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Relaxation of nuclear spin in atomic hydrogen due to long-range orbital currents in metal walls
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Thermal current fluctuations in bulk metal produce a fluctuating magnetic field that extends outside
the metal's surface. We find that its spectral density (H(z)') as a function of distance from the surface

decays as ln(z) at distances less than the mean free path of the electrons in the metal and as 1/z at large
z. We evaluate the nuclear-spin relaxation rate due to these fluctuations. We apply our model to the
one-body surface relaxation rate of atomic hydrogen. We find the relaxation time to be of the order of
10 s at a temperature of 1 K. A possible relaxation mechanism due to electric-field fluctuations, which

may also be applicable to cells with insulating walls, is discussed.

I. INTRODUCTION

The quest to observe Bose-Einstein condensation has
led to the study of the relaxation and recombination pro-
cesses in spin-polarized atomic hydrogen. These process-
es at modest densities take place mainly on the surface of
the cell containing the gas. The decay of atomic hydro-
gen was found to be dominated by some one-body relaxa-
tion process on the surface. ' This relaxation is essen-
tially a transition between the two lowest hyperfine levels,
which is equivalent at high magnetic fields to the
nuclear-magnetic-moment transition between Zeeman
levels. The one-body surface relaxation rate observed in
the above experiments was unexpectedly high. Berlinsky,
Hardy, and Statt ' have attempted to explain this
phenomenon in terms of the interaction of the spin with
magnetic impurities in the substrate. This explanation
was initially supported by achievement of slower-
relaxation rates through copper purification. But further
purification did not affect the relaxation time suggesting
the existence of another mechanism. In this paper we

suggest a mechanism that invokes magnetic-field fluctua-
tions produced by thermal current fluctuations in the me-
tallic cell walls.

We note that there are two types of experiments. They
differ by the kind of materials that the cells containing
hydrogen are made of. The first type involves cells with

copper walls and our mechanism should be applicable to
these experiments. The second type involves quartz
walls, to which our explanation is not applicable. The
observation of the high relaxation rate in this case sug-
gests the existence of some other mechanism. We discuss
one possible mechanism in the Appendix.

Our idea can be illustrated by the following simple con-
sideration. Suppose the half space defined by z &0 is
filled with metal at temperature T. We are interested in
the spectral density of the mean square value of the mag-
netic field, (H ) = f+ dt e ' ' (H(r, O)H(r, t)), at a

distance z from the surface (z & 0) in the limit co~0. Let
us divide the metal into layers of thickness hr parallel to
the surface, and divide each layer into a series of concen-
tric annuli with width ha and centered on the z axis. We

will calculate contributions to the magnetic field from
each loop and then sum them. The magnetic field from
one loop of radius a, carrying current AI, at distance r
from its center is given by hH-a b,I/(a + r ) . The
spectral density of the mean square current in one loop
can be expressed as (AI ) = T/bR, where b,R is the
resistance. We can write (hR )

' = crb ah r /2rra where o.

is the conductivity of the metal. Thus we obtain
(, bH ) —Toa bah, r/(a +r ) . Now we can sum all
the contributions by integrating this expression with
respect to a from 0 to Do and with respect to r from z to
ao; this gives (H(z) ) —To/z Ther. efo. re one might ex-

pect a slow decay of the magnetic-field correlation with
growing distance from the metal surface.

In this paper we carry out a detailed calculation of the
relaxation rate of a nuclear spin with magnetic moment p
in an external magnetic field Ho due to the mechanism
described above. The spin is located a distance z from
the metal surface, which is at temperature T. To do this
we need the magnetic-field correlation function,
( ~H (z, co)

~ ), where a is a spatial index and co is the fre-
quency of the transition (fico=2@Ho). We relate the
magnetic field to conduction currents using Maxwell's
equations and neglect the displacement current term, as-
sumi'ng that o. ))co and z «c/co. Our work extends an
earlier calculation done by Lee and Nagaosa for the case
of a spin located between parallel metallic layers. That
earlier work was done in the context of high- T, super-
conductors, whereas here we are more concerned with
conventional metals.

The transverse current-current correlation function
(j (k)j~(k') ) is obtained from the transverse conductivi-
ty o ~(k). Then we give an estimate of the relaxation rate
for atomic hydrogen atoms adsorbed on a liquid helium
layer so that the atoms are at a constant distance from
the metal surface. Comparison with experiments wi11 be
discussed.

II. CALCULATION OF THE RELAXATION RATE

The relaxation rate in the external field 00 in the z
direction is given by
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Index co in the expressions of the type (H (p)H (p'))„
will be omitted in the rest of the paper. Maxwell's equa-
tions yield, under Fourier transformation,

f dpdp'e' + "(H (p)H (p'))
(2m )

(2)

where y =pl%I, (I, is the spin component in the z direc-
tion). In case of the proton this gives y=2p/g. We
define the Fourier transformation in the following way:

4ni [pyJ p pzJ p ]H" p =
c p

4mi [PzJ P PxJ P IH~p =
c p

4mi [pxJ p pyJ p ]H'p =
C p

(4)

+oo
H (t)= defoe'"'H (co) .

