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In the limit of strong electron-phonon coupling, we use either a Pekar-type or an oscillator wave func-
tion for the center-of-mass coordinate and either a Coulomb or an oscillator wave function for the rela-
tive coordinate, and are able to reproduce all the results from the literature for the large-bipolaron bind-

ing energy. Lower bounds are constructed for the critical ratio g, of dielectric constants below which
bipolarons can exist. It is found that, in the strong-coupling limit, the stability region for bipolaron for-
mation is much larger in two dimensions (2D) than in 3D. We introduce a model that combines the
averaging of the relative coordinate over the asymptotically best wave function with a path-integral
treatment of the center-of-mass motion. The stability region for bipolaron formation is increased com-
pared with the full path-integral treatment at large values of the coupling constant a. The critical values
are a, =9.3 in 3D and a, =4.5 in 2D. Phase diagrams for the presented models are also obtained in

both 2D and 3D.

I. INTRODUCTION

Two identical charged particles (electrons) being
placed in a polar or ionic crystal will interact with the
lattice vibrations that will result in attractive forces be-
tween them. Under certain conditions a bound state can
exist, and it will consist of two electrons and a common
cloud of (virtual) phonons. Such a quasiparticle is re-
ferred to as a bipolaron.

Recently, there has been renewed interest in the bipola-
ron problem, which was triggered by the possibility of bi-
polaronic superconductivity in the high-temperature su-
perconductors. Bipolarons act as charged bosons that
could undergo Bose-Einstein condensation. For large bi-
polarons such a mechanism was discussed by Emin and
Hillary. This mechanism is based on a Bose-Einstein
condensation of the bipolarons as discussed by Shafroth.
Recently, some questions on Shafroth's results have been
raised by Friedberg, Lee, and Ren. These remarks, how-
ever, have no bearing on the present work, since we study
the stability region of one bipolaron, not the many-
particle aspects of the bipolaron gas.

The applicability of the bipolaron theories of supercon-
ductivity depends upon the existence of bipolarons in the
superconducting materials. Here we will study charac-
teristics of bipolarons such as the self-energy, effective
mass, radius and avera e number of virtual phonons. A
large number of papers ' have already been devoted to
this problem. To the best of the authors' knowledge,
Moskalenko was the first to study the bipolaron problem
in the strong-coupling limit. In later work ' it was
concluded that bipolarons can exist at some critical
values of the electron-phono n coupling constant and
Coulomb repulsion coefficient. In order that a bipolaron
can exist, the repulsive forces should be weak enough,
while the electron-phonon interaction has to be
sufficiently strong to overcome that repulsion.

To calculate the critical values of the coupling con-

stant, different authors used different versions of varia-
tional upper estimates for the bipolaron energy. Some of
them differ by an order of magnitude. The aim of the
present paper is to present a comparative study of the
different methods for the calculation of the bipolaron
binding energy. In doing so we will also calculate other
bipolaron characteristics such as the effective mass, ra-
dius, and average number of virtual phonons in the bipo-
laron cloud.

The paper is organized as follows. In Sec. II we con-
sider various versions of variationa1 upper estimates to
the bipolaron energy in the strong-coupling limit. This
will allow us to determine the best estimate to the bipola-
ron binding energy. The latter is used in Sec. III to
derive approximate expressions for the bipolaron spin-
singlet state. In Sec. IV we discuss the results obtained
and compare them with those of other authors. Our con-
clusions are presented in Sec. V.

II. VARIATIONAL ESTIMATES
FOR THE BIPOLARON ENERGY

A system of two electrons interacting with a phonon
field is described by the Frohlich Hamiltonian

2

j=1,2 k

+ QA'co&akak+ U(lr& —r2l), (1)

where r.(p. ) is the position (momentum) operator of the
jth electron (j=1,2), m is the electron band mass, and
U(r)= Ulr is the Coulomb interaction potential with
strength U. The technique to determine the ground state
of the Hamiltonian [Eq. (1)] is quite general, but we shall
concentrate on the three-dimensional bipolaron in the
case of longitudinal-optical (LO) phonons, which are as-
sumed to be dispersionless, cok=coLO, with the following
form for the interaction coefficients:
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where V is the crystal volume and a is the dimensionless
electron-phonon coupling constant,

