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Motivated by the short coherence length of the high-temperature superconductors, we study in the

negative-U Hubbard model the crossover from Cooper pairs for UC&t to composite bosons for U&&t.

We compute the collective-mode spectrum using a generalized random-phase-approximation analysis

within the equations-of-motion formalism. We find a smooth evolution of the Anderson mode for

weak coupling into the Bogoliubov sound mode for hard-core bosons.

One of the most striking characteristics of the supercon-
ducting cuprates, in addition to their high transition tem-

peratures, is their short coherence length. If one inter-

prets the coherence length as a pair size one concludes
that the number of fermions within a pair is rather small,
in contrast to the standard BCS theory where the pairs are
strongly overlapping. Following early work on helium-3,
and on excitonic condensates, i it is tempting to propose4
that the high-T, superconductors are in an interesting in-

termediate regime between the weak-coupling Cooper-
pair limit, and the strong-coupling limit of tightly bound

composite bosons. The normal-state experiments clearly
show that the cuprates are, in fact, closer to the former
limit than to the latter. However, the puzzling anomalies
of the normal state also suggest some deviation from the
canonical Fermi-liquid state.

In this paper, we study the attractive (negative-U)
Hubbard model. This is the simplest lattice model to
display a crossover from BCS-like to Bose superconduc-
tivity as a function of the coupling U/t. In addition, it
may also be relevant as a microscopic model for the
bismuthates. The analysis of the ground-state crossover
in this, and related24 models has been done at the
mean-field level (see below). While suIIicient to establish
the smooth evolution of the ground state and the single-
particle excitations from weak to strong coupling, such an
analysis cannot, for example, describe the important exci-
tations in the (U» t) composite-boson limit. The impor-
tant excitations in weak coupling involve broken pairs;
with increasing U/t these are pushed to very high ener-
gies. In the Bose limit the important excitations are the
collective sound modes which, in terms of the constituent
fermions, are bound pairs with a finite center-of-mass
momentum. The collective modes in a Bose system de-

pend in an essential way upon the interaction between the
bosons, thus it is interesting to ask how they emerge from
the analysis of the interacting Fermi system. Further, a
satisfactory understanding of the intermediate regime at
finite temperatures does not exist at the present time, and
an analysis of the collective modes is a necessary first step
in that direction.

Here we study the collective mode spectrum at T 0

using a generalized random-phase-approximation (RPA)
formulation. We adapt the analysis of Anderson and oth-
ers, initially applied to weak-coupling superconductivity,
and show that with some modifications it is capable of
describing the evolution of the collective mode for all
values of U/t While .one might not expect the RPA to be
valid in the strong-coupling limit, we find that we recover
the well-known Bogoliubov result for the sound velocity
of a repulsive Bose gas in the U» t limit. We find a
smooth evolution of the collective-mode spectrum in both
two and three dimensions. We also generalize our results
to the charged case. The details of the rather lengthy
analysis will be presented elsewhere. '

While the RPA has been implemented in a variety of
ways to study collective excitations above the supercon-
ducting ground state, we have used the linearized equa-
tions of motion method "since this has a certain intui-
tive appeal.

Our starting point is the attractive Hubbard Hamiltoni-
an in d dimensions written in momentum space

H -Z(ak —P )ckWk — Z ck+vick'-vick'I, I ~

t
k,e M kk'q

where ek
—2tg;-~cos(k;a). The chemical potential p

controls the band filling f N/2N, where N is the aver-
age number of electrons and M the total number of sites.
We will stud~ the model at T 0 for arbitrary U/t &0
and 0 ~f( —, ; we stay away from half-filling where there
is a competition between superconductivity and charge-
density wave ordering. '2

To establish notation, we quickly review the mean-field
analysis. Recall that the BCS reduced Hamiltonian Hacs
is that part of (1) which describes the interaction between
pairs with k' —k. The BCS-Bogoliubov solution con-
sists of determining the eigenoperators yJ and yk of
Hggs. These operators define both the BCS ground state,
via yt, )@O1 0, and the single-particle excitations yt, ~~No)
with energy Fk.

