 1). It suffices to realize that a single
type-1 loop gets opposite phase in different sublattices
(gauge 2) and the effective coupling now becomes
V cos(4/2). Therefore, the matrix describing the
ground-state manifold in the gauge-2 representation is

-29.98325—

-29.98335
0.0000

I

6.2832

FIG. 2. Energy of the two quasidegenerate ground states vs

total Aux from the exact solution of Bethe-ansatz equations for
5=1.5 and N =202 sites.

and

&3(4)=&~(4) . (17)

These equivalent matrices imply that the splitting be-
tween both quasidegenerate GS's has a cosinelike form
with increasing flux, with a periodicity corresponding to
4' (two flux quanta). This periodicity is exactly that
found by SS in their analysis of this problem in the gap-
less regime (5 1). We show here that it is also valid in
the AF regime, and that it is driven by the nature of the
dynamical objects: DW's.

To substantiate the validity of a11 these arguments, we
have solved the exact Bethe-ansatz equations for this
Hamiltonian in the presence of a total flux using a
gauge-2 representation. The results for the energy of
the quasidegenerate GS's versus flux are shown in Fig. 2,
where the behavior corresponding to the diagonalization
of the previous equivalent 2 X 2 matrices is evident.

It is important to stress that the reasoning leading to
this result is completely rigorous and valid for large
enough lattices in the phase with AF long-range order.
All that is required is a large enough lattice to ensure that
the dominant contribution to the coupling between
quasidegenerate QN states can be represented by a single
type-1 closed loop whose size, therefore, scales with the
ring size, implying an exponentially small coupling. The
size for which the cosinelike form of the splitting sets in
depends (exponentially) on the lattice size, measured in
units of the correlation length g. This can be seen by
comparing Figs. 2 and 3. Notice that the value of 6, the
same in both figures, is close to the transition point
(b, = 1) where the correlation length diverges. Therefore,
very large sizes are required to change the splitting curve
from a distorted parabolic form to the correct cosinelike
asymptotic result. It is interesting to observe that,
though the curve changes from a perfect cosinelike form
upon decreasing the lattice size, the periodicity of the
continuously evolved GS's does not change. This indi-
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v~ —1.40

—1.50

+
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—1.60
0.0000

I

6.2832

FIG. 3. Same as in Fig. 2 for N=14sites.

cates that the existence of long-range order is not related
to the appearance of this periodicity, as is evident from
the results of SS obtained in the critical regime. Indeed,
we will show that this doubling of the spectrum periodici-
ty is a natural feature of events involving DW's or soli-
tons.

IV. FLUX PERIODICITY OF TIME EVOLUTION:
WAVE-FUNCTION RIGIDITY

In this section we will consider the flux dependence of
the probability amplitude for the time evolution between
a classical Neel state (~CNS1), for instance) and an arbi-
trary state

~
4 ) specified by its particular arrangement

of DW s. For any time t, this probability is
(0'~e " ~CNS1). Upon Trotter-Suzuki cutting to the
desired degree of accuracy, this probability can be inter-
preted as the weighted sum of space-time histories of the
system between both states. Given a particular history,
the weight of such a path with flux is the weight without
flux but multiplied by e', where L9 is a path-dependent
phase. We can classify all paths connecting both states
according to this phase in the following manner.

Each path can be considered as part of a path which
begins at ~CNS1) and ends at ~CNS2) passing through
~%). If we fix the trajectory between ~%') and ~CNS2)
(the same for all paths going between them), it is clear
that the global phase between both CN states is that cor-
responding to an odd number of type-1 closed loops. As-
suming gauge-2 representation for simplicity, this means
that

0=O„f+m 4/2,
where m =+1,+3, . . . and O„f is a reference phase
picked up in the fixed path between ~'0) and ~CNS2).
This classification is topological: once the closing refer-
ence path has been fixed, paths belonging to classes with
different m's cannot be continuously deformed into each
other. Changing m implies modification of the number of
closed type-1 loops. The periodicity of this classification
is that of the closed type-1 loops: the representative path

(QNS1) e '~~CNS1) . (19)

The above procedure is known to produce the true GS
(equally weighted combination of both QN states). If we
want to make sure that only one QN state is developed,
we simply ignore paths that connect both CN states.
This can be done in the following way. We select all
paths implied by Eq. (19) for which we can draw a
straight line along the (imaginary) time axis in the space-
time cylinder such that each soliton world line crosses
this line an even number of times. This guarantees that
no closed type-1 loop is in the intermediate region be-
tween the corresponding CN state and the final state.

of the class with given m changes its phase by 2m. when
the total flux changes by 4m.