—Q R 2

e4(R)= (1 la)

where b, 0, and P are variational parameters.
For the center-of-mass motion, described by 4(R), we

tried wave functions of (a) oscillator type,

20

1 e 1a=
LO 2 6'~

2m coLo
1/2

(3) and (b) of Pekar type,

where e„(eo)is the high-frequency (static) dielectric con-
stant. The nonscreened Coulomb repulsion strength is
given by U=e /e„.For convenience, we shall use a sys-
tem of units in which A'=m =coLo=1. One can easily
verify that in these units the following inequality holds:

U) &2a . (4)

Since the bipolaron is a composite particle, we intro-
duce a center-of-mass coordinate R=

—,
' (r&+rz )

[P=p|+p2] and a relative coordinate r=r& —rz
[p=(p|—p2)/2] for the electron pair. In terms of these
coordinates, the Hamiltonian (1) can be rewritten as

H= +p +2 icos (Vl,aze'"' +H. c. )
p2 kr

k

3/2
4(R)= (I+yR )e

(7m )' (1 lb)

where Al, = Vl, ((e'" )). Using the wave functions (11),
one obtains from Eq. (12), for the oscillator wave func-
tion,

where 01 and y are the variational parameters.
It is well known that such averaging leads to the

correct power-law behavior of the energy E ~ —a in the
strong-coupling limit, but fails in the weak-coupling re-
gime where it is known that the correct dependence is a
linear one. Analogous procedures for the single-polaron
energy E, result in

(12)

+ ya„'a„+—.U

k

(5)
a

E1 = = 0. 106 103a
31T

(13a)

and for the Pekar-type wave function,To obtain variational upper estimates of the bipolaron
self-energy, we average the Hamiltonian (5) over the
product-wave-function ansatz

%'(r, , r2) =4(R)p(r ), (6)

and obtain the effective Hamiltonian

E = — a = —0. 107023a3 199 2

21873
(13b)

Thus the above wave functions reproduce the leading
term in the strong-coupling expansion. From previous
studies we know that bipolarons can only exist above
rather high critical values a, of the electron-phonon cou-
pling constant, e.g. , a, =7.3 as found by Adamowski'
and a, =6.9 found by Verbist, Peeters, and Devreese. '

Consequently, the strong-coupling results are a valid first
approximation. In the next section these results will be
improved and the validity range will be extended to lower
values of a.

From Eqs. (10) and (11) we have four different varia-
tional estimates for the bipolaron energy. The condition
under which a bipolaron can exist as a stable state is
given by E ~2E„i.e., the bipolaron energy must be
lower than twice the single-polaron energy. This leads to
a critical value g„where g=E' /E'p is the ratio of the
dielectric constants. The corresponding critical value U,
of the Coulomb repulsion strength, for a given a, can be
deduced from U=&2n/(I —rI). Note that there is no
critical value of a in this scheme, since in the strong-
coupling expansion the energies E and E1 are proportion-
al to a . Our numerical results for g, are presented in
Table I. In order to estimate critical values of g, one has
to adopt a particular expression for the single polaron,
which is not exactly known. Two different points of view
are possible: (a) Take the best single-polaron energy
available from literature. This route was followed by
Adarnowski, ' who took the most general quadratic
Feynman approximation. ' In the strong-coupling limit,

&=Es+E„+g ala|, + g (Al, al, +H. c.),
k k

with the ground-state energy

E=E„+E„
k

The following notations were introduced:

"=(( p2+

A„=2V„((e""))cos
2

where ( . . ) [ (( . )) ] denotes an averaging over the
wave function q&(r) [4(R)].

Two different functional forms for the function y(r),
referring to the relative motion, were chosen:
(a) Coulombic type,

' P+3/2

p(r)= — [4vrI (2P+3)] '/ r~e "/, (10a)b
2

(lob)

and (b) oscillator type,
P/2+ 3/4

y(r) = [2 I (P+ 3
) ]

—1/2&Pe Qr /4—
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TABLE I. Estimated critical values g, of the ratio of dielectric constants are presented for the
different trial wave functions %(R,r) =4(R}y(r). These numbers result from a comparison between

the bipolaron energy calculated with +(R,r) and a single-polaron energy calculated with 4(R). Lower
bounds to the exact value of g, are given between parentheses. They were calculated through a com-

parison with the exact Miyake result as discussed in the text.

