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Domain growth in binary mixtures at low temperatures
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We have studied domain growth during spinodal decomposition at low temperatures. We have per-
formed a numerical integration of the deterministic time-dependent Ginzburg-Landau equation with a
variable, concentration-dependent diffusion coefficient. The form of the pair-correlation function and
the structure function are independent of temperature but the dynamics is slower at low temperature. A
crossover between interfacial diffusion and bulk diffusion mechanisms is observed in the behavior of the
characteristic domain size. This effect is explained theoretically in terms of an equation of motion for
the interface.

I. INTRODUCTION

Domain growth during phase separation is an interest-
ing pattern formation phenomenon. ' This situation ap-
pears, for example, in spinodal decomposition. In this
case, a system that is initially in a homogeneous phase is
suddenly quenched inside the coexistence region. Then,
the homogeneous phase becomes unstable and it evolves
spontaneously by generating domains of the new equilib-
rium phases. At a late stage, the evolution of the pattern
can be described by the relaxational motion of the convo-
luted interface separating the domains. Examples of
these dynamic processes have been studied experimental-
ly in binary mixtures, like binary liquids and alloys.

From the theoretical point of view, apart from micro-
scopic models, these processes have been described by
time-dependent Ginzburg-Landau equations for the con-
centration, a conserved order parameter. Recently, some
attention has been focused on the modification of these
equations by considering a concentration-dependent
diffusion coefficient instead of the usual assumption of
constant diffusion. " First, Langer and Kitahara and
Imada have pointed out that this modification is neces-
sary for a correct modeling of a deep quench. More re-
cently, Kitahara et al. and Jasnow have also comment-
ed on the necessity of this assumption if the effect of
external fields, like gravity, is to be taken into account.
They have studied the effects of a gravitational field on
the dynamics of spinodal decomposition by using a cell
model. Puri and Oono have briefly commented on the
implications of this assumption on the growth laws in spi-
nodal decomposition. Ohta and Shiwa have derived in-
terfacial equations without and with external field, re-
spectively. Furthermore, from the point of view of fluc-
tuations, the generalization of the assumption on the
diffusion coefficient opens interesting possibilities and
raises questions regarding the role of noise and the way in
which it has to be introduced into the equations. In gen-

eral, the derivations of modified stochastic Ginzburg-
Landau equations from more mesoscopic models, like
master equations, give as a result the presence of multi-
plicative noise. In the small-noise limit, a mesoscopic
derivation of macroscopic equations and equations for
fluctuations with additive noise has been obtained; Be-
fore we study the effect of fluctuations in these systems, it
is essential to understand the deterministic domain
growth and the mechanisms involved in it.

In this paper we concentrate on the effects of a
concentration-dependent diffusion coefficient on the
deterministic dynamics of spinodal decomposition, as a
modeling of deep quench. We present results from a nu-
merical integration of the modified Ginzburg-Landau
equation. Starting from random initial conditions, we
have observed a delay of the domain-growth dynamics
with respect to the constant diffusion case. We have
studied numerically the behavior of the spatial correla-
tion function, structure function, and characteristic
domain size. The algebraic behavior of the characteristic
size seems to change continuously with time from a —,

'- to
a —,'-power law. The crossover from one value to the oth-
er appears at longer times for lower temperatures and
occurs at infinite time for zero temperature. We are in-
terested in the characterization of this crossover regime.
We find that, after a transient, the pair-correlation func-
tion and the structure function versus rescaled lengths
seem to present a form which is independent of tempera-
ture and time. In this sense, patterns at different times
with the same domain size are statistically equivalent.
The crossover behavior can be understood in terms of the
equation describing the motion of the interface. ' From
this equation, we propose an evolution equation for the
characteristic domain size. This equation contains two
terms related with a surface diffusion and a bulk diffusion
mechanism, respectively. The first one dominates at
short times whereas the second dominates at long times.
We have obtained an expression for the critical domain
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II. MODEL AND NUMERICAL RESULTS

Our macroscopic continuous model is given by the fol-
lowing dynamic equation for the concentration c(r, r):

8
) ) V

5F( [c ] ) (2.1)

size which determines this crossover. The derivation of
the equations which contain multiplicative noise and the
study of the role of noise in this case is in progress.

In Secs. II and III we present our numerical and
analytical results, respectively. In the Appendix, we
derive brieAy the interfacial equation. Our conclusions
are summarized in Sec. IV.