277
(3)

These relations lead to the following expressions for
(H (p)H (p')):

&H"(p)H"(p') &
= — . . .[p,p,'& J"(p)J'(p') &+p,p,'& J'(p)J'(p') &

—p,p,'& J'(p)J'(p') )
(4n )

—
pyp, '& j'(p)j'(p') & ],

&H"(p)H (p')&= — . . .[p„p„'&j'(p)j'(p') &+p,p„'&j"(p)j"(p') &
—p„p,'& j'(p)j"(p'))(4m. )

cpp
—p,p„'(j"(p)j'(p') )],

&H'(p)H'(p') &
= — . . .[p„p„'&j"(p)j'(p') &+p,p,'& j"(p)j"(p') &

—p„p,'& j"(p)j"(p') &

(4m )

(8)

—p,p„'(j"(p)j'(p') ) ] .

(jo (k)jo~(k') ) =2To ~&(k)(2n ) 5(k+k'), (10)

For a bulk metal which is translationally invariant, we
expect

should be able to express one correlation function in
terms of the others. It is easy to check that this is not the
case for Eq. (12). For example, the equation

where the subscript 0 designates the value for a bulk met-
al. However, we cannot use (10) directly in (7)—(9) be-
cause currents can exist only in the half space. To over-
come this difficulty we calculate the Fourier transform of
(jo (k)jo~(k') ) in coordinate space:

—p,'(j"(p)j"(p')) =p„'(j"(p)j"(p')&

+p,'(j"(p)j'(p') & (13)

(jo (r )j~o(r') )

f dk dk'e'"'+" ' '(j (k)jio(k') & .
(2n. )

is not satisfied if correlation functions are given by (12).
This happened because the assumption of replacing
(j (r)j~(r')) by the bulk value (jo(r)j~o(r')) breaks
down near the metal-vacuum interface. To avoid this in-
consistency we introduce the following ansatz:

A simple procedure would be to transform back to the
momentum space, integrating only over z (0:

=f dr dr'e 't" r ' (jo(x,y, z)j~o(x', y', z') ) .
z,z'(0

j"(z}=a[jo(x,y, z)+jo(x,y, —z)],

j (z) =a[jo(x,y, z)+jo(x,y, —z) ],
j'(z) =a[jo(x,y, z) —jo(x,y, —z )],

(14)

(15)

(12)

However, this is not adequate because the newly obtained
correlation functions (j (p)j~(p')) violate current con-
servation; namely, using the equation p j(p) =0 we

which ensures that the perpendicular component of the
current vanishes at the interface. Physically our ansatz
means that the current undergoes specular reflection at
the surface. Now we substitute this into the right-hand
side of (12}. For example, for (j~(p)j~(p')), instead of
(12) we have
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( j~(p)j~(p') ) =
—,
' f dr dr'e '~' ~ ' [(j~~(x,y, z)j~~(x',y', z') )+ (j~~(x,y, z—)j~o(x',y', —z') )

z, z'(0
+ (j (x y, —z)j~o(x ',y', z') ) + (jo(x,y, z)jo(x',y', —z') ) ] .

(17}

k kp k kp
o o(k)=o,(k) 5,o—,+cr,i(k) (18)

The factor a is chosen to be 1/v 2 so that the integrand
in Eq. (17) approaches the bulk value far from the inter-
face. We have checked that our ansatz is consistent with
current-conservation requirements such as Eq. (13).

The most general form of conductivity for an isotropic
medium is

1 2 1 2 1

T 3 T $ 3 T
STAT pTQ j'(z /I),

2c I
(26)

where T and T, correspond to the magnetic field in the y
and z directions (respectively), and f (r) is a dimension-
less function given by an integral:

Now we can substitute our results into Eq. (1) to obtain
the relaxation rate

(IH'(z, co)l'&=, fdpo, (p) ~, e '&',2 =2T
ETC p

where q=(p„,p~ ). In cylindrical coordinates we have

( IH'(z, co) I')

(19)

f "dp cr ~(p) f "de sin 8 eJ. (20)

where the longitudinal part is irrelevant to our problem.
Now we have everything needed for the calculation of the
correlation function. Substituting (18} and (10) into (17)
we get correct correlation functions which we use in Eq.
(9). By performing contour integration in the complex
plane we obtain

f(r) =—f dk P(k) f "d & sin He
7T 0 0

where P is a dimensionless conductivity:

1 k &3n./4
P(k)= 3n

4k

The limiting expressions for f (r) are
T

1
r &&1f(r)= r

—41n(r) r «1 .