Type

Ia

Ib

IIa

IIb

4(R)

Oscillator

Oscillator

Pekar

Pekar

cp(r)

Coulomb

Oscillator

Coulomb

Oscillator

0.079
(0.067)

0.052
(0.045)

0.084
(0.072)
0.131
(0.119)
0.058
(0.050)
0.104
(0.096)

0.119
(0.106)
0.082

(0.065)
0.092

(0.084)
0.061

(0.051)

studied above, an exact expression (to leading order in a)
for E& has been given by Miyake. ' Because the obtained
bipolaron energy is an upper bound to the exact result,
this procedure will give us a lower bound on g, . In Table
I this value has been given in brackets. (b) One can take
the single-polaron energy, as is obtained by making simi-
lar approximations as for the bipolaron problem. [In the
calculations made above, this corresponds to Eqs. (11)
and (12).] The underlying idea is that, if one improves
the approximation, both the bipolaron and single-polaron
energies are expected to decrease. Consequently, g, is
not expected to be altered substantially. In this ap-
proach, however, one has no criterion whether the ob-
tained value of g, is an upper or lower bound to the exact
value; in fact, both cases are possible. This point is made
clearer in Fig. 1. We have plotted the exact bipolaron en-

ergy and (twice) the exact single-polaron energy as solid
curves as a function of g; the dashed lines are upper
bounds to these energies. Bipolaron formation is energet-
ically favorable if g g„where g, is the exact critical
value. If g,

' and g', are estimations of g, based on the

upper bound to the bipolaron energy by comparing it to
twice the exact (respectively, approximated) single-

polaron energy, it is seen that g,
' is a lower bound to g„

while g,
'

is larger than g, . It is not difficult to shift the
approximate curves in such a way that g,

'
&g„it is, how-

ever, impossible to realize a situation such that q,
' &g,

since the approximate bipolaron energy is an upper
bound. The value of g,

' obtained in this way is listed in

Table I, and the lower bounds g', to the exact value g,
are given between brackets.

The oscillator-oscillator wave function [case Ib (P= 1)]
leads to the best approximation, and the maximal values
for both g,

'
and the lower bound g', are obtained. A

description of the relative motion with a Coulomb wave
function leads to about 10%%uo worse results [see case Ia
(P=2) in Table I]. The center-of-mass motion is best de-
scribed by an oscillator wave function (cases I). Such a
wave function can also be obtained as the strong-coupling
limit of the path-integral treatment, which we wi11 pro-
pose in the next section. The results in Table I will be
further elaborated upon in Sec. IV, where a comparison
with the available results in the literature is made.

Recently, ' ' it was shown that the bipolaron stability

region is enlarged in two dimensions (2D) and that this
result might be of importance for the high-T, supercon-
ductors. ' Therefore, we have repeated our calculations
in 2D for the Ib case, which gives the highest lower
bound to g, in 3D. The results are given in Table II. As
expected on the basis of scaling arguments, ' the P=0 re-
sult is the same in 3D as in 2D. This is not true for the
P=O lower bound to g, since the exact Miyake result for
the single-polaron energy does not scale. Perhaps more
surprising are the P= 1 results, which show an apprecia-
ble increase in the estimations for g, .

III. BIPOLARON SPIN-SINGLET STATE

In the present section we will combine the best esti-
mate for the relative motion, as obtained in the previous
section, with a Feynman path-integral approximation to
the center-of-mass motion.

