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Intrinsic self-localized magnons in oneAimensional antiferromagnets
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The nonlinearity in magnon systems in one-dimensional Heisenberg antiferromagnets is sho~n to
produce two types of intrinsic self-localized modes, symmetric and antisymmetric, below the magnon

frequency band. In the case of extreme localization, the localized modes can be viewed as a two-spin

bound state or a local spin-liquid state, ~here a pair of spins undergo a large excursion as compared
with the rest of the spins.

Much attention has been focused recently on the low-

lying energy spectra of one-dimensional (1D) antifer-
romagnets since Haldane conjectured that 1.D Heisenberg
antiferromagnets have a gap in the energy spectra for in-

tegral, but not for half-integral, spin values. ' The conjec-
ture has been tested by experiments in quasi-1D sys-
tems, 2 numerical calculations, rigorous studies, a sto-
chastic geometrical approach, and so on. In spite of
much efforts, however, debates on the possible physical
origin are still going on. Recently, a localized two-spin
bound-state model has been presented by Date and Kin-
do to interpret electron-spin-resonance (ESR) measure-
ments of 1D antiferromagnets along the lines of Haldane's
conjecture. &cry recently, the present authors have shown
the existence of an intrinsic, stationary self-localized mode
below the magnon frequency band in d-dimensional anti-
ferromagnets, where a close conceptual analogy with in-
trinsic self-localized phonons in pure anharmonic crystal
latticesv was exploited. This is a type of soliton mode,
which may be viewed as a local spin-liquid state described
by coherent states, where a cluster of spins undergo a
large excursion while the rest of the spins undergo small-
amplitude, plane-wave-like motion. Because of the
indefiniteness of the magnon number involved in the local-
ized mode, the degree of nonlinearity is presumed to be

l

much higher than that of the usual, number-definite, two-
and multiple-magnon bound modes. '

It is the purpose of this paper to study the properties of
intrinsic self-localized magnons in 1D antiferromagnets,
where the effect of the nonlinearity is the most pro-
nounced of all the d-dimensional cases. It is shown that
two types of stationary modes, symmetric and antisym-
metric, characteristic of the 1D system, exist below the
magnon frequency band.

The model spin Hamiltonian for 1D antiferromagnets
that we study is given by

II Jg[~(S;S; +S,"S,".
, )+S;.S;-+ ], 0& ~(1,

(1)
where S (a x,y, z) is the a component of the spin
operator S; on the ith site in a I D lattice, and the J and ri

are the nearest-neighbor exchange interaction constant
and a constant characterizing the anisotropy, respectively.
The effect of the uniaxial-anisotropic energy term will be
studied later on. We assume that the 1D lattice is bipar-
tite and divided into A and 8 sublattices, for which the
Neel state is defined by S* S and -S where i is even
and odd, respectively, where S is the magnitude of the
spin operator. We introduce the Dyson-Maleev transfor-
mation "'

St+~(2S)' [1 —(a; a;/2S)la;, S; ~(2S)' a.t S'~S —attat fori C A,

SI (2$) 'I bjt[l —(bttbj/2S)1, SI (2S) 'I bj, Sj S+b~~bl forj C —8,
to reduce Eq. (1) into the model boson Hamiltonian

H 2JS gatta;+gbitb; +JSrig(atbjt+a;bj) —Jg[(ri/2)(ata; bj+atbJt bj)+atbjta;bjl.
(ij) &ij )

(2a)

(2b)

(3)

Here a; (a;t) and bj (bjt) are boson annihilation
(creation) operators on the sublattices A and 8, respec-
tively, and the symbol g~tl1 denotes the sum over all
nearest-neighbor pairs. The correspondence between the
spin operators and the boson operators can be made exact
by the introduction of a projection operator which projects
out the unphysical boson states, i.e., the states where one
or more lattice sites are each occupied by more than 2S
bosons. " In what follows, we neglect such a projection

I

operator, but the finite-ladder structure of the eigenstate
of the spin operator will be taken care of at a later stage.

We are concerned with solitonlike intrinsic self-
localized modes induced by the nonlinearity in the mag-
non system in Eq. (3), in which a cluster of spins undergo
a large excursion as compared with the rest of the spins.
A physically acceptable candidate for quantum states of
such large-amplitude collective modes may be coherent
states. ' We therefore employ the coherent-state ansatz
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for the eigenfunction 9('t) of H,

~«) -+exp[- (-,' )(I..I'+ Ip. I
')]

x exp(a„a„t+P„b„t) I 0), (4)

where I0) is the vacuum state of the boson system, and
then we set up the time-dependent variational principle '

b dt (e(t ) I i h (8/8t ) —H I e (t ) ) -0 .

