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Thermodynamics in the vicinity of a critical end point is studied. Phenomenological arguments are
used to show the presence of further critical nonanalyticities beyond the leading-order singularities
found in papers I and II. These contributions are related to the universal correction-to-scaling features
of the bulk thermodynamics on the critical A line. The predictions are checked on exactly soluble
spherical models with short- and long-range interactions.

I. INTRODUCTION

Papers I and II of this series of papers are concerned
with phase boundaries in the vicinity of a critical end
point. The basic phase diagram (see Fig. 2 of I) arises
in a thermodynamic space of three fields (g, T, h) where
T is temperature, h is the ordering field, and g is the
nonordering field. These fields can be, for example, the
pressure, the magnetic field, or the chemical potential. In
outline the phase diagram is as follows. For low values
of g, only the noncritical spectator phase, a, is present.
This phase appears whenever g is small. Increasing g, one
finds a manifold 0, given by g (T, h) on which various
phases coexist. On this manifold one has the following
picture. For h = 0 and low T, the phases a, P, and y
coexist on a triple line, 7 For h g 0., the phase n coexists
either with and P(h ) 0) or with p(h ( 0), while, for high
T, n coexists with the single disordered phase Pp.

Increasing T along r, one Ands a point, T = T„g = g„
h = 0, where the triple line ends. This is the critical end
point, at which the phases P and y become mutually
critical. This point is also the end of a critical A line,
T = Tp(g) in the h = 0 manifold. This line separates the
P+ y phase (we will use this notation for the coexistence
of the phases P and y) from the Py phase above the
manifold 0, i.e. , g & g (T, h). The A line also bounds the
coexistence manifold p on which both P and y coexist for
T & T(g).

In I, the question addressed was: what sort of singular-
ities should be observed near the critical end point in the
function g (T, h) which specifies the phase boundary 0?
Using phenomenological and thermodynamic arguments
it was suggested that g~(T, h) should display character-
istic nonanalyticities at the critical end point controlled
by the bulk critical properties of the P, y, and Py phases
on the critical A line. If one puts

T Tg

To

when h ~ 0 and t -+ 0. Here one has Y+ —0, whiles

n, P, and 7 are the (universal) critical exponents related
to the A-line singularities and Lg contains singular terms
of 0(hs) and regular ones of 0(h2). It was then demon-
strated that various dimensionless ratios formed from the
amplitudes Xy, Yy, and Zy should be universal and re-
lated to the bulk A line amplitude ratios by
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X+Z+1= y2
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(2 —a)(1 —e)B

L~A+B~

(2 —~)&+i (1 —~)B&+i

(1.4)

(1.6)

where Ay, Cy, B, and B, are the amplitudes for specific
heat, susceptibility, spontaneous order parameter, and
order parameter at criticality, respectively. Numerical
values for the spherical and Ising models were presented.

The arguments in I were not rigorous. They assume
that no new type of criticality arises at the end point
and they ignore the droplet fluctuations that might in-
duce such changes. 4 One should note that droplet fluc-
tuations lead to singularities in the free energy as the
phase boundary 0 is approached. 4 In view of this, there
is a useful check on the predictions of (1.3)—(1.6) on
specific models. With this purpose, ~ the free energy
of a d-dimensional lattice with N sites occupied by n-
component spins S; with i = I, ..., N was considered
following Sarbach and Fisher, 7s in the thermodynamic
N —+ oo and spherical model n ~ oo limits, the free

with To being a convenient reference temperature, it is
found

g (T, h) =g. + git &+ I
—~ I' -Y+

I
~ l~lh

I

—-' Zp I
t,

I

'i h + Ag(T, h) (1.2)
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energy per spin is given by

F(T, D, h) = min( z kriT[X~(g) —(Id(g)]

+w(m, ) —hm), (1.7)

TABLE I. Comparison between theoretical values for the
exponent 8 and amplitude ratios for n (number of compo-
nents) = 1, 2, 3. These values were extracted from Refs.
14-18.

where the spherical fields ( is determined by the con-
straint and minimization equations [see Eqs. II(2.8) and
(2.9), i.e. , Eqs. (2.8) and (2.9) in of II], while

PV = —amp + —Urn~ + —Vm~, (1.8)

where D plays the role of nonordering field. In order to
realize tricriticality and critical end points one must have
U & 0 and V & 0. In addition one has h =( h (, while
m =& S & and m2 ——& S & are the spherical model
averages and the the functions of ( are defined in the
integr als