Vf (c) Vg(c)= ,'[—V„f(c) VLg(c)+Vt f (c) V~g(c)],

G(r, t)= g (c(r+r', t)c(r', t)) .
1

I

(2.7)

(2.6)

where Vz and VL are the discrete versions of the right
and left gradients, respectively. Our initial distribution
for the concentration, c(r, O), is chosen uniformly ran-
dom in the interval ( —eo, eo) with co=0.05. The results
have been averaged over 10 runs up to a maximum
t =21000.

In order to study the dynamic behavior of the domain
growth, we introduce the pair-correlation function

where F ( j c ] ) is the Ginzburg-Landau free energy
r

(2.2)

The brackets mean an average over initial conditions.
Since our system is isotropic, G depends only on the
modulus of r. Then, a circular average on G(r, t) will
lead to the radial pair-correlation function

To account for deep quench and also for phase separa-
tion dynamics in the presence of a gravitational field, a
variable-dependent diffusion coefftcient, I'(c), has been
proposed. Based on phenomenological arguments,
the form of I (c ) is

r(c)=r,(c', —c'), (2.3)

where I'o is a constant, co =c„(T =0) and c„(T) is the
equilibrium value for temperature T. Equation (2.3)
takes into account the decrease in the bulk diffusion by
reducing temperature. In particular, I (c)=0 at T=O,
except at the interface. Then, at low temperatures,
diffusion along the interfaces between domains (surface
diffusion) becomes important.

Equation (2.1) can be written in the dimensionless
form'

ac. . . df=
—,'V(1 —ac ).V —V c+

at 2 dC
(2.4)

C2 C4f (c)=— +
2 4

(2.5)

where u = [c„(T)leo] is the only relevant parameter in
our study. Its values go from 0 to 1 as temperature is re-
duced, and m=1 for T=0. Now the bulk equilibrium
values of the variable are c„=+1.

In our numerical simulation, we have considered the
discretization of Eq. (2.4) in a square lattice of NXN
points, with N =120 and periodic boundary conditions.
We have integrated numerically this equation using
Euler's method with a spatial mesh size (bx, by)=(1, 1)
and a time step ht =0.025. ' ' The time step and mesh
size are sufficiently large that one could say that we are
not solving the partial differential equation but simulat-
ing some kind of coarse-grained model like cell models.
However, we have checked that for smaller values of
these parameters our conclusions remain the same. The
gradient operators in Eq. (2.4) have been discretized ac-
cording to a prescription which makes the right-hand
side of (2.4) symmetric:

g(r, t)= g G(r, t),1

r g

(2.&)

where the sum runs over the set 8 of points inside a coro-
na of radius r and r+hr. N„ is the number of such
points. As usual, we also define a relevant length Rs(t) as
the smallest value of r for which g becomes zero.

We also introduce the structure function

S(k, t)= ge'"'G(r, t) . (2.9)

Because of the radial symmetry of the system, we will in-
troduce the spherically averaged structure function

s(k, t)= QS(k, t),1

k g

(2.10)

g(r, t)=g(r/R, (t)) . (2.11)

Furthermore, we also present the results for scaled struc-
ture function in Fig. 2:

s(kR, ( t) )=[R,(t) ] 's (k, t) . (2.12)

First, we have tested that our numerical scheme repro-
duces the well-known results of the scaling regime for
~=0. ' In Fig. 1, we present results for the smallest
values of time for which the pair-correlation function
presents a behavior independent of temperature. We find
that the form of the pair-correlation function, Eq. (2.11),
is independent of ~ within our numerical accuracy. This
form coincides with the asymptotic results of Ref. 15
which are the longest simulations available using Euler's
method. This implies that the parameter u, even for
u=1, does not affect this important aspect of the phase

where the sum runs over the set of points inside a corona
of radius k and k +5k and Nk is the number of such
points.

Here, our main interest is to determine how the phase
separation dynamics given by Eq. (2.4) depends on the
parameter u. We have integrated Eq. (2.4) for five
different values of ~. In Fig. 1, we present the results for
g (r, t):
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FIG. 1. Radial correlation function, Eq. (2.8), vs the scaled
variable r/R~(t), for five values of ~. The curves have been tak-
en at times t =1200 for ~=0, t =1400 for m=0. 2, t =2000 for
a=0.6, t =3000 for m=0. 8, and t =5800 for ~=1.