In Eq. (4), the index n denotes the position of the unit cell
in the ID lattice, and a„=a„(t) and P„=P„(t) and their
complex conjugates a„and P„are c-number functions of
n and t. The coherent-state representation (9'(t) IH I%'(t))
of H in Eq. (5) is identical to Eq. (3) with a„, a„, b„, and
b„t replaced by a„, a„, Pn, and P„, respectively, for all n.
Then the variational principle yields (hereafter we use
units with ft 1 )

i (da„/dt ) (8/8a„)(%'(t) IH I 9'(t))

-2JSan+ JSrt(Pn +Pe I) -J—[(tl/2) [an(Pn +pn I)-+ IPn I 'Pn + IPn- I I
'Pn- I]+ an(IPn I

'+ IPn- I I ')»,
- (dP„'/dt ) -(8/8P„)&~(t) I H I e(t ))

2JSp„+JSrl(a„+a„yI)—J[(rt/2)[p„(a„+a„~l)+Ia„I a„+Ian~lI an+I]+p„(Ia„I +Ia„+II )» .

(6b)

In Eqs. (6), the nonlinearity in the magnon system is fully
taken into account, though they are a classical analog of
the corresponding q-number equation.

We seek stationary-mode solutions to Eqs. (6) by set-
ting

I

Eqs. (8) are rewritten as

u„-—g [G I I (n —m )F I (u~, v~ )J
ni

+GI2(n —m)F2(u, v )], ( I 4a)

a„u„exp( imt )—, P„v„exp( imt )—, (7) v„—g [6 (2nIm)FI (—u, v )J
where u„and v„are real functions of n and independent of
t Inser.ting Eqs. (7) into Eqs. (6), we get +G22(n —rn )F2(u„„v„,)] . (14b)

where

F I (un vn) rl[un (vn+ t'n —
I )+ vn + t'n I]-

+2u„(v„'+v„'
I ),

F2(un~ vn ) rt[vn (un +un+ I )+ Mn +Mn+ I ]

+ 2t„(u„'+un' I ) .

(9a)

(9b)

We pay attention to m lying below the bottom m

2JS(1
—

rt 2) '/2 of the magnon frequency band

2JSu„+JSrt(v„+ v„- I ) —(J/2)FI (u„,v„) mu„, (8a)

2JSv„+JSrt(un + un ~ I ) —(J/2)F2(u„, v„) —mvn,

(8b)

u „( )m- + v—„(m), v „(—m) -+ u„(m) (i 5)

are shown to exist (see Fig. 1). The modes with plus and
minus signs on the right-hand side are referred to as a

In Eqs. (14) the sums extend over the first Brillouin zone,
and N is the total number of unit cells in the 1 D lattice.
For m lying outside the magnon frequency band m(k),
G„„(n,m) is a rapidly (exponentially) decreasing function
of In I. Therefore, we need only consider Eqs. (14) associ-
ated with the central position of the localized mode and its
neighbors.

As an illustration, let us consider a one-localized-mode
problem that a stationary self-localized mode is located at
an n 0 unit-cell site. Here, two types of the localized
mode of physical interest having the symmetry

m(k) ~2JS[I —rt2 cos 2(ka)] I/2 (i 0)
(a)

~000000000000000000

where k and a are a wave vector and the distance of the
nearest-neighbor spins, respectively. In terms of a 2 x 2
lattice Green's-function matrix

Vp-
/' 5

0:

G(n) =G(n, m) (G„—„(n))= (G„,(n, m) ),—p, v 1,2, (1 1 )

G„„(n,m) -—gb„„(k)exp(2ikna)/[m(k) —m ], (12)
k

where

b I I (k) 2JS+m, b22(k) 2JS —m,

b 12(k) —JSr/(I +e ' ') b I JSrt(I +e )

~00000000000 ' 000000

~ 4 L

0 0:
Vp:.

F000000000000000000

FIG. 1 . Pro6le functions uo and vp at the central position
n 0 of a self-localized mode. (a) Symmetric mode and (b) an-

t isym metric mode.
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Here the condition )», & 1 has been imposed to take into ac-
count the finite-ladder structure of the spin state. "

To understand the physical properties of the self-
localized modes, we are concerned here with obtaining an
approximate analytical expression for (» rather than its
numerical value. This can be done by limiting our discus-
sion to the mode lying far below the magnon frequency
band in comparison with the magnon bandwidth, i.e.,

a» —= (ro/2JS) ((I, r) ((I, (20)

where the localized mode is spatially well localized, satis-
fying the relation I »g», f» »(2, (2, . . . ~ Then, inserting
Eqs. (16) into Eqs. (14), using (20) and also asymptotic
analytical expressions for the G„,(n, ai)'s for small a», we

obtain after lengthy, though straightforward, calculations

g, -—
)».rI'/2(I —

)», )« I . (21)

Combining Eq. (21) with Eq. (18) leads to

ai 2JS[l ~ (rI/2) —k(l + rI)] & 2JS(1 r) ) l (22)

with 2A, & rI for SM and 2)» & —
rI for AM.

