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Dynamics of the normal to vortex-glass transition: Mean-field theory and fluctuations
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A mean-field theory is developed for the recently proposed normal to superconducting vortex-glass
transition. Using techniques developed to study the critical dynamics of spin glasses, we calculate the
mean-field vortex-glass phase boundary Ts(H), and find that the dynamic critical exponent z=4 in

mean-field theory. In addition, we find that the fluctuation conductivity in the vicinity of the transi-
tion has the form cr—(t- '+ i, in agreement with recent scaling theories of the transition. The exten-
sion of these results beyond the mean-field regime is also discussed.

Understanding the dynamic properties of the mixed
state in type-II superconductors is theoretically challeng-
ing due to the competition between collective intervortex
interactions and vortex pinning. As discussed by Larkin
and Qvchinnikov, pinning destroys the translational
long-range order of the Abrikosov flux lattice. Recently,
one of us (M.P.A.F.) argued that pinning and collective
effects conspire to produce a vortex-glass phase at suf-
ficiently low temperatures. In this phase the vortices
are frozen into an equilibrium configuration characterized
by a type of "spin-glass" order, rather than the transla-
tional long-range order of the flux lattice. As a result,
the linear resistance RL —=limt pV/I is identically zero in
this phase, in contradistinction to the Anderson-Kim mod-
el of flux creep, which predicts that RL&0 throughout
the entire mixed state. Tentative experimental evidence
for the vortex-glass phase in the high-temperature super-
conductor Ya-Ba-Cu-Q has been given by Koch et al. ,
and Gammel, Schneemeyer, and Bishop, who have used a
recently developed scaling theory of the conductivity to
interpret the nonlinear I-V characteristics in terms of the
vortex-glass model. Theoretical evidence for the transi-
tion consists of the existence of a vortex-glass phase in a
two-dimensional toy model of a vortex glass, ' and nu-
merical simulations on a simplified three dimensional
model of a vortex glass. "

In this paper we consider a mean-field theory for the
dynamics of the normal to superconducting vortex-glass
transition. This allows us to calculate the mean-field
phase boundary for a realistic model of a vortex glass in
three dimensions. In addition, we determine the mean-
field static and dynamic critical exponents for the transi-
tion. Gaussian fluctuations about the mean-field theory
lead to a linear conductivity which diverges at the vortex-
glass phase boundary, in agreement with expectations
based on the scaling theory. Finally, we construct an
eA'ective field theory for the vortex-glass order-parameter
fields, which allows for the calculation of the dynamic

critical exponent using renormalization-group methods.
Our work draws heavily on studies of the critical dynam-
ics of spin glasses.

The Ginzburg-Landau free-energy functional for a su-
perconductor in an external magnetic field H Vx A is
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where the angular brackets denote a noise average. Equa-
tions (I) and (2) define our model. The response and

where m is the mass of a Cooper pair (assumed to be iso-
tropic), h and h* are conjugate fields which are intro-
duced to generate response and correlation functions, and
where the terms for the magnetic-field energy have been
dropped. For simplicity we ignore fluctuations in the elec-
tromagnetic field, and we are thus modeling an extreme
type-I I superconductor (with an infinite penetration
length). The quenched disorder has been incorporated by
defining a random T,. [a=ap(T/Tp —I)], which is as-
sumed to have Gaussian white-noise correlations, so that
ai(r) =0, ai(r)ai(r') =4kb(r —r'), where the overbar
denotes an ensemble average over disorder. This spatial
variation in T, simulates vortex pinning since regions of
the sample which have a locally lower T„, and, conse-
quently, a higher free energy, will tend to attract the nor-
mal cores of the vortices. %'e will assume relaxational dy-
namics for the nonconserved order parameter (model
~),"
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correlation functions for the order parameter y are

8(lr(r, t)&

8h (r, t )

C(r, t;r', t') =(y(r, t)y (r', t')).

(3)

troduce the vortex-glass propagators

G ' (k, to, to') =„d(r—r')

x eik (r —. r') R(r, r';to) R*(r,r';to'), (5)
These are the response and correlation functions for a par-
ticular realization of the disorder; the disorder averaged
response and correlation functions will be denoted by R
and C. We also need to define an appropriate order pa-
rameter for the vortex-glass phase; this is the Edwards-
Anderson (EA) order parameter, defined by q EA

)(y(r))~~. In order to study spatial and temporal
fluctuations, following Sompolinsky and Zippelius we in-

I

G' (k, to, co') = d(r —r')

xe'" ' ' C(r, r';to)C*(r, r';to').

Using the fluctuation-dissipation theorem, C(r, r';to)
=2k&T ImR(r, r', to)/to, we may express G ~ in terms of
G (I ).