0.496 + 0.005
0.492 + 0.02

0.524 + 0.004
0.522 + 0.018

0.5501+ 0.0003
0.550 + 0.016

ar/ax+

0.64
0.64 + 0.05
0.7 + 0.03

0.615 + 0.005
0.6 + 0.04
0.6 + 0.1

0.6 + 0.01
0.59 + 0.06

8.6 + 0.2
8.5 + 0.9

5.95 + 0.15
5.9 + 0.5

4.6
4.6 + 0.05

d"k
Pq(j) = f a ln([(+ J(k) —J(OII/2xk~T),

(1.9)

(1.10)

Here a is the lattice spacing and J(k) is the Fourier trans-
form of the interaction J(R) that can be short ranged
(0 = 2) or long ranged with J(R) 1/R"+ (0 & 2) as

R ~ oo. Specifically it was assumed that J(k) has an
expansion about a unique maximum at k = 0 given by
Eq. II(2.5).

It was shown that this model, studied in the tricrit-
ical regime by Sarbach and Fisher, 7s displays, for all
dimensionalities, a critical line that ends at a critical end
point for an appropriate choice of the parameters in the
Hamiltonian. In particular it was shown, in the nonclas-
sical regime specified by d ( d & d+ where d = 0,
d+ ——2', that the end point is present for do g d ) d
where do ——&u, for any value of the parameters and for
d+ ) d ) do when U is not too small. In these cases,
the P+ p to Pp critical behavior specified by the critical
exponents n, y, P, and b and amplitudes Cy, Ay, B, and
B, were computed and the phase boundary cr given by
(1.1) and (1.2) was obtained. It was explicitly proved to
have universal amplitude ratios as in (1.3)—(1.6).

For the borderline d = d+ case the spherical model
free energy contains confluent logarithms that diverge on
the critical A line. %e analyze this special case fully in
Appendix A.

For d ) d+ the spherical model exhibits classical crit-
ical behavior in leading order. But, nonclassical correc-
tions to scaling also appear. In view of this, one may ask
if such corrections will generate singularities on the phase
boundary near the end point. The aim of this paper is
to investigate this question using the following strategy.
First, we will note, as usual, correction-to-scaling am-
plitudes related to the susceptibility, the specific heat,
and the magnetization near the critical A line, as well as,
the magnetization at T = T,(g) Then, using pu. re ther-
modynamic arguments, we will suggest that, besides the
leading-order singularities shown in Eq. (1.2), the phase

II. CORRECTIONS TO SCALING
AND CRITICALITY

Some years ago, it was realized both theoreticallyio
and experimentally that, in order to analyze data not
very close to the critical point, corrections to scaling
should be included. It is generally accepted that a phys-
ical quantity f; should be written asis

TABLE II. Comparison between theoretical calculations
for correction amplitude ratios. The calculations were per-
formed with a renormalization-group approach in d = 3 di-
mensions (BBMN, Ref. 19), and in d = 4 —c (assumed c = 1)
expansion by Chang and Houghton (CH, Ref. 21) and Nicoll
and Albright (NA, Refs. 20 and 22).

(BBMN)
(CH)
(NA)

a+/a,

0.96 + 0.25
1.0

2.54

0.315 + 0.013
0.23
0.32

0.90 + 0.21
1.16
0.5

boundary exhibits further ones involving higher powers
of t which are related to the critical singularities by uni-
versal amplitude ratios. Such behavior will be especially
relevant as soon as n, P, or p approach integer values or, if
the leading amplitudes become too small or vanish. This
is the case, for example, for the classical regime of the
spherical model where the only singularities arise from
the correction-to-scaling terms. In this case we explicitly
check our predictions.

In outline the remainder of this paper is as follows. In
Sec. II we analyze correction-to-scaling confluent singu-
larities for thermodynamic functions, obtaining universal
amplitude ratios. An appropriate extension of our early
classical arguments for determining phase boundaries
by matching free energies of distinct phases is assessed
in Sec. III. A complete study for the classical regime of
the spherical model is performed in Sec. IV where we

also obtain the singular behavior of the phase boundaries,
closely following II.~ Section V surriinarizes the conclu-
sions briefly.
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TABLE III. Comparison between theoretical (Refs. 19—22) and experimental estimates of some
universal correction-to-scaling amplitude ratios.