We are now in a position to include the uniaxial-
anisotropy energy term in Eq. (1):

0 Jg [rI(S; S; +Sfsr+»)+S'S'+»] —Dg(S;)',

symmetric mode (SM) and an antisymmetric mode

(AM), respectively. Let us set

u„A(„, v„A» „,
(o go=i for SM, (o»,"o 1 for AM.

Then the quantities g, and (, are reduced profile func-
tions of the localized mode, and A is identified as its am-
plitude. Inserting Eqs. (16) into Eqs. (14) and using iden-

tity relations satisfied by the G„„(n,a»)'s and Eqs. (15)
and (17), we obtain an exact formal expression for the
eigenfrequency a» of the localized mode in terms of (».

a» 2JS[l ~ (ri/2)(1 +)») + ()»,rI/2)(2+(»+g» )

—~(I +g,')],
where

~~/2S laol /2S IPol /2S & 1.

s,

(a) (b)

FIG. 2. Schematic feature of the spin configuration of a self-

localized mode or a two-spin bound mode. (a) Symmetric mode

and (b) antisymmetric mode.

It is seen that for D & 0, the essential feature of the prop-
erties of the self-localized modes remain unchanged by the
inclusion of D.

A characteristic feature of the self-localized modes here
is that both of the symmetric and antisymmetric modes
are strongly localized provided inequalities (20) hold. Ac-
tually, this is a two-spin bound state appearing below the
magnon frequency band, in which a pair of the spins un-

dergo a large excursion, while the rest of the spins under-

go small-amplitude wavelike motion. The intrinsic self-
localized modes, which are described by coherent states,
may therefore be regarded as a local spin-liquid state. A
schematic feature of the symmetric mode and the an-
tisymmetric mode are depicted in Fig. 2, and their
frequency-level diagram is shown in Fig. 3, taking the
case rI j,X i, and D 0 as an illustrative example.

In this paper we have developed a theory of self-
localized modes in 1D antiferromagnets by applying the
Dyson-Maleev transformation "' and the variational
procedure in the coherent-state representation. ' By its
nature, such a formulation can be used at least for S» l.
From the obtained result, we may conclude that low-lying

energy states of the 1D antiferromagnets are significantly
different from that given by the conventional spin-wave
theory H.ere, the self-localized mode having the charac
ter of an envelope soliton in a lattice space may also be

(23)

where D is the uniaxial-anisotropy energy constant. Let
us consider its effect on Eqs. (8). It is shown that it sim-

ply introduces the following modifications 2JS 2JS
+ (2S—1)D, F» (u„,»|„)~ F» (u„,v„)+(4D/J)u„, and

F2(u„, ». „) F2(u„,v„)+(4D/ J)v„. Correspondingly,
the quantities (» and ru in Eqs. (21) and (22) are modified
to

st-wave
Cor its iQ.~

—l.rI (rI —D)/2(1+ D —X)(1+D), (24)
7/12- AM mode

2JS[1+D—2AD ~ (rI/2) —k(l + rI)] & ru, (25)

with

D (2S—
1 )D/2JS, ro» ~2JS[(1+D)'—rI'] ' (26)

g=~ I2 2=~ /3, D=o

FIG. 3. Graphical illustration of the frequency level of self-
localized modes for g 2, X 3, and D 0.
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viewed as a local spin-liquid state in which a large local
spin deviation exists as compared with the rest of the sys-
tem. Such a nonlinear mode can be considered as a nonto-
polotical soliton, while intrinsic defects considered by Hal-
dane' and an instanton discussed by Balakrishnan,
Bishop, and Dandoloff' for classical continuous 1D anti-
ferromagnets can be considered as topological ones. For
such topological solitons, discussions have been given on
the difference of the Berry phase' for odd- and even-

integer S and its implication on the ground-state proper-
ties of antiferromagnets. " On the other hand, the

method employed here is obviously not sensitive to the
parity problem, though the obtained result is conceptually
similar to the two-spin bound-state model of the Haldane
problem' by Date and Kindo. In this sense, much
remains to be done to see whether or not the low-lying
state associated with the stationary localized magnon
mode is directly responsible for the Haldane state.
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