FIG. 2. Scaled radial structure function, Eq. (2.12), vs the
scaled variable kRg(t), for two values of ~ (u =0, solid symbols;
~=0.8, open symbols). The points have been taken at times
5000 (*),8000 ( ~ ), 10000 ( A ), 12000 (f); 9000 ( Q), 12000
( ), 15000 (6), 18000 ((&).

separation dynamics. However, R (t) does depend on it.
Furthermore, we observe that patterns for different ~ but
corresponding to the same R have a similar morpholo-
gy. This implies that the characteristic morphology of
the phase separation dynamics remains unchanged by
temperature. In Fig. 2, we present results for the struc-
ture function for two different values of a. We obtain
that, for the times considered, larger than in Fig. 1, this
function is independent of temperature and time.

Now, we concentrate on the behavior of R . In Fig. 3
we present a plot of lnR (t) vs lnt, for values up to
t =21000. %e have analyzed these data by a nonlinear
fit of the form R (t)=132+ptt" In Table . I, we present
our results for the exponent n for the best fit obtained by
minimizing the y function. ' In Fig. 3, we have con-
sidered a temporal regime for which our results for ~ =0
are already in agreement with the Lifshitz-Slyozov theory
(n =

—,'). ' ' However, the results for other values of a

ln[R (at)/Rs(t)]
n, ( It)a=

inn
(2. 13)

where e is an arbitrary number. In Fig. 4 we see how n, ff

behaves as a function of 1/R for different values of a.
For u =0 our simulation is in agreement with the predic-
tion that n, ff should approach —,

' from below for
R ~ pe. ' But for a%0 the results also change with a in

the same way as in Fig. 3. The interpretation of these re-
sults in terms of a crossover between different growth
mechanisms is considered in the next section.

still seem to depend on u. For these cases, inspection of
Fig. 3 shows that the slope is continuously changing with
time and approaching the —,

' value for long times. The ap-

proach is slower when ~ approaches 1. For m=1 the
slope is always around —,'. Similar results are obtained
from the so-called effective exponent defined by
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FIG. 3. log-log plot of the time evolution of Rg(t) for the
same five values of Fig. l. [a =0, (C ), a =0.2 (6 ), a =0.6 ( ),
a =0.8 (*),a = 1 (0 ).j

FIG. 4. Effective exponents defined in (2.9) vs 1/R~(t). The
symbols correspond to the same values in Fig. 3.
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TABLE I. Table of our numerical results for the parameters involved in the power-law behavior of the domain size Rg (t).

0
0.2
0.6
0.8
1

0.33+0.01
0.33+0.01
0.30+0.02
0.28+0.01
0.22+0.01

0.27+0.02
0.25+0.02
0. 10+0.01
0.04+0.01
0.00+0.01

—0.1+0.2
—0.4+0.2
0.34+0.03
0.50+0.05
0.5+0.1

C2= A/(1 —a)

0.27+0.02
0.31+0.02
0.25+0.03
0.20+0.03

C3 =B/a

0.57+0.05
0.62+0.06
0.5+0.1

0
~Q

3.4+0.5
12+2

xl(l (I, )

0.26+0.01
0.22+0.01

x2(l ) I, )

0.33+0.01
0.33+0.01
0.30+0.02
0.30+0.01

III. INTERFACIAL DYNAMICS

A theoretical explanation of our numerical results can
be obtained from the interfacial equation which describes
the evolution of the domains. This equation was obtained
by Ohta using a projection technique. ' In the Appen-
dix, we briefly present a rederivation following a scheme
given in Ref. 13 for I (c)= I 0. Equation (2.4) can be writ-
ten in a more useful form:

Bc 2 2 df=(1—a)V —V c+
at dc

+aV(1 —c ) V —V c+ df
dc

(3.1)

The first term on the right-hand side (rhs) of Eq. (3.1) is
responsible for the usual bulk diffusion mechanism but
now with an effective diffusion coefficient (1—a). The
second term on the right-hand side of Eq. (3.1) is respon-
sible for the interfacial diffusion mechanism. As ex-
plained in the Appendix, it gives rise to a contribution to
the total flux which does not appear for m =0. It is only
important at the interface and only the tangential com-
ponent gives a relevant contribution. When ~=0 only
the bulk diffusion term survives but when ~=1 this
mechanism is inhibited and the interfacial diffusion
mechanism will be dominant. For intermediate values
for a one can expect a crossover behavior which will al-
low us to interpret the numerical results observed in the
simulation.