Theoretical

Experimental
SFs (Ref. 23}
Ar (Ref. 24)
CO2 (Refs. 25 and 26)
Hes (Refs. 26 and 27 )
Xe (Refs. 23, 26, and 28)
He4 (Ref. 26)
Ni (Ref. 29)
EuO (Ref. 30)
Pd3Fe (Ref. 31)

ac ac

1.12 + 0.29
1

1.4

ac am+

1.10 + 0.25
0.333

am ax+

0.90 + 0.21
0.6

0.7
0.15 + 0.04

0.42 + 0.02
1.4

ax

0.29 + 0.08
0.35

0.58
0.46
1.5

0.59
0.29
0.03
0.37

f; =A;
I
t

I

" (1+a; It I'+" ), (21)

III. THERMODYNAMICS AND UNIVERSALITY

where t = (T—Tq)/Tq is the reduced critical temperature
Tp, A; is the critical exponent, while a; and 8 describe
the leading nonanalytic correction to scaling.

In practice analytic terms varying as t, t+, ..., must also
be included in the correction factor.

It is well known that the critical exporients A; and the
dimensionless ratios involving leading amplitudes A; are
universal quantities. It has been suggested some time
ago that ratios among the correction amplitudes a; are
universal. iP Since then, many studies have been made to
test this theory. A complete review in this sense can be
found in Ref. 14 and summarized in Tables I, II, and III.

correction-to-scaling exponent, Q, U, U4, and Us are
smooth functions of g, T, and h, and the scaling func-

tion

Wg(y, z) = Wy(y, z, 0, 0, . . .)

is well defined. For simplicity, it will be normalized by

W+(0, 0)—:1. The two branches of this function must
satisfy matching conditions as y ~ +oo and z ~ 0 which
ensures the analyticity and consequently we should have

Wg(, .) =
I „l&~--»a W, (~„I«a, . . .)

~
I y I&'- a W~(l+ tp~h'~~+" ), (3.4)

where the ellipsis includes higher-order contributions in
t and It, while

A. Corrections to scaling near the critical line
U4 dW

U&&s d~
(3.5)

To characterize the behavior near the critical A line in
the space (T, g, h), using general scaling arguments, we
postulate, following I, that the Gibbs free energy can be
decomposed as

Gy(g, T, h) = Gp(g, Th)

I' Uh—Q I
t I'- w+, U4 I

t I' . . .

(3.1)

where+ (—) means disordered (ordered) phase and where
the ellipsis means higher-order corrections to scaling with
exponents es, &s, . The first term, Gp(g, T, h), repre-
sents an analytic background, and, the second, a singular
term given in terms of two scaling fields

P=2 —n —b, , (37)
the critical isotherm at T = T,(g)

h.M = M(g, T„h) —M, (g)
=+B,(g) I

h I'~'(1+b, h ~ + ), (3.8)

In a standard way we can define various thermody-
namic functions, namely, the specific heat, at a constant
field above and below Tg(g),

C (g T) T„'Ap(g)ltl (1+ay ltl + .),
(3.6)

the spontaneous order parameter

Mo(g T) =B(g) lt I'(I+b lt I'+ ),

t = [T —T),(g)]/T„h = h, and the susceptibility above and below T,(g)
3.2

where T = Tp(g) locates the critical A line while, T, the
end-point temperature, serves as a reference tempera-
ture, and the " " symbol entails T ~ Tp(g), and h ~ 0.
The functions t and h are presumed to be smooth func-
tions of T, g, and h. In (3.1) n is the specific heat ex-
ponent, 4 is the gap exponent, and 6I is leading-order

x(g, T) = G+(g) I t I' (I+ + I
t I' +" ) (3 9)

From (3.1) and (3.4), the leading-order amplitudes
Ay, Cy, B, and B, are given in terms of Wy(y, ) by
Eqs. I(3.8) and (3.9) while the correction-to-scaling am-
plitudes are found from
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(2-~+e)(1-++0) dW~

(2 —n)(l —a) dz

(3.10)

d R'y
cy = U4 2 (0, 0),

dg dz

d2
(0, 0), b = U4 (0, 0) (0, 0), b, = m

Then we can introduce various dimensionless ratios of correction-to-scaling amplitudes. The following are convenient
as seen in Sec. II:

a+ de@+
a dz

dS' c+
dz c

d3W+ d2W

dy~dz dy2

d3W d~S'+

dg dz dg

ay (2 —n+ g)(l —o, + 0) de d~Wp dan
0, 0 0, 0 Wy 0, 0

cy (2 —n)(l —cr) dz
'

dy
' '

dy dz
' (3.11)

(0, 0) „~+(0, 0)
d3W

(0, 0) 2 (0, 0).

l2+ C

4&+ &+c+
(3.12)

should equally be universal. Of course, one could
build additional amplitude ratios, involving higher-order
derivatives, as well as other combinations of critical am-
plitudes and correction-to-scaling amplitudes, but since
we want to apply these to the spherical model, we will
focus on (3.10)—(3.12).