G (k, co, to') =, [G ' (k, to, —to')+G ' (k, —co, to') —Gt (k, co, co') —G (k, —to, —to')l.(ktt T) '
I (l )

We also introduce a dynamic vortex-glass susceptibility,
gyo(k, to) (kttT) G ' (k, to, to). The static vortex-glass
susceptibility, gyo(k, 0), is the Fourier transform of the
equilibrium vortex-glass correlation function Gyo(r—r') ((lit(r)y (r'))( . This correlation function will
approach a nonzero constant as

~
r —r'( ~ in the

vortex-glass phase, and in the vortex-fluid phase it will fall
oA' exponentially with the vortex-glass correlation length,
(yo. As a result, the long wavelength vortex-glass sus-
ceptibility, gyo(0, 0), should diverge at the vortex-glass
transition. The propagator G will be important in our
discussion of the fluctuation conductivity as the vortex-
glass phase boundary is approached from above (see
below).

We first sketch the derivation of the vortex-glass suscep-
I

l

tibility. " First, we rewrite the equation of motion, Eq.
(2), as a functional integral, and introduce a set of auxili-
ary fields to facilitate the calculation of the response and
correlation functions. This functional is then averaged
over the Gaussian disorder, thereby generating a spatially
uniform but temporally nonlocal quartic interaction. '
We decouple the disorder-induced quartic term by intro-
ducing vortex-glass fields Q,s, as in Sompolinsky and Zip-
pelius, and we treat the quartic interaction term

~ y~ us-
ing a self-consistent Hartree approximation. Evaluating
the resulting functional by the saddle-point method leads
to the following self-consistent equations for the disorder-
averaged order-parameter response and correlation func-
tions (for T) Tg):
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G ' (k, to, to') =I(k, to, to') [1 —Al(k, to, to')]
where

(10)

We note that (I) these equations are equivalent to the
"ladder summation" approximation employed by Ma and
Rudnick' to study the zero-field random T„model and
(2) in the absence of disorder (6=0) these equations
reduce to the Hartree approximation for a superconductor
in a magnetic field, which has been used by several au-
thors to study the transport properties' of a superconduc-
tor in a magnetic field in the absence of pinning. The
vortex-glass propagator G ' may be calculated in a simi-
lar fashion, by summing a ladder of disorder-induced ver-
tex corrections, which is equivalent to keeping Gaussian
fluctuations about the saddle point:

I

approach. If desired, this approach may be systematized
into a controlled large N expansion (N y fields), with the
saddle-point solution as the exact N =~ solution and the
Gaussian fluctuations giving O(l/N) corrections.

The phase boundary. We first consider the solution of
the saddle-point equations for k =e =0, in order to deter-
mine the mean-field phase boundary. First, note from
Eqs. (10) and (11) that the vortex-glass susceptibility
gyo(0, 0) =G ' (0,0,0) diverges when h,I(0,0,0) = l.
Next, we set co=0 in the self-consistent equation for the
response function, Eq. (8), and solve the resulting equa-
tion by expanding the response function in a basis consist-
ing of Landau levels in the x-y plane and plane waves

along the z axis. The result is
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Equations (8)-(11)are the main results of our mean-field
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where N is a cutoff, a is the renormalized value of a, and
cop =2eH/me. Stability considerations require that
k&Tb & h, . The vortex-glass susceptibility will diverge at
a certain value ag of a given by

1 ' l/2

g [a +hco (n+ —')] '' (13)
2 2zQ 2Q ~~p

We must solve Eqs. (12) and (13) simultaneously to
determine Tg(H). This is rather difficult, in general; how-

ever, in the limit of high magnetic fields or weak disorder
it can be shown that the solution is dominated by the
lowest Landau level (n=0). " Then by evaluating Eq.
(12) at T=Tg(H), we may eliminate ag from Eqs. (12)
and (13) to obtain the following expression for Tg (H) [re-
call that a =ap(T/Tp —I )]:

T 2(H)+3Tp(bh)
Tg H =

1+(2ke Tpb/d ) (bh )

where T„2(H) =Tp(1 —hcop/2ap) is the mean-field Abri-
kosov flux lattice transition temperature. We have in-
troduced the dimensionless parameters h =H/H„2(0),
b=(m gp/2tth )6, with H, 2(0) =f2/2eg (0) the zero-
temperature critical field and ((0)= lti/(2map) 't the
zero-temperature coherence length. Equation (14) is
correct in the limit 8 t ((h ' . " Under some cir-
cumstances we find that T„2—Ts cx:h t, reminiscent the
vortex-glass phase boundary determined by Koch et al. ,
but for other choices of the parameters the phase bound-

ary has a curvature which is in disagreement with the ex-
periments (i.e., Tg & T, 2).

Mean field c-ritical exponents We now .turn to the crit-
ical dynamics in mean-field theory, in order to determine
the structure of the dynamic vortex-glass susceptibility.
Since we are primarily interested in the long-wavelength,
low-frequency response near the transition, we can expand

I

gyo(k, co) =A/go "f(k(yo, co/0), (i 7)

where (yo-1T Tyo(H)1 ", with v= —,', rt 0, and
0 cL (ycjt, with z =4. These are the same mean-field criti-
cal exponents which have previously obtained for the criti-
cal dynamics of the Ising spin glass. Using Eq. (7), we
see that the propagator G also has a scaling form,