The first step is a linearization of the equations of
motion for ck~ and ck with respect to (@u1 where &ck~k )
and (epic-kI) are nonvanishing. The Hartree shift in the
chemical potential P p+ fU is usually ignored; however,
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for large U it must be retained.
The second step is to diagonalize the linearized equa-

tions via the Bogoliubov transformation: eI, ~ uI, yI, O

+&'ayI i and e —I ~ vI yIO+uj, yp[, with uI =1 —i.~I,
2= 2

& (I+(k/Ek). Here (k -ek —p, and the gap and
the quasiparticle excitation energy are given by h,

-Upk uktk, and Ek -(g/+5 ) ', respectively.
Self-consistency is achieved by demanding that, for

each value of the coupling U/t and filling f, 6 and the
chemical potential P satisfy the gap equation

1
U I

2M k ((j+I5, )'
and the number equation

Z I-1

2M I(

k
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FIG. I. (a) The order parameter 6 and (b) the chemical po-
tential p, as functions of the coupling U for two dimensions. All
energies are plotted in units of the half-bandwidth W 4t. The
dashed, solid, and dotted lines correspond to filling factorsf 0.45, 0.25, and 0.05, respectively.

These equations may be analytically solved in the weak-
and strong-coupling limits. [In the continuum limit in two
dimensions an exact analytical solution is possible for all
couplings. ] For U/t (( I the chemical potential is at bF,
the gap shows a characteristic essential singularity, and
the pair size is much larger than the lattice spacing, as ex-
pected of a BCS ground state. In the opposite limit of
U/t))1, the pairs are on site, the chemical potential is
one-half the pair binding energy, and the ground state is a

1 ~ a(k, q)b(k, q)c(k, q)la b,rq.M k co(q) Ek q

(s)

condensate of composite bosons. There is a smooth cross-
over between these rather different limits, as can be seen
by a numerical solution of (2) and (3). Figure 1(a) and
1(b) shows 6 and p as a function of U for various fillings f
in two dimensions; for the three-dimensional (3D) case,
see Ref. 3. There is a gap to single-particle excitations
Es&r A provided P lies within the band. However,
Estop (P +A ) 't' once P is below the bottom of the
band

The (unnormalized) BCS ground state can be written
as ItIio) (Zg pkcktc kl) ~vac), with tbk -tk/uk, which
emphasizes the analogy with Bose condensation. Varia-
tionally, the mean-field solution corresponds to an optimal
choice of the internal pair wave function p. We thus see
how, even in the strong-coupling limit where p represents
an on-site singlet, a BCS-like analysis is able to describe a
condensate of composite bosons.

To determine the collective mode spectrum we study
the time evolution of density fluctuations ck+q~k . Its
equation of motion is coupled to that of pairs with a finite
center-of-mass momentum ck+qlc k l and c— k —qlck l, re-
suiting from the particle-hole mixing due to the conden-
sate.

The overall strategy of the RPA is simple. As in the
analysis sketched above, the first step is to linearize the
equations of motion with respect to the mean-field ground
state, and the second to diagonalize them by finding the
appropriate eigenoperators for the collective coordinates.
At the mean-field level one has diagonalized only the
Hacs part of the full Hamiltonian H Hacs+H;„I. At
the RPA level we treat the small fluctuations introduced
by H;„, which describes the interaction between the Bogo-
liubov quasiparticles.

The actual implementation of this idea is algebraically
messy. We follow the very clear presentation of Bardasis
and Schrieffer, '3 adapt it to the lattice model, and retain
terms which allow us to work at arbitrary U; for details,
see Ref. 10. Instead of working with bilinear products of c
and ct, it is convenient to consider the time evolution of
Vk+q, e yk, cr yk+q, o)'kl, and y,k+q, I fk, o leading to the
t

Anderson-Rickayzen equations of motions. The eigeno-
perators are found as linear combinations of the above
operators by diagonalizing the equations. These define as
usual both the "renormalized" ground state (which differs
from (4o) through the inclusion of the zero-point collec-
tive oscillations) and the excited states.