B. Phase Boundary

Note that, since they only depend on Wy and its
derivatives, they are universal quantities. This is in
agreement with Aharony and Ahlers~9 who pointed out
that such ratios should be universal. One can also note
that the mixed amplitude ratio

g, (T, h) = go(T, h)

R(T, h)—
i
t

i Wy ', U4t

(3.15)

Here we are not including higher-order correction-to-
scaling terms that should come with exponents 05, 86, ...
[ not the same of Eq. (3.1)]. We also have

R(T, h) = Q[g. ; T, h)/(D, + D,'t + D,'h+ . )

(3.16)

in which D&, D&, Ds, Rq, R2, etc. , are given by expansions
of Go, Q, U, h, and t in powers of h, b,g, and t [see Eqs.
1(4 4)-(4 8)]

G (g, T, h) = G, + G, Kg+ G2t+ Gsh+. . . ,

(3.13)

on and below g (T, h) where

bg = g —g, and t = (T —T )/T, (3.14)

Now simply equating (3.13) and (3.1), the phase
boundary without neglecting the leading correction to
scaling yields the phase boundary in the form

Following earlier assumptions in I and before, 3 we will

assume that the noncritical n phase can be described by
an analytical free energy Gz(T, g, h) throughout the space
of parameters except, perhaps, on the phase boundary o

given by g~(T, h), and, more particularly, near the end
point T = T, and h = 0. Following thermodynamic
arguments of Gibbss we can derive the phase boundary
simply by equating G = Gp&. Although the droplet pic-
ture does not enable us to assume analytical continuation
of the free energies G and Gp~ beyond the boundary t7,

as pointed out in I, the equality holds for continuity.
Near the end point one can expand G as we did in

Eq. 1(4.1), obtaining

C. Coexistence line

Let us now examine g (T, h), in some particular cases.
First, consider the h = 0 surface. Then, when t ~ 0, Eq.
(3.15) gives

g (T) —go(T) g& + gqt + —X~
~
t

~

x 1+g~t'+ 0 [ t (' (3.17)

where the ellipsis denotes higher-order analytic terms, n
is the specific heat exponent, and 8 is the correction-to-
scaling exponent given by Eq. (3.1) if we assume 8 ( 1
and 0 ( 1 —e. Even though these assumptions are not
always true, they cover the cases for which the correction
to scaling is relevant.

In this case, the leading-order amplitudes Xy are given
by Eqs. (5.3)—(5.5) in 1, namely,

Xy=R, (e ( Wy(0, 0) (3.18)

with R, = R(T = T„h = 0) and the geometric factor

kdTP. E dg ). (3.19)

while



PHASE BOUNDARIES NEAR CRITICAL END POINTS. III.

zg = U4 i eii i (0, 0)
de

Wy (0, 0). (3.20)

which is determined purely by the bulk behavior on the
critical line. Note that the factor es in Eq. (3.20) drops
out of the ratio z+/z . In Tables I and II we listed some
values for these ratios for the d = 3 Ising model.

by

D. SmaB fields

For a small field above T, the phase boundary is given

g (T, h) —go(T, h)

= Y~ Ih lit l~ (I+&~ It I'+".)
—-'Zyh t (1+ y ( t

~
+ . . )+O(h ), (3.22)

where Y~ ——y+ ——0, by analyticity of G+ in Ii through
h = 0, while p and 7 are the magnetization and suscepti-
bility exponents, Y':—Y and Z~ are given in Eqs. I(5.8)

One may note that Eq. (3.17) confirms, as we stressed in
I, that the singularity on the phase boundary is mainly
due to the critical-line singularity.

It is clear that besides the universal relation (1.3) we
now also have

++ a+ (3.21)

and (5.9), and

y=U4, ) eo ) (0, 0)
d W
dy dz

z+=U4. Iso I' d, d
(0 o)

d3S'y

dy dz

d2Wy

dy

(0, 0),

(3.23)

T T, —(dT. 'i

g —ge
(3.25)

where v = 0 gives the T = T, isotherm plane while v = 1
specifies the critical line, T = T, (g) asymptotically. Now,
we find

Here U, = V(T=T„g=g,) and V4, =U4(T=T„g=
g,).

Now we can easily see that, besides the universal ratios
(1.4) and (1.5) we also have that

Z+ C+ y b
(3.24)

Z C Zy Cy

should be universal. Some theoretical and experimental
ratios are given in Tables II and III.

