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A structure model for the icosahedral Al-Cu-Li quasicrystal has been derived. This is described in
six-dimensional space as a six-dimensional crystal, having four kinds of occupation domains with com-
plicated polyhedral shape. A general structure-factor formula is derived for such polyhedral domains,
and a simple description of the structure using the site symmetry is proposed. The model gives R factors
of 0.076 and 0.085 for recent x-ray and neutron-single-crystal-diffraction data [Boissieu, Janot, Dubois,
Audier, and Dubost, J. Phys. 3, 1 (1991)]. The structure consists of a large number of icosahedral clus-
ters and linking atoms joining them. It leads to an ideal cubic R-Al-Cu-Li structure and a large number
of other cubic crystals when appropriate phason strains are taken into account. Two structures, the
ideal R-Al-Cu-Li structure and a fictitious structure with a period (1+&5)/2 times longer, are shown.

I. INTRODUCTION

Since the discovery of icosahedral Al-Mn, ' many
theoretical and experimental studies have been made to
clarify quasicrystal structures and determined the ap-
proximate structures of icosahedral quasicrystals. In par-
ticular, realistic models that can explain the diffraction
intensities of icosahedral Al-Mn and Al-Cu-Li have been
given. The model for icosahedral Al-Mn (i-Al-Mn) pro-
posed by Yamamoto and Hiraga' (YH model) consists of
many icosahedral clusters (Mackay icosahedra) situated
at the 12-fold vertices in the three-dimensional Penrose
pattern (3DPP) and linking atoms joining them. In the
model of icosahedral Al-Cu-Li (i-Al-Cu-Li) by Elswijk
et al. ' ' (EHSB model), the vertex and edge-center posi-
tions in the 3DPP are mainly occupied by Al and Cu, and
two positions in the body diagonal of the acute rhorn-
bohedron in the 3DPP are mainly occupied by Li. These
models explain well the diffraction intensity. They are
therefore important as starting models for a further
study, but not ideal as models because they include some
atomic disorder.

In the YH model, the linking Mn and Al atoms are
disordered and are placed with the occupation probabili-
ty of —,', while in the EHSB model, all the sites (vertex,
edge-center, and body-diagonal positions) are partially
occupied by Al, Cu, and Li. It is uncertain whether such
disorder is present in real quasicrystals. The YH model,
in addition, includes a small number of short interatomic
distances that are crystallographically unreasonable. In
order to improve these points, Duneau and Oguey' gave
a slightly different model for i-Al-Mn (DO model) but the
model does not lead to the structure of the cubic approxi-
mant, a-A1-Mn-Si, under an appropriate cubic phason
strain. ' The EHSB model includes lots of atom clusters
as in its cubic approximant, E-AI-Cu-Li, but in contrast
to the approximant, many clusters do not have
icosahedral syrnrnetry. It seems quite natural from the
crystal-approximant structure that i-Al-Cu-Li or i-Al-Mn
also consists of icosahedral clusters and the linking atoms
joining them. In this paper we consider a quasicrystal

model that has a local atom arrangement similar to that
of R-Al-Cu-Li and gives an ideal R-Al-Cu-Li structure
under the appropriate phason strain.

There are three approaches to model quasicrystal
structures. The first one is the section (projection)
method in which the quasicrystal structure is given as the
three-dimensional section of a higher-dimensional crys-
tal. The second is the inflation method in which the
structure is constructed by the matching rules. ' ' The
last one is the dual (generalized dual) method which uses
dual transformation to obtain a quasiperiodic structure
from a periodic or quasiperiodic grid in three-
dimensional space. ' ' Among them the most con-
venient method for the structure analysis based on
diffraction experiments is the section method, which is
employed in this paper.

In the section method, the icosahedral structure is de-
scribed as a six-dimensional crystal which has atoms with
occupation (acceptance) domains extended over the inter-
nal (perpendicular or complementary) space. The struc-
ture in the external (parallel or real) space is given by the
three-dimensional intersection of the six-dimensional
crystal. This gives a simple method for calculating the
structure factor. Therefore, if we can construct a model
of the six-dimensional crystal, its structure factor can be
compared with experiment. The model can be construct-
ed by the theoretical consideration of the crystal approxi-
mant and 3DPP.

Another approach has been taken by two groups to an-
alyze quasicrystal structure. In this method, the phase of
the observed structure factor is determined by the struc-
ture factor of the cubic crystal approximant R-Al-Cu-Li
or by the contrast-variation method in neutron scatter-
ing. ' This provides the electron density of a six-
dimensional crystal by direct Fourier transformation of
the structure factor, from which the approximate shape
of occupation domains can be deduced. This approach,
however, still needs a model for the quasicrystal. The
electron density in the internal space is obscure because
many weak diffraction intensities are unobservable, so
that there exists an ambiguity in determining the shape of
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the occupation domain.
We employ the former method in this paper and de-

scribe an improved model for i-Al-Cu-Li which was pro-
posed previously ' in more detail. The model includes
neither nonphysical interatomic distances nor partially
occupied sites with occupation probability less than one,
except for the intrinsic disorder in Al and Cu. It contains
many icosahedral clusters and gives reasonable values for
the chemical composition and density.

In addition to the determination of real quasicrystal
structures, some theoretical works on quasicrystals, for
example electron-energy-band calculations or simulations
of the structure image in electron microscopy, need
periodic structures. For such works, it is useful to derive
a series of crystal structures with different unit-cell di-
mension but with cubic symmetry and a local atom ar-
rangement similar to that of the quasicrystal. Once we
obtain a quasicrystal model described in six-dimensional
space, we can derive such a series of crystal structures by
considering an appropriate phason strain and taking a
three-dimensional section as shown below. The procedure
employed ' is equivalent to that shown by Elser for a
one-dimensional analogue of the quasicrystal and similar
to the method by Kramer for the 3DPP, but we use the
section method here. ' We derive two cubic structures
from the quasicrystal model, one of which is an idealized
structure for a real cubic crystal (R-Al-Cu-Li) and the
other is a hypothetical one with a simple-cubic lattice and
lattice dimension ~ times larger than that of the former.
[r is the golden ratio (1+&5)/2.] The derived struc-
tures give correct space-group symmetry: the body-
centered Im3 is in agreement with the real structure for
the former while the latter must have Pm 3 as shown by
Kramer.