As a first step, we apply the canonical transformation
of Lee, Low, and Pines' to the Hamiltonian (5), which

7

~C ~C ~C

FIG. 1. Estimation of the critical value g, is sketched. The
exact bipolaron energy is presented as a solid line; the horizon-
tal solid line is (twice) the exact single-polaron energy. The
dashed lines represent analogous approximate results. Estimat-
ing the critical value from a comparison between the approxi-
mate bipolaron as well as single-polaron energies results in a
value g, which is larger than g, in this situation. If the approx-
imate bipolaron energy is compared to the exact single-polaron
energy, we find a lower bound g', to the exact value q, .
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TABLE II. For the best trial function in 3D, i.e., the
oscillator-oscillator wave function Ib, the calculations are re-

peated in 2D and the analog of Table I is constructed.

and the effective mass is given by

I u 2+ i ~ k2i(l) i2 d& &2e
—s k—F(s)/4u

k
k

(17)

3D

2D

0.079
(0.067)
0.079

(0.063)

0.131
(0.119)
0.158

(0.136)

0.092
(0.076)
0.013

2 — 2

F(s)=w s+ (1—e "') .
v

The rms separation between the electrons,

(18)

where v and w are the usual Feynman variational param-
eters and F(s) denotes the function

results in [((r r )2) ]1/2 (19)

H= —P —g ka&ak +p
k

+2 icos ( V„a„+Vka„)+y akak+-kr
k r

(14)

Since the Hamiltonian is translational invariant, the total
momentum P can be considered as a (. number.

The next step is to average the Hamiltonian (14) over
the best trial wave function of the previous section. This
function is symmetric under a permutation of the elec-
trons [y( —r)=gr(r)], which implies that we are estimat-
ing the characteristics of the bipolaron spin-singlet state.
In performing this average, we obtain the

effective

Hamil-
tonian

is independent of the center-of-mass motion, i.e., of v and
w. Consequently, Eq. (9) can be applied to calculate r)2.

The expression for the average number N of (virtual)
phonons in the cloud around the electron can be derived
as"

3 a 1 aN= 1 ——(I ——U E,
2 Ba 2 3U (20)

~2 d& e
—s —k F(s)/4u

2 k 0
(21)

which gives the following result for the case under study:

3 (u —w) 1 1N=- +E„——U( —)
4 v

" 2 r

1
P —Qkakak + g(Skak+Skak)

k k

+ g akak+E„,
k

(15)

In accordance with the results of Sec. II, we choose as a
trial wave function ((()(r) the expression given by Eq. (10b)
for P= 1. With this choice we readily obtain

where $&=2V&(cos[(k r)/2] ) is the renormalized
electron-phonon coupling coefficient and E, is the energy
related to the relative motion, as defined in Eq. (9).

The Hamiltonian (15) is in essence a single-polaron
Hamiltonian. The differences with the usual Frohlich
Hamiltonian in single-polaron physics are the following:
(a) The electron mass is doubled since the bipolaron con-
tains two electrons, (b) the energy is shifted by E„,and (c)
the electron-phonon interaction coefficients are renormal-
ized because we have averaged the internal motion of the
bipolaron. Keeping in mind that the best estimate of Sec.
II was obtained with an oscillator-type wave function
4(R), we treat Hamiltonian (15) within the scope of the
path-integral method. The advantage of this approach
compared to the approach of Sec. II is that the energy
will be lowered for intermediate values of the coupling
constant a. Furthermore, this scheme takes into account
the translation invariance of the system and allows us to
calculate the bipolaron-spin-singlet effective mass. The
Feynman approximation, ' applied to Hamiltonian (15),
results in the following upper bound to the ground-state
energy of the bipolaron (units are such that

SLo 1):

e
—k /SQk

120

(p2& =
—,', 0,

1 4 0
3 2'

' 1/2 (22)

3 (v —w) + 7 +4 0
4 v 12 3 2m.

1/2

1/2

4
20

77
cx ds e ' s

0

X 1 — f (s)+ [f(s)]—
3 12

(r') =—.5

0
Inserting these results in Eq. (16), we obtain, for the bipo-
laron energy,

$2

~2 d e
— —k ()/

4 v
"

0

(16)

(23)

where we introduced f (s)= [1+(0/v 2)F (s) ]
' and F(s)

is given by Eq. (18). A numerical minimalization over the
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variational parameters v, w, and Q gives an upper bound
to the ground-state energy of the bipolaron spin-singlet
state. With the estimated values of these variational pa-
rameters, we can calculate bipolaron characteristics such
as the average number of phonons N, rms separation r, z,
and effective mass m *, which can be explicitly calculated
as

3 (v —w)' 7 2 0
4 v 2 3 2m.