One can get rid of possible gauge-dependent effects in
the periodicity choosing, for instance, the gauge-3 repre-
sentation where only the physical flux appears explicitly
in the phase corresponding to any path between ~CNS1)
and ~%). Then, the previous construction guarantees
that 0„& is an integer number of times 4/2. Therefore,
the physical periodicity of the phase (gauge independent)
is that of the classification of paths: two flux quanta.
This means that the probability amplitude for the time
evolution between a classical Neel state and an arbitrary
state will repeat itself every two flux quanta. Adding
states with appropriate coefficients, things can be ar-
ranged such that cancellations manifest as a larger period
(this is the case for the adiabatic evolution of the ground
state of the XY model), but the key point is that the
periodicity of the spectrum is not the periodicity of the
time evolution as a consequence of DW dynamics.

It is important to stress that the difference between the
spectrum periodicity and the time evolution periodicity
with flux is a real property, not related to a particular
gauge representation. In other words, there is no gauge
transformation that could render the time evolution flux
periodicity and the spectrum flux periodicity to the same
value 2m. To see this, it suffices to realize that, for a
change of flux corresponding to the spectrum periodicity
2m. , the relative sign of the phase corresponding to paths
reaching a state from both classical Neel states reverses.
This means that such a change is not reducible to a global
phase and, therefore, cannot be gauged away.

The previous construction makes natural the appear-
ance of the 4~ periodicity observed in the adiabatic evo-
lution of the ground state, but does not tell us how to
construct the wave function with flux in terms of that
with no flux. In the remaining part of this section, we
will show that we can accomplish this task in the AF or-
dered region (b, & I) by means of our space-time image.

According to the previous discussion, the GS's are (in
gauge-2 representation) the even and odd combination of
both QN states Isee Eq. (15)]. While we have analyzed
the fiux dependence of the coupling between these QN
states in terms of single space-time type-1 loops, nothing
has been said about changes of the wave function of each
QN state with increasing fiux. This wave function can be
obtained as follows. We can imagine that we generate the
QN state evolving the corresponding CN state in imagi-
nary time ~:
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This construction is equivalent to selecting those paths
with a fixed m in the classification of Eq. (18). It is im-
portant to emphasize that the apparent constraint in
selecting paths is harmless to the final result. What we
are doing is constructing from the corresponding CN
states the QN states in the diagonal entries of the 2X2
matrix of Eq. (15), or, in other words, integrating the fast
degrees of freedom of one of the two broken-symmetry
ground states independent of the opposite ground state.
The paths describing the interplay between both GS's are
taken care of by the off-diagonal entries of matrix (15) al-
ready considered.

The important point of this construction is that the
effect of the Aux is now very easy: all the paths so con-
structed connecting a CN state with a given state acquire
the same (gauge-dependent) phase in the presence of a
flux. Therefore, the coefficient of a given state in a QN
wave function with Aux is that obtained in the absence of
Aux, but multiplied by a unit complex number whose
phase only depends on this state. Therefore, the recipe to
construct explicitly both GS's in gauge-2 representation
is the following:

~GS) =iQNS1(4))+ QNS2(4)), (20)

where the QN states are modified with flux in a trivial
way: just attach to the coefficient of a given
configuration the well-defined phase shared by all paths
connecting it to the corresponding CN state. We name
this path-independent phase the canonical phase, and call
this property of the wave-function rigidity.