The purposes of the present paper are to construct a
model without unnecessary disorder and unacceptable
short interatomic distances for the i-A1-Cu-Li quasicrys-
tal, and to derive from the model related cubic crystal
structures found in several theoretical storks. Further-
more it is shown by structure-factor calculations that the
model is a realistic model for i-A1-Cu-Li and can explain
the observed x-ray- and neutron-diffraction intensities ob-
tained from single-crystal diffraction experiments. A
general structure-factor formula which is applicable to
any icosahedral quasicrystal with polyhedral occupation
domains is given. This includes the symmetry operations
explicitly, so that we can calculate the structure factor by
specifying only independent parts of the occupation
domains. The description of the occupation domain is
simplified by the use of site symmetry. This is demon-
strated.

The arrangement of the paper is as follows. In Sec. II,
we describe the occupation domains for a simple decora-
tion model and an ideal model. The structure-factor for-
mula for a general icosahedral structure is given in Sec.
III. The refinement of the ideal model is made by using
recent x-ray- and neutron-diffraction data in Sec. IV. Fi-
nally, in Sec. V, we derive an ideal R-Al-Cu-Li structure
and a fictitious cubic structure with a ~-times larger unit-
cell dimension from the quasicrystal model under the
phason strain.

II. DERIVATION OF OCCUPATION DOMAINS

(b) (c)

(e)

FIG. 1. Occupation domains appearing in the three-

dimensional Penrose pattern and its simple decoration. (a)

Rhombic triacontahedron, (b) rhombic icosahedron, (c) rhombic

dodecahedron, (d} acute rhombohedron, and (e) D,F dodecahed-
ron with the edge length equal to the lattice constant a.

In the section method, ' ' the quasicrystal structure
is described by a crystal in superspace which has several
occupation domains. For an icosahedral quasicrystal,
such a crystal structure is conveniently described by the
icosahedral coordinate system in six-dimensional space.
The six-dimensional space is divided into two three-
dimensional subspaces. One of them is called the exter-
nal (real or parallel) space and the other, the internal
(complementary or perpendicular) space. Each atom po-
sition is given as an intersection of the occupation
domain spreading over the internal space on the external
space.

The unit vectors of the icosahedral lattice are given

by a, =a(l, r, O, r, —1,0)0, a2=a(r, 0, 1, —1,0, r)0,

a~=a( —l, r, 0, r, ——1,0)o, a6=a(0, 1,~, 0, r, —1)0, where
a=a/v'(2+~) with a=5.06 A (a being the lattice con-
stant of the icosahedral lattice). The first three com-
ponents are the orthogonal coordinates of the external
space (with respect to the unit vectors a~„a02,and ao3)
and the latter three are those of the internal space (re-
ferred to a~, aos, and a06). The coordinates with respect
to ao~ are distinguished by the subscript 0 from those of
aj. These unit vectors are equivalent to

a, =a(0,0, 1,0,0,1)0, a, =a(c,s, s, s, c, —c2,s, —s2 s, —c)o
[j=2,3, . . . , 6, c =cos(2mj/5), s =sin(2irj/5),
c =1/v'5, s =2/v'5] used in a previous paper' but the
unit vectors of the external and internal spaces are select-
ed so as to be directed at the twofold axes in the present
case for the convenience of the cubic phason strain men-

tioned later. (It should be noted that the vectors ao are
different from those assumed by Cahn et al. )

The coordinates define the transformation matrix M
which relates the unit vectors of the six-dimensional lat-
tice with the unit vectors of the external and internal
spaces: a, =g.M,"ao . As is well known, the projection
of the unit cell or the Wigner-Seitz cell onto the internal

space is the rhombic triacontahedron with the edge
length of a [Fig. 1(a)]. The 3DPP is a basic pattern for
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icosahedral quasicrystals and is given by the intersection
of the six-dimensional crystal in which the occupation
domain shown in Fig. 1(a} is placed at each lattice point.
It is well known that the 3DPP consists of two kinds of
rhombohedra called the acute and obtuse ones, each of
which has the same edge length equal to the lattice con-
stant a. ' A realistic quasicrystal model is obtained
from it by adding additional atom positions.

(a) Simple decoration. A simple decoration model for
i-Al-Cu-Li includes additional occupation domains which
are common parts of two or more rhombic tricontahedra
(RT) placed at different positions. The edge-center posi-
tion is obtained from the rhombic icosahedron placed at
(1,0,0,0,0,0)/2, which is the common part of two RT
placed at the origin and (1,0,0,0,0,0) when the two
domains are projected onto the internal space [Fig.
1(b)]. Similarly, the body-center position of the acute
rhombohedron in the external space can be derived from
the common part of four RT placed at the origin,
(1,0,0,0,0,0), (0,1,0,0,0,0), and (0,0,1,0,0,0). This is the
acute rhombohedron (spreading in the internal space)
placed at (1,1,1,0,0,0)/2 [Fig. 1(d)]. [The rhombic dode-
cahedron in Fig. 1(c) is related to the face-center position
but is not relevant for awhile. ] In a simple model for i
Al-Cu-Li, Al and Cu occupy the vertex and edge-center
positions at random.

Li atoms occupy two body-diagonal positions of the
acute rhombohedron, ' which divide the body diagonal
into the ratio ~:~:~ . The occupation domain for
the Li atoms is given by the acute rhombohedron at
(1,1,1,0,0,0)/2&(0, 0,0, 1, 1, 1)'/2, where the superscript e
means the external-space components of a six-
dimensional vector. (The internal-space component is ex-
pressed by the superscript i. } Since (0,0,0, 1,1, 1)'/2 is
equivalent to (0,0,0,1,1, 1)/2 —(0,0,0, 1, 1, 1)'/2, the Li
site is given by the acute rhombohedron at
(l, l, l, l, l, l)/2+(0, 0,0,1,1, 1)'/2 and its equivalent posi-
tions under the icosahedral symmetry. The symmetry
operators of the icosahedral group generate 20 acute
rhombohedra around the body center (1,1,1,1,1,1)/2
forming the dodecahedron shown in Fig. 1(e). We will
call this the DIE dodecahedron. Thus, the simple model
of i-Al-Cu-Li is given by three domains shown in Figs.
l(a), 1(b), and 1(e).