From Eq. (A9) of the Appendix, it is possible to write
an equation for the normal component of the velocity:

4u(s, t)=(1—a)rr f d Ws(r( ), rs( ))sK( t)s

+4aV E (s, t), (3.2}

where E is the local curvature, Eq. (A3), u is the normal
velocity, Eq. (A6), o is the surface tension, Eq. (A10),
and G is the Green function solution of Eq. (A8). W is
defined by the following equation:

f ds "G(r(s},r(s"))W(r(s"),r(s'))=5(s —s') . (3.3)

The first and second terms on the rhs of Eq. (3.2) con-
tain the bulk and interfacial mechanisms of growth, re-
spectively. This is an important difference regarding the
usual constant diffusion model for which this derivation
gives only bulk diffusion (a =0). '3 For this last model it
has been claimed that interfacial diffusion (surface
diffusion} is also present and responsible for the transient

behavior observed in numerical integrations. However,
this argument has not been substantiated, to our
knowledge, by a derivation from any field model. ' ' In
fact, in our derivation, an assumption of a variable-
dependent diffusion coeScient is required to yield such an
interfacial diffusion mechanism. Now, it is simple to ob-
tain from dimensional arguments the power-law behavior
for the domain size associated to the different mecha-
nisms. We obtain a —,'-power law for m=1 and —,'-power
law for a=0. For intermediate values of a there is a
crossover behavior between these two values in accor-
dance with the numerical results in Figs. 3 and 4. For in-
termediate values of ~, the exponent —,

' should dominate

for long enough times. We would like to determine quali-
tatively the value of the critical domain size for which the
crossover occurs. From Eq. (3.2) it seems natural to pro-
pose the following equation for the characteristic domain
size R (t):

dR (t) C2 3=(1—a) +a
R R

(3.4}

where the first and second terms on the rhs of Eq. (3.4)
take into account the bulk and interfacial diffusion mech-
anisms, respectively. We can estimate qualitatively the
crossover by comparing the two terms of Eq. (3.4). We
can define a critical domain size l, as that for which the
two contributions of Eq. (3.4) are equal. Then we can
write

C3
I, = (1/a —1)C2

(3.5)

Constants C2 and C3 can be obtained from our numeri-
cal results for Rs(t). Due to the very large errors in-

volved in the numerical calculation of the derivative of an
oscillating R (t},' ' we have considered two different
numerical methods that give consistent results in the
margin of the error bars. The first one takes into account
that Eq. (3.4) predicts a straight-line behavior for
R dR/dt =A +B/R vs 1/R. Then, by means of a
linear fit, we have estimated the parameter A = ( 1 —a )C2
and the rate B =~C3. As a second method, we have
solved the ordinary differential equation (3.4) in terms of
an initial condition and we have fitted the data of Fig. 3.
We present the results for A and B and also for C2 and

C3 in Table I. In particular, we see that C2 and C3 are
more or less constant within our error bars. Ohta has
given an expression for I, . His result reduces to Eq. (3.5)
for C2 =C3. As we see from Table I, it gives lower values
of l, than those of our simulation.
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Now, we can interpret our numerical results in terms
of the crossover implied by Eq. (3.4) and of a critical
domain size. In this way we can obtain a better estima-
tion of the dynamical exponent from our numerical re-
sults by fitting our data for R (t) vs A&+B&t for two
different intervals I & I, and I ) I, separately. As can be
seen from Table I, when ~ =0.8, the exponent is close to
—,
' for I &I, but close to —,

' for I ) I, in accordance with

our theoretical analysis. For values of ~ &0.7, our results
are always in the region I ) I, . For m=1 the critical
domain size is always in the region of I & I, .