This rigidity of the GS wave functions in the AF re-
gime can be readily verified from the exact solution of the
Bethe-ansatz equations for a gauge-2 representation. If

we calculate the ratio of the coefficients with which a par-
ticular state appears in the Bethe-ansatz solution for the
GS wave function with and without Aux, in the limit of
large lattice sizes, this ratio should be a unit complex
number whose phase is the canonical phase of the state
under consideration. (The global phase of the wave func-
tion is always fixed such that the coefficient of the refer-
ence CN state is 1). If, for instance, one takes the state
obtained from a classical Neel state by just one elementa-
ry event (intercharge of two adjacent opposite spins), the
canonical phase is, obviously, e —' . In Fig. 4 we show
as a function of lattice size, ' the (normalized by N
difference between the (Bethe ansatz) calculated phase of
the above-mentioned ratio of coefficients and the canoni-
cal phase for the state described above, for a total Aux
4=2~. We see that this value approaches zero exponen-
tially with size, as is expected from our previous analysis.
The same exponential approach to unity can be obtained
for the modulus of this ratio. This rigidity of the wave
function appears immediately if one does perturbation
theory around the CN states. It should be emphasized,
however, that this property is exact in a11 the range of pa-
rameters for which there is AF long-range order and not
a feature of perturbation theory. Indeed, the absolute
value of the coefficient of the described state is very
different from the lowest-order perturbation result
around the corresponding CN state for the value of 6 of
Fig. 4, yet the phase is the same irrespective of the value
of 5, depending only on the total flux through the ring (in
the gauge-2 representation). Of course, the lattice size
necessary to observe the canonical phase depends on the
correlation length of the GS, as can be seen by comparing
Figs. 4. and 5 for different values of h. In Fig. 5, a small-
er value of 5 implies a larger correlation length, and,
therefore, a slower convergence towards the canonical
phase with increasing lattice sizes.

This rigidity of the wave function of a QN state is
nothing but a gauge transformation. This means that,

2.00—

0.00
0.00

I

10,00
I

I
I

20.00

FIG. 4. Exponential approach to the canonical phase (see
text) of the coeScient of the state with a soliton-antisoliton pair
(at minimum distance) in the background of a perfect Neel state
vs lattice size. Asterisks: Bethe-ansatz exact solution (gauge 2)
for 6=5. Solid line: exponential fit. The total Aux through the
lattice is 2'.

0.00
0.00 10 00

FIG. 5. Same as in Fig. 4 for 6=2.

I

20.00
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within each QN state, the effect of the flux can be gauged
away so that physical (gauge-invariant) properties do not
change with flux. This explains, for instance, why the
only change in energy upon increasing the flux depends
on the off'-diagonal coupling between QN states. In prin-
ciple, we could have expected the diagonal term to de-
pend on 4 (as does the QN wave function). Now we un-
derstand why it does not: within each QN state, the
effect of the flux can be gauged away and the energy
(gauged-independent property) remains the same as in the
absence of flux. Therefore, the only change in energy is
due to the coupling between QN states, described pictori-
ally by type-1 closed loops. This coupling, though gauge
dependent, is not gauge removable. Of course, the energy
splitting this coupling gives rise to is gauge independent.

The situation previously described admits a simple pic-
torial interpretation. The typical fluctuation of the CN
state is a type-2 closed loop whose phase is zero, there-
fore, flux independent. Only the interplay between both
QN states will be affected by the flux in the manner dic-
tated upon identifying this coupling with type-1 closed
loops. In other words, to see the effect of the flux, one
has to make sure that the dynamical objects complete a
cycle around the lattice.

U. BERRY'S PHASE

In this section we show how the period doubling can be
interpreted in terms of Berry's phase of adiabatic evolu-
tion. ' So far, we have used the word adiabatic as
synonym of continuous in the flux-dependent properties
of the GS's. Now we give a truly dynamical meaning to
it. We imagine that a flux is slowly pierced through the
ring and see the system evolve in time. In the AF or-
dered regime, if we start with the true GS and pass a flux
4=2m slowly in time, we end up in the other quasidegen-
erate GS with an additional exponentially small increase
in energy (the crossing taking place at 4=m does not
affect the adiabatic theorem because there is a conserved
quantity, crystalline momentum in the gauge-2 represen-
tation, which guarantees continuity). This is the dynami-
cal content of the adiabatic theorem.