It should be noted that the vertex and edge-center posi-
tions come from the occupation domains at the origin
and edge center of the six-dimensional icosahedral lattice
but the two body-diagonal positions are obtained from
that placed at the body center. In general, it can be
shown that the position ~ 'a apart from a vertex of the
3DPP along a fivefold axis is obtained from an occupa-
tion domain at the body center or around it in the inter-
nal space. We call such positions edge-off-center posi-
tions. The two body-diagonal positions are such exam-
ples.

(b) Ideal structure. The model mentioned above can
explain the diffraction intensity very well provided that
each position is statistically occupied by Li, Al, and
Cu. ' ' Such a statistical occupation of one position
with Li, Al, and Cu, however, seems to be unnatural and
suggests that the real structure has more complicated oc-

cupation domains which are occupied by either Li or Al
and Cu. The statistical occupation of one site by Al and
Cu may be intrinsic in this case because such an occupa-
tion is seen in the crystal approximant 8-Al-Cu-Li with
the cubic space group Im 3. '

R-Al-Cu-Li can be considered to consist of two units.
One of them is the rhombic dodecahedron [Fig. 2(a)] and
the other is the acute rhombohedron [Fig. 2(c)]. In
another view, the structure includes two icosahedral clus-
ters at the origin and body center, each of which consists
of 24 Al or Cu and 20 Li. We call these points the 12-
fold vertices because they correspond to the 12-fold ver-
tex in the 3DPP. Since the cluster center is vacant, the
12-fold vertex itself is not occupied by an atom. The
characteristic feature of the crystal is that the 12-fold
vertices are connected either with the acute rhombohed-
ron or with the rhombic dodecahedron mentioned above
as in the 3DPP.

As an ideal quasicrystal structure, we consider the
structure that has a local atom arrangement as close as
possible to that of R-A1-Cu-Li. We place the same
icosahedral atom clusters at the 12-fold vertices and con-
nect the 12-fold vertices with the two units with the same
decorations as those of the crystal approximant (Fig. 2).
In order to realize such a local atom arrangement in the
quasicrystal, we have to consider three points. First, the
12-fold vertices are removed because the cluster center is
not occupied; second, vertex positions with unacceptable
nearest-neighbor distances have to be removed; and final-

ly, some edge-center positions are shifted to the edge-off-
center positions.

(a) A

(b)

(c)

A

FIG. 2. Decoration of the two structural units in R-Al-Cu-Li
and the simple decoration model. The rhombic dodecahedra in

(a) the former and (b) the latter. The acute rhombohedron (c) is
common to both cases.
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It is known that the 12-fold vertices are obtained from
the small rhombic triacontahedron (SRT) with edge
length of ~ a. ' ' lf we place the icosahedral clusters at
all of them, a small number of clusters interpenetrate
each other. Such a situation is not seen in the crystal ap-
proximant. The appearance of the clusters in such a
short distance can be avoided by placing the clusters at
the 12-fold vertices that are derived from the occupation
domain shown in Fig. 3(a). This is obtained from the
SRT after dropping the cap along the fivefold axis. We
call this a small truncated rhombic triacontahedron
(STRT). To remove the relevant 12-fold vertices, there-
fore, the STRT has to be removed from the central part
of the occupation domain shown in Fig. 1(a).

With respect to the second point, we have to remove
small domains from the RT as shown below. The
icosahedral cluster consists of 12 edge-center Al or Cu
atoms at (1,0,0,0,0,0)'/2 (and its equivalent positions), 12
Al or Cu at (1,0,0,0,0,0)', and 20 Li at (0,0,0, 1,1, 1)'.
When the cluster is placed at every 12-fold site, the ver-
tex in the rhombic dodecahedron (RD) connecting two
12-fold vertices [I in Fig. 2(b)] should be removed be-
cause it is unacceptably near an edge-off-center position
of the RD [E and G in Fig. 2(a)]. The vertex to be re-
moved is (0,1,0,1,0,0}' apart from the 12-fold site, which
is obtained from the STRT at (0,1,0, 1,0,0)'. Therefore,
the common part of the RT at the origin and the STRT
mentioned above (and equivalent to it) has to be removed.
The resulting shape is shown in Fig. 3(b). Here and here-
after the SRT is used instead of the STRT for conveni-
ence.

In the inside of the RD, the edge-center positions in
the simple decoration [E' and 6' in Fig. 2(b)] have to be
shifted into the edge-off-center positions (E and 6). The
edge-center E' site is located at (1,2,0,0,0,0}'/2 (from the
12-fold vertex) which is equal to (1,0,0,0,0,0)/
2+(1,2, 0,0,0,0)'/2 modulo the lattice vector. Therefore,
the STRT placed here has a common part to the rhombic
icosahedron (RI) [Fig. 1(b)] at the edge-center

(1,0,0,0,0,0)/2. Similarly, the edge-center 6' site at
(1,2,0,0,0,0)'/2 (measured from the 12-fold vertex) is

(a} (c}

1 p' al'3~ M~II Ã

(e)

(b)

FICx. 3. Occupation domains of the ideal structure for (a) va-

cant 12-fold, (b) vertex Al, Cu, (c) edge center Al, Cu, (d) edge-

off-center Li, and (e) edge-off-center Al, Cu sites. The domain

with the shape of (a) is subtracted from the central part of (b) to
remove unoccupied 12-fold vertices.

equivalent to (1,0,0,0,0,0)/2 —(1,2, 0,0,0,0)'/2 and the
STRT has also a common part to the RI at
(1,0,0,0,0,0)/2. The rhombic icosahedron after removing
these common parts is shown in Fig. 3(c).