E. Field at criticality

Let us now consider the general locus

g (Ii) —g = (g Ii —Y ) Ii )~
+'l~ [1+y Ii ii +O(h& &~ Ii)]) e„ (3.26)

y. = U4. R. ) (3.27)

where V4, —U&(T = T„g = g„h = 0).
In addition to the previous expression for =2 in (1.6)

we have that

+~~ gC

Z+ j z+z+
( g~ ) (1 —++8)b, BC

E(2-~)(1 —~)~+) (2-~+8) u+c+
(3.28)

where we have supposed 8 ( p, which, since y ) 1, is
certainly satisfied if 8 ( 1. Here 'Y, is given by [Eq.
I(5.14)] and

termined knowing I&(() with ( given by the constraint,
since ( = Ii/m = 0 specifies the critical temperature, and
so, we have T,(D) given by Eq. II(2.18). Since ( -+ 0,
in the disordered phase, as Ii ~ 0 with m(h ~ 0) = 0,
the inverse of susceptibility y = ( will give the behav-
ior in the critical vicinity. In II we obtained a complete
phase diagram where we stressed that the critical or A line
ends in two possible ways: either at a tricritical point at
the vertex of the parabola Eq. II(2.19) at D = Di and
T = T&, or at a critical end point when the A line is cut by
a first-order line separating the disordered and ordered
phases from the noncritical n phase at D = D, & D~ and
T &Tg.

It is then clear that the presence of the end point de-
pends on the existence of the n phase at the tricritical
locus. To analyze this location we will introduce, as in II

is universal.
As mentioned such corrections will be relevant when

apt~ is not small. Furthermore, in the classical regime
(a = 0, P = z, and y = 1), the correction zyts will give
the leading singularity in the expression for g (T) This.
is the case for the classical regime of the spherical model
in its d & 20. that is studied in Sec. IV.

T —T
)

D —0,
V

(4.1)

IV. SPHERICAL-MODEL CLASSICAL REGIME mg —m y m(1+ t),

A. The madel
Let us now consider the spherical model introduced

in Sec. I. The critical behavior of the model can be de-

where ~ =~ V
~
/2V. Now the free energy can be written

as a sum of an analytical piece [see Fq. II(3.9)] and a
singular part, namely,
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EF=slm V+2 wtrn +(g+w t )m V —hm

+ '/:g-gT [Xg(g) —/Id(g) —Pd(0)] (4.2)

that vanishes identically on the A line. Also the con-
straint and minimization relations are given by 48(1+ 8) = gx,'/2(1 —j8) . (4.12)

(A4) in the limit 8 ~ 0.
At the tricritical point where t = g = 0, the mini-

mization and constraint relations (4.4) can be used to
eliminate m and yield

rn = u = m + w(1 + t) [Ig(() —Ig(0)],

v(m) = m + 2tm+ g+t w

(4 3)

(4 4)

Besides the trivial ( = 0 or tricritical solution, there is
a second or n-phase solution ( = (o. The free energy of
the tricritical point, namely,

Using (4.3) and (4.4) one can obtain the critical behavior
for d & d4. as given in II. Also the behavior for d = d+
can be checked through explicit and exact expressions
given in Appendix A. In the remainder of this section
we will explore the case d ) d+, extracting the free-
energy correction to scaling and its influence on the phase
boundaries.

~~ = P l(1- 2(1+28)
~8

2+8
38/2

248(1+8)
I

-"
I

Eq)

vanishes when ( = 0 and, consequently the n phase and
the end point will be present whenever AFq & 0 or p & po
with

B. The phase diagram
P (d) s 3/4 (1 + 33 8) (4.14)

I J q = 8( ) 2 ' /'o I'
i

—i,
(d)
&2)

' (4.6)

Iq j +8p= 1 2 xd OI'
i

—
i
sin(8z),

(dl
(4 7)

in which

For d ) d+ the singular behavior of the integral (1.9)
appears only in higher orders than in II. If one assumes
d+ ) d ) d+ with d4. ——min(3o', 6)

4(() =4 I-K+p('"+o(('),
where the crucial parameters p and q are defined via

One should notice that po(d) is continuous and analytical
in the d ) d+ region [see po(d & d+) in II and Appendix
A here].