We can state this adiabatic theorem in terms of QN
states. If we start with a QN state, the time scale for the
Rabi oscillations [see Eq. (15)] between QN states is given
by e &. This means that we can always choose a large
enough lattice size such that, to the desired accuracy,
starting with a QN state, its wave function evolves with
time such that, at each time, this wave function is the QN
state wave function corresponding to the instantaneous
flux passed through the ring. In other words, the ex-
istence of a gap implies that a QN state is robust versus
adiabatic changes of flux provided we do not wait long
enough so as to see the effect of the slow degrees of free-
dom (Rabi oscillations between both QN states). But this
result leads to an apparent puzzle if one uses a gauge-1
representation. In that case, the effective coupling be-
tween QN states has the form of the matrix (16), and this
means that the true ground state changes upon adiabatic
fluxing from being the even combination of QN states at
4=0 to the odd one at @=2m.. Yet, in terms of QN

states, and in this gauge representation, the wave iunc-
tion of each QN state has a flux period of 2n T. herefore,
while the true GS has a flux period of 4~ for adiabatic
time evolution, the wave functions for each QN state
making the true GS show a flux period of 2m. for the same
time adiabatic evolution. How does this come abouts

The answer is the following. If we let the QN states
evolve in time between 4=0 and @=2m., within the
specified conditions for adiabaticity and using the
effective Hamiltonian &,(4), we get the following re-
sults:

~QNSI( r)) =e """e ""' ""~QNS1(0))

+exponentially small corrections,

~ QNS2( r ) ) —e Be ye dynamical
~
QNS2( () ) )

+exponentially small corrections,

(21)

(22)

where t is the time corresponding to @=2m. We see that,
after completing a cycle in parameter space (flux from
zero to @=2m), each QN state returns to the original
state with a global phase, in agreement with the adiabatic
theorem. This phase has a rapidly varying dynamical
part, pd„„, ;„i, the same for both states, and a geometri-
cal (time-independent) contribution, different for each
QN state, and such that, upon increasing the flux by 2n.,
then

Y'Berry Y'Berry (23)

This geometrical phase is nothing but Berry's phase'
and, in this case, it is responsible for reconciling the flux
periodicity of 4n. of the true GS's with a flux periodicity
of 2' for the QN states under real slow time evolution.
In our case, we can even associate a space-time picture to
the origin of this phase: closed type-1 soliton-antisoliton
paths. If we artificially remove the contribution of these
paths, the flux periodicity of the wave function (for
gauge-1 representation) for real slow time evolution coin-
cides with that of the spectrum (2yr).

VI. SUMMARY

We have studied the spin-2 XXZ Hamiltonian in a ring
with a magnetic flux through it. We have found that, in
the AF regime, the two GS's evolve continuously upon
increasing the flux with a periodicity twice the spectrum
periodicity. This result already shown by SS in the gap-
less regime, suggests that the underlying dynamics corre-
sponds to objects with half the charge of the particles of
the original representation. These objects have been
identified as kinks or domain walls between opposite AF
domains. Using a mapping previously introduced to de-
scribe this Hamiltonian in terms of these objects, the
effect of the flux has been incorporated and given a sim-
ple geometrical interpretation with a path-integral
space-time diagram. This approach allows a complete
classification of space-time paths in terms of the number
of soliton-antisoliton closed loops around the ring. This
classification explains the observed doubling of the flux
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spectrum periodicity as a general property of the dynam-
ics of this problem, in the sense that it is the natural Aux

periodicity for the matrix element of the time evolution
operator between any two states. In the AF long-range-
ordered regime, this scheme shows that, for su%ciently
large rings, the physical effect of the Aux manifests itself
only in the relative coupling of the two degenerate
broken-symmetry QN states. Within each QN state, the
wave function is rigid in the presence of Aux: its effect of
Aux amounts to a gauge transformation and it can be re-
moved by a suitable choice of gauge, leaving physical
(gauge-invarianti properties unchanged within each QN

state. Finally, in the AF region, the doubling of the Aux

periodicity has been given a dynamical meaning. It arises
as a consequence of the different Berry's phase developed
by both QN states as the total flux through the ring in-
creases slowly with time. Again, the space-time paths re-
sponsible for this Berry's phase have been identified as
closed soliton-antisoliton loops around the lattice.
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