Finally, several edge-off-center positions have to be
added. The occupation domains for the edge-off-center E
sites and equivalent to them are given by the STRT at
—(1,1, 1, 1, 1, 1 )'/2 because ( 1,2,0,0,0,0)'/2 is shifted
there and this is equivalent to (1,1,1,1,1,1)/2
+(1,1,1,1,1,1)'/2. [Note that r '(1,0,0,0,0,0)' is equal
to (1,1,1,1,1,1)'/2. ] The position (1,1, 1, 1, 1, 1)'/2 is on
the body diagonal of an acute rhombohedron of the D&F
dodecahedron [Fig. 1(e)] and it divides the body diagonal
into the ratio ~ '.~ . Therefore, the two body-diagonal
positions included in the simple decoration and addition-
al edge-off-center E sites are obtained from the union of
the D,z dodecahedron and the 20 STRT's [Fig. 3(d)].
Similar consideration for the edge-off-center 6 sites leads
to the occupation domain shown in Fig. 3(e). Thirty
"capped" rhombic dodecahedra with the edge length of

a are located around (1,1,1,1,1,1)/2. These are on the
twofold axis and share two edges with the occupation
domain in Fig. 3(d).

Since the edge-center and its nearest edge-off-center
positions are too short to be occupied at the same time,
their occupation domains are inhibited from overlapping
when they are projected onto the internal space. If the
location in the external space is neglected, the occupation
domain for the edge-center positions [Fig. 3(c}]is located
in the internal space on the D ~E dodecahedron [Fig. 3(d)]
and contact its five concave faces around the fivefold axis
with five convex faces of the latter around the same axis.
Then the concave parts in the former agree with the con-
vex parts of the latter. On the other hand, the occupa-
tion domains of the edge-off-center 6 sites [Fig. 3(e)]
come to the outer five concave faces of the rhombic
icosahedron [Fig. 3(c)]. Thus, the overlap of the occupa-
tion domains are avoided.

In R-AI-Cu-Li, the edge-off-center E site [Fig. 2(a)] is

occupied by Li while the 6 site is occupied by Al. In
the simple decoration model mentioned previously, the
edge-center position is partially occupied by Li with

small occupation probability. ' This suggests that the
edge-off-center E site is occupied by Li as in R-AI-Cu-Li.
The small occupation probability of Li in the vertex posi-
tion of the simple decoration model' seems to be related
with the fact that a vertex in the rhombic dodecahedron
connecting the 12-fold vertices [I in Fig. 2(b)] is unoccu-

pied since the Li atom is hard to observe by x-ray
diffraction.

In summary, Al and Cu statistically occupy the occu-
pation domains shown in Figs. 3(b), 3(c), and 3(e}while Li
occupies that in Fig. 3(d). In particular, the occupation
domain of Fig. 3(e) is expected to be completely occupied

by Al. The structure-factor calculation will show that
such an arrangement of chemical species is realized in the
i-A1-Cu-Li quasicrystal.

III. STRUCTURE FACTOR

As shown in the previous section, the occupation
domain is generally a complicated polyhedron with con-
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cave parts. The structure factor of the quasicrystal with
the diffraction vector q is given by the summation of the
Fourier integrals of such occupation domains:

F(q) = g g a "f"(q')p"exp( B—"q' /4)
f R I~/ p

Xexp(2m iq [Rr"+~] )F"(R 'q),

where I2", f"(q'), p", and B"are the (inverse of) multipli-
city, atomic scattering factor, occupation probability, and
isotropic temperature factor of the pth independent atom
in the unit cell, and F&(q) is the Fourier integral of the
occupation domain at the position r". The summation
with respect to the symmetry operator [R ~r} runs over
the symmetry operators which generate equivalent atoms
in the unit cell from independent ones as in the usual
structure-factor formula. If we consider the temperature
factor 8'" coming from the random phason, the factor

I

exp( B—I'q' /4) is replaced by exp( B—"q' /4
B—'"q' /4) in Eq. (1}.
A convex polyhedron can be divided into several

tetrahedra, each of which is defined by three vectors e, ,

ez, e3 directed from the center of the polyhedron to the
three corners other than the corner at the center. If a po-
lyhedron has concave parts, the polyhedron is obtained
from some convex polyhedron by removing the concave
parts. Its Fourier integral is given by the contribution of
the convex polyhedron minus that of the concave parts
owing to the linearity of the Fourier integral. In Eq. (1),
the concave parts are treated as occupation domains with

p = —1. (Note that the concave part to be removed is a
convex polyhedron so that it can be divided into tetrahe-
dra. } Thus, the calculation of the structure factor is re-
duced to that of the Fourier integra1 of the tetrahedron,
which can be calculated analytically as shown below.

As shown in the Appendix the Fourier integral of the
tetrahedron defined by e„e2,and e3 is given by

J'0(q) = I I'[02'—3e4exp(IV I }+930I V5exp(IV 2)+~le296exp(I93)+040596]/(ele2e394e596 } (2)

where qj =24rq. ej (j =1,2,3), q4=q2 —
q3 g5 g3

q6=qI —q2, and V=eI [e2Xe5] is the volume of the
parallelepiped defined by e„e2,and e5. [It should be not-
ed that q depends only on the internal space component
of q because ej is a vector in the internal space. Conse-
quently, Fo(q) also depends only on the internal space
component of q. ]

In order to calculate the Fourier integral of a polyhed-
ron, it is convenient to use the site-symmetry operations
under which the polyhedron is unchanged. Then the
Fourier integral of the polyhedron can be calculated from
that of its independent part by using the site-symmetry
operations. Provided that the independent part consists
of n tetrahedra, the Fourier integral of the polyhedron is
expressed as

F"(q)= g g FJO(R, 'q)
(R, l~J j=1

(3)

with the site-symmetry operation [R, ~w} and the Fourier
integral for the jth (independent) tetrahedron, F~o(q),
which is given by Eq. (2). For example, the Fourier in-
tegral of the rhombic triacontahedron [Fig. 1(a)] can be
derived from that of one tetrahedron by the site-
symmetry operations. Since it is located at the origin and
has full icosahedral symmetry, its independent part is the
tetrahedron which is defined by three vectors
e, = —(1,1,1,1,1,1)'/2 (fivefold corner of the RT),
e2=(1, 1, 1, 1, 1, 1)'/2 (threefold corner), and
e& = (1,1,0,0, 1, 1)'/2 (face center). For the rhombic
icosahedron [Fig. 1(b)] at (1,0,0,0,0,0)/2, the independent
part is two tetrahedra and the DIz dodecahedron [Fig.
1(e)] at (1,1,1,1,1,1)/2 can be derived from one tetrahed-
ron. These are defined by vectors shown in Table I. (In
the above examples, the site symmetry of the occupation
domain center coincides with the symmetry of the occu-

pation domain itself but, in general, the symmetry of the
occupation domain may be higher than the site symme-
try. )

As stated in the previous section, the quasicrystal
structure can be described by specifying the shape of each
occupation domain and its location. The use of the site
symmetry and the independent tetrahedra provides a
convenient method for specifying the shape of the occu-
pation domain. Thus, the decomposition of the occupa-
tion domain into independent tetrahedra is efficient not
only for the convenience of structure-factor calculations
but also for a simple description of the quasicrystal.