Precisely when p = po the tricritical point and the crit-
ical end point coincide (see Fig. 4 in II). Owing to the
presence of the ot phase we must also locate the phase
boundary separating the o; phase from the Pp phase.
Such a first-order line ends, as usual, at a critical point,
located by imposing the usual phenomenological condi-
tion that the three solutions of (4.4), namely, (0, (+, and

assume the same value. ( As in II the critical point
at the end of the n —o.P boundary is completely classical
in character. )

Now, from the conditions

8 = (d —20)/o (4.8) urn =vm

Note that 8 is positive but less than unity for d & d+. For
convenience a spherical Brillouin zone of ratio

i
k i= z'/a

with vr m has been assumed.
The singular part of the free energy (1.7) will now come

from (4.3) with

u'(m) = e'(m) = 2m+ 2t

u"(m) = v"(m) = 2

we obtain the equation

(4.15)

P l(1 (1+8) (
E2 (2+ 8) )

( 38/2
8V'/'8(1+8)

i

-"

(4 9)

and from the constraint (4.4), namely,

p2( I Z)3 lq Z 1—1/8 (4.16)

where Ii8 = [2(1+8)83/2 j(1+ t)]2 and (8 = Z/(1+ 8).
This has a solution provided I&8/p2 is small enough and
0 & 1. In this case, the critical point locus is found from
(4.14) to be described by

( q
1/8

u '(&) = p'4'(I —(')/16V8'(I+ 8)'
i

—
i

28(1+8)
I V

I— (4.11)

that is equivalent to Eq. II(3.2) and also coincides with

(4.10)

where g = (p/q)1/8(. In addition a basic dimensionless
parameter has been introduced, namely,

i
Z —(2+8)Z+ 1

(1+28)
g 1+8)
(p) 1/8 pZl/8 —1

8(1 + 8)1/8

(4.17)

Note that the condition t, = 0 (T, = T, ) yields the
parameter-space locus p = pl(d) where
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pi 5.0882(1 + 2.0738), (4.18)

C. Free energy near the A line

In order to obtain the phase boundary we will have to
compute the free energy of the P7, P+ 7, and n phases
near the A line. To that end we introduce

that is illustrated in Fig. 5 of II. Below Tq the critical
point can also arise with D, = Dq at g, = 0 for p = p2 &
pq. For lower D values, the critical point reaches the
n —(P+ p) phase boundary at a special quadruple point
at p —p~ & p2. One can then learn from this analysis that
the d ) d+ phase diagrams for different p values have the
same qualitative behavior as those for d & d+ ones.

Now that we can ensure the existence of an end point
we may focus on the A line neighborhood near the end
point.

consequently, LFp is analytic with A = a = 0. As
one allows h g 0, the ordered phase-free energy exhibits
a singular part given by

AEp+ ———rnh —2C t h, (4.2?)

where C = C+/2 (classical behavior) while, since m =
m~ is nonzero, from Eq. (4.4), a spontaneous magneti-
zation, namely,

m= B (t (~ [1+O(t)] (4.28)

arises with, as we obtained in II, P = z and B
I/(2iot) ~2, note, however, there is no correction-to-
scaling terms O(ts), in other words, b = c = a = 0.

Now, on the critical isotherm we find

m, -B, (h)'~ (1+b, )h('~ ) (4.29)

and

t=g+m t (4.19) 6F, = ——
f

h
/ ( 1+ 5,

/
h [

'~
4 q 2+8 (4.30)

which measures the deviation from the critical line. From
Eqs. (4.3) and (4.4)—(4.8), the singular piece of the free
energy is given by

w'ith amplitudes

B, = (C+/2urt)'~s (4.31)

—hrn.

AF = —p(1 yt)(2+8) '('+'
2

(1+t)qmtz

4[1+2q(1+ t)w2t]
(4.20)

and

b, = —( 2mt/ C+)' + (1+t)mp/3 . (4.32)

One might well note that the universal leading-order
amplitude ratios given by [see also Eq. II(2.19)]

~+ - q-' = C+t='(I + c+t'),

so p = 1 as expected, with amplitudes

Cp —1+ 2qt(1+ t)u',
c+ ——2pt(l + t)m2/C++,

(4.21)

(4.22)

(4.23)

Now, assuming that h ~ 0 so that ( = y i and using
Eq. (4.4), we find that the susceptibility diverges as

A C
A+

'
C+

A+ C+

A+ B~
Bb+1

1
)

2

2

(4.33)

(4.34)

(4.35)

are classical. Besides, correction-to-scaling amplitudes

and consequently the singular part of the p7 free energy
ls a+ c+ a+

)
C+

+
C+

(4.36)

t" 1+Ap ~ ( 2a+ts

(2+ g)(1+ g) r
—2iC+t h (1+c+t ) (4.24)

(A+) ""
s ——

I(C+) a+c+ 9
(4.37)

with

1
A+ ———

2t
(4.25)

are, as expected, universal. Note that they are indepen-
dent of (d, o).