IV. CONCLUSIONS

We have studied, both numerically and analytically,
the effects of a concentration-dependent diffusion
coefficient on the domain-growth dynamics of a deter-
ministic time-dependent Ginzburg-Landau model. We
observe that the morphology of the patterns remains un-
changed but there is a clear delay in the dynamics. We
obtain that the characteristic domain size presents a
crossover from —,

'- to —,'-power law as a function of time.
These results can be intuitively understood in terms of a
reduction in the bulk diffusion mechanism that induces a
greater role of interfacial diffusion for short times. These
results are confirmed by previous analytical results from
Ohta and by the analytical results that we have presented
here. In our derivation we can associate the present in-
terfacial mechanism with the presence of a tangential flux
at the interface. This flux increases as temperature is re-
duced. The crossover between the two mechanisms ap-
pears later at lower temperatures, but the long-time be-
havior is finally dominated by bulk diffusion in accor-
dance with Lifshitz-Slyozov theory. We give a qualita-
tive estimation of the crossover through the introduction
of a critical characteristic domain size. The theoretical
model used here contains both interfacial and bulk
diffusion mechanisms of growth. This is an important
difference regarding the usual constant diffusion model
for which only bulk diffusion is present. Our explanation
of the origin of the effective exponents could be profitable
in the interpretation of real experiments and other com-
puter simulations, where it is very difficult to observe the
exponents predicted by asymptotic theories.
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the center of the interface. We separate c(r, t) into two
parts

c (r, t) =c„(u (r, t) )+5c(r, t), (Al)

c„(u)= tanh
u

2
(A2)

and 5c is the deviation with respect to this solution. We
assume that, after a transient regime, the interface
profile, Eq. (A2), is well established and 5c is a small
quantity which does not depend on time (quasistatic ap-
proxitnation). Then, the pattern dynamics is given by the
macroscopic motion of the interface, the local curvature
of which becomes smaller as it evolves, as is defined as

K(r, t)= —V u(r, t) . (A3)

Here we are considering the regime for which K '»1.
By substituting Eq. (Al) into (3.1), we obtain, to first or-
der in 5c,

dCst dCst—u =(1—u)V X5c —K
du du

2 dcst
+uV(1 —c )V X5c —Kst du

(A4)

where X is a linear operator given by

d'f
dc St

and we have introduced the normal velocity U,

(A6)

In Eq. (A4) we have ruled out contributions of order K .
The derivative dc„/du which appears in (A4) is the so-
called Goldstone mode which is a sharply peaked func-
tion centered at the interface and with a width equal to 1.
The Goldstone mode is an eigenfunction of (A5) with a
zero eigenvalue and is associated with the interfacial de-
grees of freedom. We are looking for a description in
which the degrees of freedom associated to the bulk (5c)
are orthogonal to the interfacial ones. This requirement is

accomplished if 5c is given in terms of all the eigenfunc-
tions, with the exception of the Goldstone mode, of the
linear operator (A5) which, in the lowest order in J(, is
given by'

d2f Q2 (P

dc„Bs Bu
(A7)

where cst is the one-dimensional equilibrium profile of
(3.1),

APPENDIX: DERIVATION
OF THE INTERFACIAL EQUATION

We introduce curvilinear coordinates (u, s) in Eq. (3.1),
where s follows the contour of the interface and u goes
along the normal direction of it, taking the value u =0 at

After multiplying Eq. (A4) by the Green function solu-
tion of the equation

V G(r, r')=5(r —r')

and by the Goldstone mode and integrating over u, u',
and s', the terms with a dependence on 5c in Eq. (A4) do
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not give any contribution. The resulting
integrodifferential equation for the evolution of the inter-
face described by its normal velocity and curvature K is

4f ds'G(r(s), r(s'))v(s', t)

=(1—~)oK(s, t)+4~ f ds'G(r(s), r(s'))V K(s, t),
(A9)

where cr is the surface tension

At this point, we can make some comments regarding
the different contributions on the rhs of Eq. (A4) to the
final equation (A9). For u =0, Eq. (A9) is the usual inter-
facial equation. ' The most relevant contribution of a&0
comes from the second term on the rhs of Eq. (A4) and
gives rise to the second term in Eq. (A9). The term in Eq.
(A4) contains a flux localized at the interface. In our ap-
proximation, it can be expressed in terms of the com-
ponents associated to the normal (n) and tangential
direction (t) to the interface by

'2
dc„(u)0= CL

00 dQ
(A10) dcst

V K(s)
dQ

st ~ dK st~d2c dc-K n+
dg ds dQ

(A 1 1)

To get Eq. (A9) we have taken into account that the in-
terfacial width is small in comparison with K ' and one
can approximate (A2) by a step function between the two
equilibrium values +1. As a consequence, the Goldstone
mode can be substituted by a 5 function.

The only contribution at our level of approximation is
given by the tangential component of Eq. (All). ' From
Eq. (A9), we obtain that the equation for the normal com-
ponent of the velocity is given by Eq. (3.2).
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