IV. RKFINKMKNT QF THE STRUCTURE

The diffraction intensity of the i-Al-Cu-Li model de-
scribed in Sec. II can easily be calculated with the use of
the structure-factor formula given in the previous sec-
tion. To specify the shape of polyhedral occupation
domains, it is sufficient to give three edge vectors for each
independent tetrahedron after dividing the occupation
domain into tetrahedra with positive and negative occu-
pation probabilities. The edge vectors for the present
model are listed in Table I. Refinable parameters in the
present model are the temperature factor 8" and 8'" for
each occupation domain and the occupation probability p
of Al for the AI, Cu site. (The occupation probability of
Cu is given by 1 —p. ) We employed the recent intensity
data for single-crystal x-ray and neutron diffraction by
Boissieu et al. The least-squares program based on the
structure-factor formula described above has been writ-
ten and applied to the calculation of diffraction intensities
of the Hiraga-Hirabayashi model in i-A1-Mn. ' This was
extended to use x-ray- and neutron-diffraction data
simultaneously: It minimizes the sum of the weighted R
factors for x-ray and neutron data by the least-squares
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TABLE I. The vectors defining independent polyhedra. Each vector e, represents the position of the corner measured from the
center of an occupation domain at r+r'. Consecutive three vectors define a tetrahedron. A negative p in the header means a con-
cave part. The occupation domain is generated from the listed tetrahedra by the site symmetry G, given in the heading.
[r '=0.61803, r =0.31897, r =0.23607, r /2=0. 11803, /2=0. 19099, (3—r )/2=1. 30902].

(a) Vectors defining the small truncated rhombic triacontahedron (STRT)
[Fig. 3(a)], which has to be removed from the central part of Fig. 3(b).

{STRT) G, =m35, p = —1, r=(0,0,0,0,0,0), r'=(0, 0,0,0,0,0)'
e&=~ (1,0, 1,0, 1, 1)'/2 ez=~ (1,1, 1, 1, 1, 1)'
e4=w (1,w, 1, 1, 1, 1)'/2 e, =r '[(3—r '),0,0,0,0,0]'/2

e&=v. (1,0, —~ ',0,0,0)'

(b) Vectors defining the rhombic triacontahedron (RT) with concave faces [Fig. 3{b)].

(RT) 6, =m35, p =1, r=(0,0,0,0,0,0), r'=(0, 0,0,0,0,0)'
e&=(1 1, 1 1 1, 1}/2 ez=(1 1 1 1 1, 1) /2

(Concave part on RT) 6, =mm 2, p = —1, r = (0,0,0,0,0,0), r'= ( 1, 1, 1,0, 1,0)'/2
e, =(0 0 0 7 0 1) /2 ez=(7 0 7 'T /2, 0, —1/2)'

e& =(1,1, 1,0, 1,0)'/2

e& = (0,0,T,T /2, 0, 1/2)'

(Concave part on RT) 6, =mm2,
e, =(0,0,0, 1,0, 1)'/2
e4={00)7 y T /270y1/2)'

1, r = (0,0,0,0,0,0), r'= ( 1, 1, 1,0, 1,0)'/2
e =(0,0,0,v, 0, 1)'/2
es —(0,7,7,0,0,0)'/2

eq=(0 0 v 1/2 0 1/2)'

(c) Vectors defining the rhombic icosahedron (RI) with concave faces [Fig. 3(a)].

(RI) 6, =5m, p
——1,

e, =(0, 1, 1, 1, 1, 1)'/2
e =(0, 1, 1, 1, 1, 1)'/2

r = ( —,', 0,0,0,0,0) r'= (0,0,0,0,0,0)'

e, =(0, 1, 1, 1, 1, 1)'/2 e&=(0, 1, 1, 1, 1, 1)'/2

(Concave part on RI) G, =mm2, p = —1, r=(z, 0,0,0,0,0), r'=(0, 1, 1,0, 1,0)'/2

e, =(~ ',~,0, 1/2, 0, w /2)' ez ={0,0,0, 1,0, v }'/2 eq =(0,&,0, 1/2, 0, v /2)'

{Concave part on RI) G, =mm2,
e& =(0,&,0, 1/2, 0, 7 /2)'
e =(0,0,0, 1/2, 0, 1,2)'

p = —1, r=( —,', 0,0,0,0,0), r'=(0, 1/2, 1/2, 0, 1/2, 0)'

ez=(0, 0,0, 1/2, 0,~ '/2)' e3= {0,w, 0, 1/2, 0, 1/2)'

(Concave part on RI) G, =mm2, p = —1, r=(z, 0,0,0,0,0), r'=(0, 1, 1,0, 1,0)'/2

e) =(0,g, 0, 1/2, 0, 7- /2)' e =(0,~,0, 1/2, 0, 1/2)' e&=(0,~ ', 0, —~ /2, 0, 1/2)'

(Concave part on RI) G, =mm2,

e) =(0,~,0, —~ /2, 0, 1/2)'
e =(0,0,0, 1,0, 1)'/2

p = —1, r=(-', 0,0,0,0,0}, r'=(0, 1, 1,0, 1,0)'/2

ez ={0,w, 0, 1/2, 0, 1/2)' e~ = (0,0,0, —r /2, 0, 1/2)'

(Concave part on RI) G, =mm2, p = —1, r=(z, 0,0,0,0,0), r'=(0, 1, 1,0, 1,0)'/2

e&=(0,~ ',0, —7 /2, 7, z)' ez =(0,0,0, —~ /2, 0, 1/2)'

(Concave part on RI) G, =mm2, p = —1, r=(z, 0,0,0,0,0), r'=(0, 1,0,0, 1, 1)'/2

e]=(0,0, 1/2, —~ '/2, 0,0)' ez=( —~ ',0, 1/2, —~ '/2, —~ ',0)'