D. The n-phase free energy

and

a+ ———c+ (4.26)

if a small field is allowed. We might point out here that
one has a = 0 for d & d+ and, consequently, the leading
order "singular part" of the free energy varies as t+; thus
the separation from the analytic part is not obvious. A
proper choice is, however, fundamental in order A to pre-
serve the universal leading-order amplitude ratios given
by (1.3)-(1.6).

In zero field the ordered phase presents g = 0 and,

As observed in the analysis of the phase diagram, the
e phase is basically characterized by the nonvanishing
of the spherical field ( even when the critical A line is
approached. This phase should exhibit an analytic free
energy as expected since it is a spectator phase as regards
of the vicinity of the A line. In order to ensure the absence
of singularities, the free energy in the neighborhood of the
end point should have a Taylor expansion in powers of
t = t —t, and g = g —g, where (t„g,) are the end-point
values. Thus, we rewrite the free energy, as in Eq. II(5.1),
but now with the parameters I&; and L; given by
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] I 1 1 II'. = --Vr~ q,4 ' 2 2+0
—VI'tu toqt,

which verifies the predicted universality and relation to
the bulk critical amplitudes on the A line.

I&2 = —~I'ipt(t + 1+ 2Vu)'wqt)I&s

1 (1+28) 1——VI'qtmu',
6 (2+8) 2

I&4 ———V I'm'q,

where I' = 8/(2+ 8) and ip' = ip(1+ t) and

1 (1+8) u t(1+ 8)
2 (2 + 8)

'
(2 + 8)

1 (1 + 8)
Lg ———

2 (2 + 8)' LB —L4 ——0.

(4.39)

Now, following II, the end-point location is obtained
by taking t = 0 as well as AF = 0 that reproduces Eq.
II(5.9) from II but with

b = —2 (28+ I)/38Vip'q —2iot,

c = +2t/Vq(1+ t) + 4u) t
(4.40)

(4.41)

Now we can compute the end-point location. For small

p —pp, (, will also be small and consequently the end
point is given by

m~, —2 (28 + I)/38Vipq

4 (28+ 1) /9Vip q

(4.42)

(4.43)

Then, we can develop the expansion for the spectator
a phase about the end point as in Eq. II(5.17). The
coefficients Q;/ and R,&

will be well-behaved functions of
V, m, p, and q that, for brevity, are not, given here. It is
not hard to see that to compute the leading singularities
as well as the first correction in the phase boundary one
does not actually need these coefficients provided 0 ( 1.
(It is clear that the cases with 8 ) 1 can be analyzed
in the same way but with greater complexity and less
interest. )

Now that we have all the needed free energy functions,
we can compute the phase boundaries and check for sin-
gularities.

E. A further amplitude ratio

) 28/3

z'&
y

2 1 (1 + 8)
22(1+8/3) (2 + 8)

' (4.44)

The explicitly computed free energies for the Py, P+
y, and the o, phases can now be used to compute the
phase boundary D (T, h) or g (t, /i) near the end point
simply by equating the free energies. The procedure is
explained in detail in I and II. In the presence of a small
external field, the phase boundary is given by Eq. (3.22)
with the amplitude ratios z jz+ ——z jx+ ——y/z~ ——

0, since z = y = z = 0. We can similarly check
the behavior on the T = T, loci (3.25) following (3.26)—
(3.28). Explicity we find

V. CONCLUSION

We have studied the bulk thermodynamics near a crit-
ical end point in order to examine the existence and na-
ture of higher-order nonanalyticities. Using purely phe-
nomenological arguments, first introduced in I, we pre-
dict in Sec. III that such behavior should be controlled
by the correction-to-scaling universal bulk critical expo-
nent, and amplitudes on the critical A line. In order
to demonstrate the relevance of such correction terms,
we also summarize in Sec. II some universal features in
correction to scaling, noting that the values of the uni-
versal amplitude ratio are even now not well-est, ablished
numerically. Apart from this we must say that these cor-
rections become more interesting when the leading-order
singularities are "weak" (small amplitude and exponent)
or absent.

Relevant bulk critical-point correction-to-scaling am-
plitude ratios are present in (3.11) and (3.12) and related
to the phase-boundary-singularities amplitudes in (3.21),
(3.24), and (3.28).

Then, in order to check these predictions against a spe-
cific model, we study in Sec. IV, as we did in II, the
spherical model with short- and long-range interactions
but now for dimensions exceeding to the upper critical
dimension d+ ——2o.. In this case the leading-order sin-
gularities are classical and the nonclassical correction to
scaling play an important role.

Following the procedure introduced in II we find that
the phase boundary between the spectator or o. phase
and the critical phase exhibits singularities as the end
point is approached. The amplitude of these singularities
combine to give universal ratios.