1/2

-100

Ld

' 1/2
20 af dse ' &f(s)

0

X j 1 —
—,'f (s)+ —,', [f(s)] ],

-150
25 30

Repulsion U

35

5r 12

1/2

8 2Q
m '=2+ —0

3 7T

1/2

a f ds s'e ' [f(s)]'"
0

(24)

FIG. 3. Bipolaron energy E is plotted as a function of the
repulsion strength U for fixed coupling constant @=20. The
solid line presents the result of this model; the dashed line is the
result of full path-integral treatment (Ref. 12). In comparison to
Fig. 1, the stability region for bipolaron formation is much
enhanced for this larger value of a. (The shaded area represents
the "unphysical" region U & &2a.)

x [1—f (s)+ —,', [f(s)] ] .

-10

-15

C:
LLJ

-20

— ' ««
««

«g

!NI

In Figs. 2 and 3 we compare the present results (solid
line) for the energy [Eq. (23)] with the path-integral cal-
culation of Ref. 11 (dashed line), which utilizes a full
path-integral treatment also for the relative coordinate.
Figure 2 shows the energy E as function of the repulsion
U at fixed electron-phonon coupling constant a = 10. The
full path-integral calculation gives a lower value for the
energy throughout the whole range. Thus the stability
region for bipolaron formation is much smaller in the
present model. From Sec. II, however, it is concluded
that the present model (ri, =1.31) should give a larger
stability region as a increases compared with the model

of Ref. 11, from which we obtain g, =0.079. In Fig. 3
this is demonstrated for a=20, where the energy E is
plotted as function of the repulsion U. Here it is found
that the stability region of the present model is roughly
one and half times larger than for the model of Ref. 11.
In Fig. 4 we compare the phase diagram of both models.
The shaded area represents the stability region of the
present model. The region U & &2a is unphysical since
it would imply a negative static dielectric constant E'0.

The stability region calculated in Ref. 11 lies below the
thick dashed line. The present model has a critical cou-
pling constant a, =9.3, above which bipolarons can exist.
This value is larger than the one found in Ref. 11. For
completeness, the asymptotic estimations U =&2a/
(1—g, ~

are indicated as thin lines (solid line, present
model; dashed line, Ref. 11). In Figs. 5 —7 the number of
phonons N, rms separation r,z, and effective mass m * are
plotted as a function of the repulsion U for a=20; the
solid line indicates the present calculation, while the
dashed line is taken from Ref. 11.

From the strong-coupling analysis in Sec. II, one ex-
pects a more pronounced effect if the present model is ap-
plied in 2D. Therefore, we have repeated our calcula-
tions in 2D. For completeness, the formulas for the ener-
gy E, number of phonons N, rms separation r, z, and
effective mass m * are presented:

12 16

Repulsion U

18 20

' 1/2
1 (v —w) 1 1 vrQ

2 v 2 4 2

FIG. 2. Bipolaron energy E is plotted as a function of the
repulsion strength U for fixed coupling constant a=10. The
solid line presents the result of this model; the dashed line is the
result of the full path-integral treatment (Ref. 12). (The shaded
area represents the "unphysical" region U (&2a.)

1/2

—2
2Q af dse ' &f(s)

7T 0

X l 1 —
—,'f (s)+ —,,[f(s)]'l, (25)
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M
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|D

EY

O
10

O

0
0 5 10

Coupling constant n

15 25 30

Repulsion U

35

FIG. 4. Phase diagram for bipolaron formation in 3D is
presented. The shaded area represents the stability region for
bipolaron formation as obtained with the present model. The
thick solid line is U= &2a, above which the physical acceptable
values (a, U) are situated. The stability region, obtained in Ref.
9, lies below the thick dashed line. Asymptotic results are indi-
cated as thin lines [solid line, present calculation (7)=0.131);
dashed line, Refs. 12 and 13 (g=0.079)]. The critical value of
the electron-phonon constant above which bipolaron formation
is possible is a, =9.3.