(Concave part on RI) G, =mm2, p = —1, r=(z, 0,0,0,0,0), R'=(0, 1,0,0, 1, 1)'/2

ei=(00~ /2 1/2 0 0)' ez=( r 0 1/2 & /2 ~ 0)

e&={0~ ' 0 —~ '/2 0 —,
')'

e&=( —~ ', 0, 1/2, —~ /2, 0,0)'

{ 7 y 07 1/2s 7 /2s 07Q)

{Concave part on RI) G, =mm2,
e&=(0 0 1, 1 0 0) /2
eg=( —&,0, 1/2, —g /2, 0,0)'

e,=(0,0, 1, 1,0,0)'/2

p= —1, r=( z, 0,0,0,0,0) r'= (0, 1,0,0, 1, 1)'/2

ez = (0,0, 1, —w ', 0,0)'/2 e3 ={—w, O, 1/2, 1/2, 0,0)'
e6=(0,0,~,1,0,0)'/2

(d) Vectors defining the D, s dodecahedron {DD) with convex faces [Fig. 3{d)].

(DD) G, =m35, p =1, r=(1, 1, 1, 1, 1, 1)/2, r'=(0, 0,0,0,0,0}'
e&

= (0,0,0,0, 1,0)' ez =(0,0,0, 1, 1,0)'

(Convex part on DD) G, =mm2, p =1, r=(1, 1, 1, 1, 1, 1)/2, r'=(0, 0,0, z, 1, z
)'

e&=( —~,0, —~ ', —~ /2, 0, 1/2)' ez=(0, 0, —~ ', —~ /2, 0, 1/2)'

e&={0,0,0, 1, 1, 1)'

ep =(0,0,0, 1,0, —~ )'/2

(Convex part on DD) G, =mm 2, p
e, ={0,0,0, 1,0, 1)'/2
e4= (Q, Q, —~, 1/2, 0, ~ /2)'

r=(1, 1, 1, 1, 1, 1)/2, r'=(0, 0,0, —', 1, z
)'

ez=(0, —~ ', 0, z, 0, 1/2)' e& =(0,0,0, ~ /2, 0, 1/2)'
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TABLE I. (Continued).

(Convex part on DD) G, =mm2, p =1, r=(1, 1, 1, 1, 1, 1)/2, r'=(0, 0,0, —,', 1, —,
')'

e] =(0&0& 7 ~ 1/2~0sg /2) e2=(Q —~ 2, 0, 21,0, 1/2)' e3=(0,0, —g, —g /2, 0, ~
)'

(Convex part on DD) G, =mm2, p =1,
e, = (0,0,0, 1,0, 1)'/2
e4=(Q, Q, —~ ~ —~ 3/2, Q

~ )'

r=(1, 1, 1, 1, 1, 1)/2, r'=(0, 0,0, -', 1,-')'

ez=(0, 0,0, 1,0, —v. )'/2 e3=(Q, —~,0, —',0, 1/2)'

(e) Vectors defining the capped rhombic dodecahedron (CRD)
with the edge length of r a [Fig. 3(e)].

(CRD) G, =mm2, p =1, r=(1, 1, 1, 1, 1, 1)/2,
e& 7 ( 1&0& 1~0& 1& 1 ) /2

r'=(1,0, 1,0, 2, 2
)'

e2=~ (1,0, 1,0, 1, 1)'/2 e, =~ (1,0, 1,0, 1, 1)'/2

(CRD) G, =mm2 p =1, r=(1, 1, 1, 1, 1, 1)/2,
e) =~ (1,0, 1,0, 1, 1)'/2 e =v 2(1 0, 1,0, 1, 1)s/2 e3 =w (1,0, 1,0, 1,1)'/2

(CRD) G, =mm2, p =1, r=(1, 1, 1, 1, 1, 1)/2,
e, =r (1,0, 1,0, 1, 1)'
e4= g (1,0, 1,0, 1, 1)'/2

r'=(1,Q, 1,Q, 2, 2
)'

2( 1 Q 1 Q 1 1 )I/2
—~

—2(1 0 1 0 1 1)l/2
e, =~ (1,0, 1,0, 1, 1)'/2

~ ~
~ ~ ~ ~

~ ~ ~ e

ooaoeo
'o ~ . -: '.~ ~.

~.i-;O.O.'. .
~ ~ e
~ ~ ~

e ~

~0::

~
'' ~''

o '.

. ''. ,
' 0'

.~ . . gO.

:i:.
~ 0

method as a Rietveld program used in the refinement of a
high- T, superconducting oxide.

A preliminary refinement showed that B' is negligibly
small and the edge-off-center Al, Cu position is fully occu-
pied by Al. Therefore, we neglected the B' factor and
fixed the occupation probability of the edge-off-center
Al, Cu site in the succeeding calculations. The least-
squares refinement converged smoothly at the R factors
of 0 076 and 0 085 for 56 x ray- and 40 neutron
diffraction intensities. These are nearly equal to the
values obtained by Boissieu et al. but, in the present
case, the appearance of unacceptable nearest-neighbor
distance between the edge-center and edge-off-center po-
sitions is avoided by use of the occupation domains de-
scribed in Sec. II. The observed and calculated
diffraction intensities are shown in Figs. 4 and 5. The
final parameters are listed in Table II. (Structure-factor
tables are available upon request. )

It is noted that Cu occupies preferably the vertex posi-
tion rather than the edge-center position while the edge- 0 ~ ~
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off-center position is completely occupied by either Al or
Li. This agrees with the site preference in R-Al-Cu-Li.
The model gives a reasonable chemical composition,
A1~6Cu»Li32. (The sample used is A1~7Cu»Liiz. ) The
point density of the model is 7.629a, which is nearly
equal to that of R-Al-Cu-Li, 7.670a . The temperature
factor for each atom is almost the same as the corre-
sponding one in a previous analysis except for that of
the edge-off-center Al and about twice that of R-Al-Cue«

Li. The large temperature factor of the edge-off-center
Al corresponds to the displacement of about 0.28 A.
This is consistent with the fact that the displacement of
the atom in R-Al-Cu-Li [Al, Cu(4) in Table III] from the
ideal position deduced from the above model is particu-
larly large (0.32 A) (Table III). The result suggests that
the edge-off-center Al atoms largely deviates from the as-
sumed position. Thus, the present analysis concludes
that the i-Al-Cu-Li quasicrystal has a local atom arrange-

(a)
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FIT+. 4. Observed (upper) and calculated (lower) diffraction
patterns for x ray along the (a) fivefold, (b) twofold, and (c)
threefold axes.