These ratios are directly related to universal bulk am-
plitude ratios evaluated on the A line. The form of these
relations are just those predicted in Sec. III, so confirm-
ing the phenomenological theory. One may remark that
the spherical model is somewhat artificial; we cannot thus
assert that a more realistic model might not contradict
our heuristic predictions.
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APPENDIX A

where 0(() comes from higher-order terms in Eq. II(2.5),
while

2cr+1
J"3/210-

& )
The free energy term in (4.3) becomes

(A2)

b.F= p ln(1+()+( lnl 1+=
I

i.H '
16 (r

+0(&') (A3)

where (:—(/J~%' . If J(k) = J(0) —J I ka I, (Al) and
(A2) should be exact.

At t = g = 0, on the tricritical point, we may eliminate
m from (4.15) and (Al). A nonzero solution ( = (0 of this
equation will be allowed if APi(t," = (s) & 0 or, following
procedure similar to that in Sec. IV, p(d = d~) & ps
where we have the definition

p=R' %. Up

we obtain, numerically

pp 5.11 .

(A4)

(A5)

Further information about the phase diagram is ob-
tained from the critical-point analysis. Following II, we
find that the phase boundary between the critical and
noncritical phases is terminated by a critical point solu-
tion of

(1+t)V = 8C(C)/((I+ &)

where

(A6)

It is well known that at the borderline d = d+, the
spherical model exhibits logarithmic factors. In this ap-
pendix we will check this explicitly. Besides one can ask
if the d = d+ case yields the same d ( d+ behavior given
qualitatively in Figs. 4 and 6 in II. In order to answer
this question we have to compute pp, p1, and p2 which
we do next.

For d = d~, the integral 1~(() can be computed, follow-

ing the Appendix in II. From this the constraint condition
(4.4) becomes

m = —iu(l + t.) —( ln + 0((), (Al)
p &(+i.~.&

where b ) 1 depends on J(k) = J(0) —J
I

ka
I +E(k)

and the equality would hold if one assumes E = 0 [in
that case (Al) should be exact].

At t, = 0, one has p = p1 where

P1 4 7183,

and at g, = 0, one has p = p2 where

P2 4.503 .

(A9)

(A10)

bF, sB, Ihl/ —Ilnhl/, (A13)

where A+, C+, B, and B, are simply the y ~ 1 limits
of Eqs. II(4.4), (4.6), (4.8), and (4.11) and, since no log-
arithmic factor is present in Fp&, A = 0 and we cannot
define a susceptibility (note that this is no longer true for
d ) d+). From these amplitudes we can obtain universal
amplitude ratios, for example,

A

A+
A+C+1=
A+B,
gb+1

1

2
' (A14)

Related phase boundary ratios as given by Eqs. (1.3)—
(1.6) can now be obtained. First, we rewrite Eq. (1.2)

Now, on the basis of (A5), (A9), and (A10) we are al-
lowed to claim that the d = d+ case follows qualitatively
the same d & d+ phase diagrams.

It must be pointed out that the p values computed
in this appendix dier from the 8 ~ 0 limit of those
obtained in Sec. IV ones. This difference depends on
0(t,"a) approximation used there.

Finally we can answer our prior question regarding
the presence of logarithms in the free energy and con-
sequently in the thermodynamics functions.

Following the standard procedure, z we find that the
singular terms in the free energy should be given by

aF~, = — + t"
I
lnt

I [1 + 0(t")]A+ ~

+ z C~t I
Int

I
h [1+(0(lnt) ), h /t ]

(Al 1)

and

&Fp+ = —B
I
t I~

I
h

I [1+0(l h
I / I

t I"')], (A12)

where pp (and p+ y) means T ) Tp (and T & Tp). At
T —Tg

C(() = (1+ t,') ln
~
1+ =

I

—1.
1

C)

The new critical point is located at

(A7)
g. = g, + g,i —X~i' ln

I
i

I
—V+ I

t I' 'I h
I

—-'Zy
I t

I

' ln
I
t

I
h + Ag(T, h), (A15)

, r, = —pq ln,
I
1+ =

I

—C'(q),
t'

1 —r, ' '
8 ( ()

(A8)
g = s'4 t"&'t"'(I+ t)'(I+ 0 'C'(&) [2 —C(&)(1+&)]

where we assumed the existence of logarithmic singular-
ities. Next, by equating (3.13) to (All), (A12), and
(A13), one obtains that, even in this borderline case,
the model exhibits phase-boundary ratios given by Eqs.
(1.3)—(1.6). Note that the universality of such ratios are
not obvious due to the presence of logarithmic terms.
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