To determine the collective excitation spectrum to(q)
we take the matrix elements of the equations of motion
between the ground state, and a state containing exactly
one quantum of excitation. We thus obtain the secular
equation

[I +Ulg „„(q)] Ul „t (q) 2UIF. „~(q)
UIF. „„,(q) [1+UIF. (((q)] 2UI„t (q) -0

(U/2)IF ~ „(q) (U/2)l t(q) [I+Ulb ~ ~(q)]

(4)
with
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Here a, b, e denote any one of the following quanti-
ties: the excitation energy tII(q), or the quasiparticle en-

ergy Eb v . Eb+v+ Eb, or the coherence factors
l (k,q ) ub ub+q+ vb i~p+v, m (k,q) ub vb+q+ vb ub+q,
and n(k, q) ub ub ~q vk vk+q

We will first analytically solve the above equations in

the weak- and strong-coupling limits, where we can com-
pare our answers with known results, and then give a nu-

merical solution which interpolates between the two lim-

its. We restrict attention to the long-wavelength q 0
regime.

In weak coupling 6 is exponentially small and P tends
to the Fermi energy eF. The integrals (5) are then peaked
at bF. For q 0, the products of coherence factors
n(k, q)l(k, q) and n(k, q)m(k, q) are odd under change
of sign of gb, which leads to vanishing integrals for I„„I

and I~„. As a result we are left with a 2X2 deter-
minant to solve. The small q and oi expansion of the vari-

ous terms in (4) is conveniently written in terms
of four quantities: x gi Ei, y gb(Vi)) /Ei, w

gi (Vj(/Ei, and z h gi(Vi() /EP The .dispersion
relation of the collective mode is then found to be

tiI(q) [(1 —Ug~x/2)(3z+w —y)/dx] '
q

be mapped onto a system of hard-core bosons described by

-(2t'/U)g(a, a, b-,'b, )
~ e

The composite bosons move only via virtual ionization and
their effective hopping amplitude is tb 2t /U. The
hard-core constraint is due to the Pauli principle for the
constituent fermions, and in addition the bosons interact
with a nearest-neighbor repulsion V 2t z/U. In the
long-wavelength limit, the collective excitation of a dilute
(nba, «1) 3D Bose gas is the Bogoliubov sound mode
with dispersion tLI (4trna, /m, b) 't q. Here the density of
bosons nb f/a, the scattering length a, is of the order of
the lattice spacing a, and the effective mass mb
=1/tba U/2t a .

We now show that one obtains the same result from
strong-coupling limit of our RPA result (4). Using the
gap and the number equations, (2) and (3), we find 6

Ulf(l —f)]' (I —da ) andP U(2f —l)(l+2daz)/
2, to leading order in a 2t/U« l. A similar expansion
of the various quantities in (4), with the further simpli-
deettoo of the dilute lttoitf « i, yields: i+Uys, 4f(l, ,
+4da ), 1+UIb, , I —16 da, Ulg, w, yyt 2f ' (1
+da ), UI „I-—tII(1+2da )/U, and UI I 2tiif'

The sums over k are peaked about sF and may be es-
timated by integrals over a thin shell of thickness 2'„
such that A« to, «W 2dt, centered around bF. We
then find x 2N(0)/6, y 2N, .(0)/6, w —2a N(0)
x log(2oi, /A), and z 41V,.(0)/3h, where the density of
states

N(&) -(2tr) d kb((b —()
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W,, (g) -(2~) -'. d'k(Vbgk)'a(g& -g).
The only dependence on the (arbitrary) cutoff to, is in w,
which, however, is negligible compared to the other terms
in (6) in the weak-coupling limit where h is small. Substi-
tuting these results in (6) we obtain

tiI(q) -[& F)/d] '1'[I —UN(0)] ' 'q,

0
0
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where the mean-squared Fermi velocity is defined by
&,'& -1V,, (0)/1V(0).

The filling dependence of this result comes from the
fact that &vF& depends upon the band structure. In general
the f dependence is smooth except for the following cases.
In the 3D case there is a sharp dip in the collective mode
speed of sound at f 0.215 due to a van Hove singularity.
In the 2D case the speed of sound goes to zero as f
due to the nesting at half-filling.