2
r 12

1/2

(27}

FIG. 6. At fixed coupling a=20, the effective bipolaron mass
m* is plotted as function of the repulsion U. The solid line
represents the model of Sec. II, while the dashed line stems from
Ref. 12. (The shaded area represents the "unphysical" region
U & &2a.)

' 1/2
2Q

7T
aI dse '&f(s)

0

' 1/2
1 (u —to) 1 ~ 1 rrQ

2 U 2 8 2

1/2

m *=2+20 20
7T

aI dss e '[f(s))
0

X [1 ',f (s)+—'„'[f(s—)]—] .

(28)

X jl —
—,'f (s)+ —,', [f(s)] ],

(26}

In Fig. 8 the 2D phase diagram is plotted. As expected
from the asymptotic analysis, the stability region (shaded
area) is much larger for large values of a than the stabili-
ty region of the full path-integral treatment (dashed line).

0
25

I
I

30

25

I
I I

30 35

Repulsion U
Repulsion U

FIG. 5. At fixed coupling a=20, the rms separation r» is
plotted as function of the repulsion U. The solid line represents
the model of Sec. II, while the dashed line stems from Ref. 12.
(The shaded area represents the "unphysical" region U & &2a.)

FIG. 7. At fixed coupling a =20, the number of (virtual) pho-
nons in the electron cloud, X, is plotted as function of the repul-
sion U. The solid line represents the model of Sec. II, while the
dashed line stems from Ref. 12. (The shaded area represents the
"unphysical" region U & &2a.)
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15

C0
M

CL

lY

10-

0
0

Coupling constant n

The thick solid line again represents U =&2a. Similar to
the 3D phase diagram, we have indicated the asymptotic
results by thin lines. In 2D the present model leads to a
critical coupling constant a, =4.5. This value must be
compared with a, =2.8, as cited in Ref. 12.

IV. COMPARISON
WITH LITERATURE AND DISCUSSION

FIG. 8. Phase diagram for bipolaron formation in 2D is
presented. The shaded area represents the stability region for
bipolaron formation as obtained with the present model. The
thick solid line is U =&2a, above which the physical acceptable
values (a, U) are situated. The stability region, obtained in Ref.
12, lies below the thick dashed line. Asymptotic results are in-
dicated as thin lines [solid line, present calculation (g=0. 131);
dashed line, Refs. 12 and 13 (g=0.079)]. The critical value of
the electron-phonon constant above which bipolaron formation
is possible is a, =4.5.

and consequently the vacuum average was obtained in
the form

EM =2A2 —aA, 5— 2
1 —g

Minimization of Eq. (29) over A, leads to
2

cx 2

8 1 —g

(32}

(33)

which Mitra compared with 2E& by taking E, = —cx

(25/256). This is the single-polaron energy obtained with
a Coulomb-type wave function. In calculating the vacu-
um averaging over the first term in Eq. (15), Mitra took
this term equal to zero, which is not valid. After correct-
ing this, Eq. (32) takes the form

Suprun and Moizhes coincides with the strong-coupling
limit of Adamowski. ' The techniques of the papers ' '
considered so far allow also for the calculation of the bi-
polaron radius, but not for the bipolaron mass. Never-
theless, the estimates of the critical values of g=e„/eo
by Suprun and Moizhes and Adamowski lead to the larg-
est value, i.e., g, =0.14.

Mitra" reported the result p,:&,
0.47, which is out

of the limits of any other result in Table I. As a starting
point, Mitra used the Hamiltonian (14), which was de-
rived by Kochetov et al. For the relative motion, Mitra
used a trial wave function p(r) ~e ", which is the wave
function of our Ia (p= 0) case. As can be seen from Table
I, we did not obtain any bound state at all. The origin of
this discrepancy is a mistake in Mitra's calculation at its
final stage. Mitra used a canonical transformation to
shift the creation and annihilation operators,

(31)

We begin with a discussion of the data presented in
Table I. In reality, it reproduces all strong-coupling re-
sults for g, as found in the literature. Vinetsky averaged
the initial Hamiltonian over the space wave function