G (k, co, co') Ag 0 g (kgyG, co/0, co'/0), (is)

where g (k, co,co') is a scaling function.
The fluctuation conductivity Wha. t measurement will

probe the vortex-glass correlations discussed above?
Since the equilibrium vortex-glass correlation function in-
volves a disorder average of four order-parameter fields
lie(r), one might expect that the vortex-glass correlations
could be observed by measuring a suitable four-point
function. One experimentally accessible four-point func-
tion is the conductivity; one implication of the vortex-glass
instability is that the conductivity diverges at Tyo(H).
To show this, we first relate the real part of the conduc-
tivity to the current-current correlation function via the
Kubo formula:

Eq. (11) for small k, co, and t = (T— T—
g )/Tg, to obtain the

vortex-glass susceptibility [for T & Ts(H)l

gyo(k, co) =A[k~+y'k, '+&yG' i—co/I (co)] ' (15)

where

i—co/I (co) = —
&yG [1 —(1 i co—/0) ' '],

where A is a constant, y is an anisotropy parameter,
gyG ix: t is the vortex-glass correlation length, and
0 lL'(yG. By a suitable rescaling of the momenta, we see
that the vortex-glass transition is isotropic The. refore,
near the vortex-glass transition, the susceptibility assumes
the scaling form,

„a',( c)o= dt drl dr2e ' '(j„(rl,t)j,(r2, 0))
2kgTV 4 4
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where II(rl, r2, col, co2) is the vector vertex function, co+ =co'+ co/2, Vis the system volume, and tl„—=cl„i(2e/h)A„—. To
evaluate the vertex function we use the ladder approximation, and keep only the noncrossing impurity ladders. In this re-
gard, the calculation of the fluctuation conductivity is similar in spirit to the calculation of the conductivity for nonin-
teracting electrons in a random potential. ' The ladder approximation leads to the following integral equation for the
vertex function:

II,.(r, r';col, co2) = drl(8l, —82,)R(r, rl, col)R*(r', r2', col)12=i+5 drl R(r, rl, col)R*(r', rl, co2)II,(rl, rl col co2) .
mi 4

(20)

To solve Eq. (20) we first set r'=r; the kernel in the resulting integral equation is only a function of r —rl, and the in-
tegral equation can be solved using Fourier transforms. The resulting expression for the vertex function is then substitut-
ed into the conductivity, Eq. (19). Near the vortex-glass transition temperature the conductivity simplifies, and we find

dao' d' k
0'lI„(co) =Bp~ t G (k, co+, co —) =gyG Spy(copy@),

2n & (2n)' (2i)
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where the second Iine is obtained by using the scaling
form of 6 in Eq. (18), and an appropriate rescaling of
the momentum and frequency variables. In Eq. (21) 8„„
is a (magnetic-field dependent) constant, and S„'„(x)is a
scaling function. Thus, the linear conductivity assumes
the scaling form recently proposed by Fisher, Fisher, and
Huse. At the transition, the scaling function is of the
form S (x)-x +' t'. In addition, causality dictates
that at the transition the real and imaginary parts be re-
lated by o"(ta)/o'(ta) tan[tr(2 —d+z)/2z], so that the
phase angle between the real and imaginary parts of the
conductivity is universal. '6 We have explicitly confirmed
these expectations within our saddle-point approximation.
Recent measurements of the ac impedance of Y-Ba-Cu-0
thin films appear to support these predictions. ' Note that
in the absence of any pinning (d, 0), the conductivity
does not diverge due to flux flow. '

Critical fluctuations Final. ly, we study the Iluctuations
about the saddle-point solution, in order to calculate the
corrections to our saddle-point approximation. By ex-
panding the functional integral about its saddle point, we

find that the first nonlinear term in the eff'ective theory is
of order Q3. Power counting arguments then indicate that
d=6 is the upper critical dimension for the transition,
which is the same as for conventional spin glasses. By
studying the critical dynamics for d & 6 in an e 6 —d ex-
pansion, we find that the vortex-glass kinetic coe%cient
is not renormalized to first order in e, in agreement with

the results of Zippelius. Therefore van Hove scaling,
z =2(2 —ri), is correct to O(e); however, this relationship
may break down at higher order in e. ' A replica calcula-

tion' gives ri= —e/6+O(e ), indicating a dynamic ex-
ponent z = 5 in three dimensions, although the extrapola-
tion to a=3 should be only viewed as a guide to the mag-
nitude of z. The precise value of z in d =3 is best deter-
mined by detailed numerical simulation.

To summarize, we have introduced a random T, model
to study the effects of vortex pinning in the mixed state of
type-II superconductors. We have shown that a mean-
field approximation which has been employed in the study
of spin glasses causes an appropriately defined vortex-
glass susceptibility to diverge at the vortex-glass phase
boundary Tz(H). The mean-field critical exponents are
the same as for Ising spin glasses, v= & and z =4. We
have also calculated the electrical conductivity for
T& Tz(H), and have shown that it diverges with an ex-
ponent which is in agreement with a recently developed
scaling theory of the conductivity. This is in contrast
with the conductivity in the absence of any vortex pinning,
which is always finite due to flux flow. ' Finally, in the
critical regime we find that the dynamic critical exponent
z 2(2 —t)), in agreement with the results of Zippelius
for the Ising spin glass.
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