In the continuum limit, with a parabolic dispersion,
(&IF))' p / Famnd (7) reduces to Anderson's weak-
coupling result. The collective mode in weak coupling is
essentially the same for the lattice and continuum models,
as one might expect since the size of the bound pairs (o is
much larger than the lattice spacing a.

In the strong-coupling limit the fermions bind into on-
site singlet pairs, and the attractive Hubbard model can
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FIG. 2. Collective mode velocity as a function of coupling U
for various fillings in (a) two and (h) three dimensions. fV 2dt
is half the bandwidth, d the dimensionality, and a the lattice
spacing. The dashed, solid, and dotted lines correspond to
f-0.45, Q.25, and Q.05, respectively. The fourth curve in strong
coupling is the analytical result for f« l. See text for disciis-
sion of analytical results in the small and large U limits.
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x( —I+7dtt )/U. We also find, independent of the
filling, I+Ulq t t a q a /2 —ta /U . We thus obtain,
for f« I and U/t » 1,

to(q) -44df (4t 'a/U) q . (8)

This result is clearly the same, up to an overall factor of
order umty, as that expected for the dilute Bose gas.
Quite remarkably, starting with interacting fermions and
using RPA we were able to reach the regime of hard-core
bosons in the strong-coupling limit. This suggests that
RPA offers a reasonable interpolation scheme in the
intermediate-coupling regime.

For intermediate couplings we have numerically solved
the RPA equation (4) as a function of the coupling U/t,
and for various fillings f 0.05, 0.25, and 0.45. As input
to these equations we have used the numerical solutions
for 6 and P obtained from the mean-field gap and number
equations, (2) and (3). To evaluate the k sums in (4) we
numerically evaluated the density of states 1V(() and the
function N, .(() in three dimensions; in two dimensions ex-
act expressions for these in terms of complete elliptic in-

tegrals were used.
The collective mode velocity c is plotted in Fig. 2(a)

(2D case) and Figs. 2(b) (3D case) as a function of the
coupling. We see that the numerical results smoothly in-

terpolate between the weak- and strong-coupling answers.
The analytical results in the small U limit, obtained from
(7), are separated for clarity from the numerical curves in

Fig. 2(a) and 2(b). In strong coupling, the f«1 result
(8) is plotted as the fourth curve; clearly f 0.05 is not in

the asymptotic low-filling limit in either the 2D or 3D
case. The f 0.45 numerical result is compared in strong
coupling with the analytical result for half-filling, which is
much easier to obtain. However, at all fillings, the 1/U
dependence of-c is apparent in strong coupling. We see
that c increases as a function of the filling in strong cou-
pling, but, as discussed above, it has a nonmonotonic

dependence on f in weak coupling.
We brieAy summarize the results of an extension of the

above analysis to charged systems, the details of which
will be published elsewhere. ' In weak coupling the sound
mode is pushed ups to the plasma frequency in the 3D
case; in the 2D case the plasmon has a Wqdispersion. We
find' that the plasmon evolves smoothly as a function of
the attraction, and in the strong-coupling, dense limit we
recover the known plasma frequency for a dense charged
Bose gas. ' Using the methods of Ref. 15 we plan to gen-
eralize these results to layered superconductors.

Recently, the RPA has also been successfully applied to
other crossover problems, for example, the evolution from
itinerant to local moment antiferromagnetism, ' and exci-
tonic collective modes in a Bose condensed electron-hole
gas. ' The proven domain of validity" of the RPA is
weak coupling. However, the results obtained in this pa-
per, and the others cited above, clearly demonstrate that,
at least in certain cases, it yields qualitatively reasonable
results even for strong-coupling regimes and further pro-
vides a credible interpolating scheme in between. The
reasons for this clearly need to be understood better.

The most important open question is a satisfactory
treatment of finite temperatures, 's and, in particular, of
the normal state in the intermediate-coupling regime.

In conclusion, we have shown within the RPA that
there is a smooth crossover in the collective excitation
spectrum of the attractive Hubbard model. The collective
mode evolves from an Anderson mode in the weak-
coupling Cooper-pair limit to a Bogoliubov sound mode
for a Bose gas in the strong-coupling composite boson lim-
it. For the charged case we found a similar smooth evolu-
tion of the plasmon.
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