E~=8eA, +2k, —
A,o. 5— 2

1 —g
(34)

q'v(rt r»" V(ri}m(r2)

where

q'sM(r~, r2) p(r&)y(r2)(1+c lr&
—r, l),

where

(29)

y(r) ~ [1+ar ]e (30)

Their result (r), =0.14) is almost reproduced in Table I
through the Ia (P=2) or Ib (P= 1) cases. The result by

y(r) ~ [1+ar+c(ar) ]e

(henceforth we will use the proportionality symbol ~ to
omit irrevelant normalization factors). y(r) is the im-

proved Pekar-type wave function, which leads to the
correct strong-coupling energy. His result (r), =0.05) is
reproduced in Table I as the IIa (P=0) case. A
significant improvement of this result was obtained by
Suprun and Moizhes who included the electron correla-
tion by choosing the trial wave function

This corrected result does not lead to bipolaron forma-
tion, in accordance with our results in Table I.

In a recent paper by Bassani et al. ,
' the Hamiltonians

(5) and (14) were used. These two cases were strictly dis-
tinguished by the authors. Dealing with Eq. (14}, they
introduced a rather complicated technique of an expan-
sion in partial waves in correspondence to the different
angular momentum values of the two-electron system.
They neglected triple and quartic powers of a& and a & in
the first term of Eq. (14). Consequently, they averaged
over a trial wave function y(r) of Coulombic type [Eq.
(10a)]. A critical value g, =0.084 was found. This coin-
cides with the result of Table I for the Ia (P= 1) case.
This coincidence, however, is accidental because the
strong-coupling limit was not obtained.

Considering the Hamiltonian (5), Bassani et al. aver-
aged over a trial wave functions 4(R) and y(r), which
are both of oscillator type. They obtained a result which
is identical to our Ib (p=0) case. They stressed that there
exists an important difference between the two parts of
their paper: The Hamiltonian (5) would correspond to a
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free bipolaron, while the Hamiltonian (14) would describe
a localized bipolaron (after averaging). In our opinion
this distinction is not that crucial as far as the bipolaron
energy is concerned. Indeed, the wave function 4(R) de-
scribes mostly the vibration of an electron in a polaron
well. In Sec. III we demonstrated how to obtain the
strong-coupling results with Hamiltonian (14). More-
over, the case Ib (P=O) can also be obtained from the
Feynman technique, which conserves translational invari-
ance explicitly. As such, the formula for the energy by
Bassani et al. as derived from Eq. (5) coincides complete-
ly with those of Ref. 12. Here it was derived with Eq.
(14).

V. CONCLUSIONS

An asymptotic analysis of the bipolaron problem for
a~(x) is presented. As a first step, a transformation is
made to center-of-mass coordinates for the electrons.
The phonons are treated with a displaced oscillator ap-
proximation. The electronic wave is supposed to be a
product wave function. It is shown that, using a Pekar-

type or oscillator wave function for the center-of-mass
coordinate and a Coulomb or oscillator wave function for
the relative coordinate, all the results published in the
literature can be recovered. The best estimate of the crit-
ical ratio g, of the dielectric constants, as well as the

highest value of its lower bound, is obtained with a
oscillator-type trial wave function for both the center-of-

mass and relative motions. Surprisingly, the Pekar-type
wave function, which is the most succesful in single-
polaron theory, is slightly worse than the oscillator wave
function for the center of mass. The results are summa-
rized in Table I.

Taking the best approximation in 3D, we performed
the equivalent calculations in 2D. It is found that,
asymptotically, the stability region for bipolaron forma-
tion is much larger in 2D as compared with 3D.

In Sec. III a model was introduced which combines the
averaging of the relative coordinate over the asymptoti-
cally best wave function with a path-integral treatment of
the center-of-mass motion. This results in an increase of
the stability region for bipolaron formation in both two
and three dimensions compared with the full path-
integral treatment' at large values of the coupling con-
stant a. The critical values of the coupling constant, de-
rived with this model, are a, =9.3 in 3D and a, =4.5 in
2D. These values are larger than those found within the
framework of a full path-integral treatment. Figures 4
and 5 show the phase diagrams obtained with the
presented model.
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