(27)

(28}

(29)

Now we should choose a model to describe transverse
conductivity. We are interested in the static limit (co~0).
The integral in Eq. (20) can be evaluated exactly if, for
example, we take o'j(p) =o'o.

& IH'(z, co)l'& =
c z

(21)

Using a Fermi-liquid model with the mean free path I, the
conductivity is given by

oo pl &3m. /4

cr~(p) = 3~cro
p/ & 3n/4.

4pI

(22)

where oo=Ne l/pF. Then we can evaluate the integral
in (20) in two limiting cases:

7TO 0T
&IH'(z, co}l &= —,z»1,

C2 2

(IH'(Z, co)l )=,Z «1 .z
'Irc7oT 4 ln(1/z)

C

(23)

(24)

The same result can be obtained for (IH"(z, coI ) and
( IH (z, co)l ),with the only difference being a numerical
factor:

( IH"(z, co) I'& = ( IH'(z, co)l'&

=
—,'& IH'(z, ~)l'& .

Actually, the integral over the momentum in (20)
should be cut off by Fermi momentum with the result
that our calculations are valid for z » I/kF. Also using
Eq. (10) for the magnetic-field-correlation function we
neglect the existence of a skin effect. This assumption is
justified in the limit co~0, that is, in the case of infinite
skin-penetration depth. For the case of finite frequency
our results still hold if z &&5. To check this we take
co=10 s '. In this case we are in the regime of an anom-
alous skin effect and 5=(c I/4mcoo)' . Substituting
o =10 s ' and i=10 cm we find 5=10 cm which
gives the upper bound on z for the validity of our results.
It follows that our results for z » ll (H(z) ) —1/z] are
not applicable for this set of parameters. Proper treat-
ment for this case should involve skin-effect equations.

III. SUMMARY

To compare our results with experiment we notice that
hydrogen atoms are adsorbed on the layer of solid hydro-
gen and liquid helium that covers the copper wall of the
cell. The hydrogen atoms may move along the surface
with thermal velocity. This motion should not affect the
nuclear-spin relaxation rate. To obtain numerical results
we assume T=1 K, Xe /p~=1. 3X10 s ' cm

p = 1.4 X 10 erg/G. Substituting numerical values
into Eq. (26) we obtain T, =(4X10 )If(z/l)s. The mean
free path of the electron in copper at this low tempera-
ture is determined by the impurity concentration. We es-
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timate it to be i=10 cm for the typical annealed
oxygen-free copper commonly used in experiments. The
typical thickness of a hydrogen-helium layer is about
3X10 cm. Thus we are in the z &(I regime. With
these assumptions we obtain the relaxation time of 2000 s
that is ten times longer than those reported in Ref. 4. We
note also that the data in Ref. 4 show the raise of the re-
laxation rate with decreasing temperature at T &0.4 K
while we predict the linear temperature dependence. We
attribute this discrepancy to the following. At low tem-
perature the surface density of adsorbed atomic hydrogen
grows with decreasing temperature due to the Boltzmann
exponent [the binding energy of H to liquid He is 1 K
(Ref. 10)]. This makes many-body relaxation processes
more important. We believe that special experiments can
be designed to look for the predicted relaxation rate and
verify the dependence on dielectric wall thickness, mean
free path, and temperature.
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APPENDIX

Yet another mechanism similar to the one considered
in Ref. 3 may be involved in the explanation of the ob-
served relaxation rate on insulator walls. Let us consider
the existence of the nonuniform charge distribution on
the surface of the insulator, which gives rise to a random
electric field above the surface. It can originate from sur-
face nonregularities, microdefects, etc. This electric field
is seen as a magnetic field varying in time in the frame of
an adsorbed hydrogen atom moving along the surface.
These magnetic-field fluctuations may cause nuclear-spin
relaxation. To make a quantative estimate we assume the
existence of a spatially varying electric field with the root
mean square value En=10 V/cm and a length scale
parallel to the surface of order /=10 cm. The local
magnetic field seen by the nuclear spin is H = ( u /c )E,
where u =10 cm/s is the average thermal velocity at 1

K. Thus the spatial variation on the length l of the elec-
tric field is seen as the temporal variation of the magnetic
field at the frequency co=ul/. We are interested in the
spectral density of the mean square value of this varying
magnetic field at the frequency no=10 s '. We note
that in our case co is of the same order as coo. Combining
the above relations we have (,H(co) ) =(u /c )Eol/u
From this we obtain a relaxation time of the order of
1000 s. The amplitude of the spatial harmonics of the
electric field of the wavelength l decays exponentially in
the direction perpendicular to the surface as e ' ' for
z&l. Thus, in contrast with the fluctuating-magnetic-
field mechanism described in the text, the relaxation rate
related to this mechanism should decay exponentially as
a function of the helium layer thickness.
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