FIG. S. Observed (upper) and calculated (lower) diffraction
patterns for neutron along the (a) fivefold, (b) twofold, and (c)
threefold axes.
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TABLE II. The temperature factor (8) and occupation prob-
ability (p) for each occupation domain {OD). The occupation
domains are specified by the labels in Fig. 3. (V, EC, and EOC
in the heading mean the vertex, edge-center, and edge-off-center
positions. ) The standard deviations are in parentheses. Aster-
isked parameters are fixed.

OD (b) (c)
EC

(d}
EOC

(e)
EOC

8(A)
pAl

p
CU

p
1.i

2.0(2)
0.64{8)
0.36(8)

1.8(1)
0.85(3)
0.1S(3)

2.6(4)

1.0'

6(2)
1.0*

ment quite similar to that of the crystal approximant R-
Al-Cu-Li.

V. CRYSTAL APPROXIMANTS

As shown by Elser and Kramer, ' an appropriate
phason strain or a rotation of the six-dimensional lattice
against the external space leads to a periodic crystal
structure which is called a crystal approximant for the
quasicrystal. The cubic R-Al-Cu-Li is an example of
such crystal approximants. There are lots of crystal ap-
proximants with several symmetries which are the sub-

groups of the icosahedral group. In this paper, we con-
sider only cubic structures for the sake of comparison
with real crystal approximants. It has been shown that
the ideal model mentioned above really leads to the ideal
positions close to those of R-Al-Cu-Li. ' In this section
we describe the derivation of such a structure in detail.

The (linear) phason strain is defined by the shear strain
between external and internal spaces leaving the internal
space invariant. Owing to this property, the shape of the
occupation domain is unchanged under the phason
strain. The only change is the location of the center of
the occupation domain. As a result, the external space
cuts across a different position of the occupation domain
depending on the strength of the phason strain and this
leads to a different structure. The condition of the
periodicity is that three linearly independent lattice
points in the six-dimensional lattice are on the external
space provided that the external space (three-dimensional
hyperplane) passes through the origin. Then an infinite
number of lattice points are on the external space, form-

ing a three-dimensional periodic structure because of the
periodicity of the six-dimensional lattice. Cubic distortion
is described by the strain tensor S with S,"=5; +P5,-

where P represents the strength of a cubic phason strain.
The external and internal coordinates (with respect to
ao ) of the lattice vector (n, , n2, . . . , n6) are given by

g M; 'n when the p-hason strain does not exist. The
phason strain changes these into QJ(SM '),~n~.

The crystal approximant with the shortest period is ob-
tained when the lattice points (1,1,1,0,1,0), (1,0,0, 1,1,1),
and (0,1,1, 1,0, 1) are on the external space. Since both
external and internal components of these vectors are
mutually orthogonal, the resulting lattice has the cubic
symmetry. Then the vector (1,0, 1,1,0,0) is also on the
external space. Therefore, the lattice is body-centered

cubic. The strength of the phason strain in this case is
given by P= —r . The atom positions in this approxi-
mant can be obtained by taking an intersection of the
quasicrystal at the external space after deforming the
six-dimensional lattice under the phason strain. The
coordinates of atoms are listed in Table III together with
the experimental values in R-Al-Cu-Li. It is noted that
the calculated values are close to observed ones in R-Al-
Cu-Li except for the edge-off'-center Al, Cu site [Al,Cu(4)].

Another crystal approximant with periods (1,2,2,0,
1,0), (2,0,0,1,2, 1), and (0,1,1,2,0,2) is obtained when

This has a primitive cubic lattice in contrast to
the former and its period is ~ times longer than that of
the former (Table III). Similarly, the lattice points
(n, m, m, O, n, O), (m, 0,0, n, m, n), and ( On, n, m, Om) with
Fibonacci numbers m and n are on the external space
when P=(m —rn)l(mr+n) and these give a series of
cubic structures. We call this the (m, n) structure. The
two structures mentioned above are the (1,1) and (2, 1)
structures of this series. The same procedure can pro-
duce an in6nite number of cubic approximants for the
icosahedral quasicrystal which may be helpful to some
theoretical consideration applying the conventional
theory to the quasicrystal because their local atom ar-
rangement is quite similar to that of the quasicrystal.

In the remaining part of this section we discuss the
structural feature of the (2, 1) structure. This is a compli-
cated structure with 651 atoms (440 Al or Cu and 211 Li)
in the unit cell provided that the centers of the
icosahedral cluster are vacant. In order to simplify a
description, we note its framework structure consisting of

(a)

FIG. 6. Projection of the cubic (2, 1) structure along the prin-
cipal axis. The 12-fold vertices are denoted by large circles.
The D, ~ dodecahedron at (a} the origin and rhombic triacon-
tahedron at (b) the body center are indicated by thick lines.
Only the vertex positions are drawn.
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the vertex positions which are derived from the RT. As
in R-A1-Cu-Li, the structure includes the 12-fold vertices.
They are located at (0,0,0) and (0,1/2, r /2) and its five
equivalent sites under the cubic symmetry (the Wyckoff
positions la and 6g in Pm 3) at which the atom clusters
are situated (Fig. 6). At the origin, there is a D, E dode-
cahedron with the edge length of a [Fig. 1(e), but in this

case the structure is in the external space] and a rhombic
triacontahedron [Fig. 1(a)] is at the body center of the cu-
bic cell. One 12-fold vertex is at the origin and the other
six are on the surface of the unit cell. These two units are
connected with six rhombic dodecahedra [Fig. 1(c)] and
30 acute rhombohedra [Fig. 1(d)]. In particular, the 12-
fold vertices are connected by the rhombic dodecahedron

TABLE III. The structural parameters of two ideal cubic Al-Cu-Li structures and R-Al-Cu-Li. The
space groups of the (1,1) and (2, 1) structures are Im3 and Pm3. The 12-fold sites V in the (1,1) and
V(1) and V(2) in the (2,1) structures are vacant. The displacements u in R-Al-Cu-Li are measured
from the position of the (1,1) structure. In the (1,1) structure, Al, Cu(1) is at the vertex position,
Al, Cu(2) Al, Cu(3) are at the edge-center position and Al, Cu(4) and Li(1)-Li(3) are at the edge-off-center
one while the corresponding positions in the (2, 1) structure are Al, Cu(1)-Al, Cu(8), Al, Cu(9)-Al, Cu(23),
and Al, Cu(24)-A1, Cu(28) and Li(1)-Li(17). [e=a '/2=0. 19098, f =(1—r )/2=0. 30902,
g =~ /2=0. 11803, h =~ =0.38197, i =~ /4=0. 09549, j =(1—~ )/4=0. 15451,
k =(1+v )/4=0. 34549, 1=(1—v )/2=0. 42705, m =w /2=0. 07295, n =w /4=0. 05902,
p =~ =0.23607, q =

2
—x =0.26393, r =

2
—~ /4=0. 40451, s =

2
—w /4=0. 44098,

t =(1+v )/4=0. 28648, u =v —
4
=0.13197, v =(1—v )/4=0. 21352, w =4 —w = 0.36803,

x =~ '/2+x =0.45492, y = —' r=—0 35410..]

Atom
Al-Cu-Li (1,1) R-Al-Cu-Li

Q (A)

V
Al, Cu(1)
Al, Cu(2)
Al, cu(3)
Al, Cu(4)

Li(1)
Li(2)
Li(3)

2a
24g
24g
48h
12e

12e

16f
24g

f
0

0
f
0
0

0
0.3150
0
0.3104
0
0
0.1874
0

0
0
0.0944
0.0941

1

2
1

2

0.1874
0.3047

0
0.1802
0.1544
0.3426
0.4037
0.1985
0.1874
0.1171

0
0.17
0.02
0.05
0.32

0.10

0.08
0.06

Atom
Al-Cu-Li (2, 1)

Atom
Al-Cu-Li (2, 1)

V(1)

V(2)
Al, Cu(1)
Al, cu(2)
Al, cu(3)
Al, CU(4)

Al, Cu(5)
Al, Cu(6)

Al, cu(7)
Al, Cu(8)

Al, Cu(9)
Al, Cu(10)

Al, cu(11)
Al, Cu(12)
Al, CU(13)
Al, Cu(14)

Al, cu(15)
A1,Cu(16)
Al, Cu(17)
Al, Cu(18)
A1,Cu(19)
Al, Cu(20)

Al, Cu(21)
Al, Cu(22)

la
6g

12j
6e

241

8i

12j
12k

12k

12k

12j
241

241

12j
12j
241

241
12j
12k
241
241

12k
241

241

s
1

f2
4

h

0

0

Al, Cu(23)

A1,Cu(24)

Al, CU(25)
Al, CU(26)

Al, Cu(27)

Al, Cu(28)

Li(2)

Li(3)
Li(4)

Li(5)
Li(6)

Li(7)
Li(8)

Li(9)
Li(10)
Li(11)
Li(12)
Li(13)
Li(14)
Li(15)
Li(16)
Li(17)

12k

241

24l
6g
6h

6h

12j
241

8i

12j
12j
6g
241

6g
241
12k
8i

12j
6h

241
8i

12k
1b

m
1

2
1

2
1

2

e
l
2

1

2

e
h

f
e

2

e
1

q

m
0
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or the acute rhombohedron as in R-Al-Cu-Li. The ap-
pearance of the D&F dodecahedron and the rhombic
triacontahedron is characteristic of the (2, 1) structure.
These are not included in the (1,1) structure or R-Al-Cu-
Li but in the 3DPP. The rhombic icosahedron [Fig. 1(b)]
appearing in the 3DPP is, however, still absent. The po-
sitions of vertices in the rhombic triacontahedron are
diferent from those of the 3DPP because the rhombic
triacontahedron appears at the body center and must
have the cubic symmetry while it has at most the trigonal
symmetry in the 3DPP.

VI. CONCLUDING REMARKS

An ideal structure of the i-A1-Cu-Li quasicrystal was
described based on the section method. It contains
icosahedral clusters and linking atoms joining them. The
clusters are placed at the 12-fold vertices of the 3DPP.
The 12-fold vertices are linked with the acute rhombohe-
dra or the rhombic dodecahedra with the same decora-
tions as those of the cubic approximant, R-Al-Cu-Li. It
was shown that such an ideal quasicrystal structure can
be described by four polyhedral occupation domains
placed at the origin, edge center, and body center of the
six-dimensional icosahedral lattice. An analytical expres-
sion of the structure factor was given for the structure
with such polyhedral occupation domains. It includes
the symmetry operations explicitly and can calculate the
diffraction intensity from the independent part of the
domain. A simple method to specify the quasicrystal
structure with the use of site symmetry was proposed. By
the application of the least-squares program based on the

structure-factor formula, the model with four tempera-
ture factors and two occupation probabilities was refined
to give small-R values (0.076 for x-ray and 0.085 for neu-
tron data). The results showed that the site preference of
Al, Cu, and Li atoms is quite similar to that of R-Al-Cu-
Li. From the quasicrystal model the structures of two
cubic crystal approximants [the (1,1) and (2, 1) structures]
were derived, one of which is the ideal R-Al-Cu-Li struc-
ture and the other is a fictitious one with the lattice con-
stant ~ times larger than that of the former.
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APPENDIX

The structure factor of the 3DPP is given by the
Fourier integral over the rhombohedra because its occu-
pation domain (rhombic triacontahedron) is divided into
two kinds of rhombohedra. A general occupation
domain is, however, divided into several tetrahedra in-
stead of rhombohedra as stated in the text. The Fourier
integral of the tetrahedron defined by the three vectors
e&, e2, and e3 is easily calculated with the use of oblique
coordinate system: r =x,e, +x2e2+ x 3e3 and 2~q
=q&e& +q2e2+q3e3, where e&, e2, and e3 are vectors re-
ciprocal to ei, e2, and e3. e; ej =5;i. Then Fo(q) is given

by

f 1
1 —xl 1 xl x2
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0 0 0
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