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Two similar techniques for calculating solid-solid phase transitions at high temperatures are
developed, where the contribution of the entropy may be a decisive factor. They utilize an artificial re-
versible path from one phase to another by application of a control parameter. Thermodynamic aver-
ages are calculated using constant-volume and constant-pressure Monte Carlo techniques. An applica-
tion to N20 at room temperature shows that the cubic Pa3 to orthorhombic Cmca transition occurs
near 4.9-GPa pressure, very close to the value calculated at very low temperatures. These results sup-
port experimental evidence that the transition pressure is virtually independent of temperature.

The methods used here employ an artificial control pa-
rameter to provide a reversible path from one phase to
another. Similar procedures have been used to calculate
melting temperatures and transitions in model sys-
tems. This is an application of the technique to a
solid-solid transition in a real system; in this case solid
N20 at 300 K, and we use constant pressure ensembles
with deformable, periodic boundary conditions.

The first procedure is to construct an energy

U;(~) -ZU, +(i —) )U, (2)

where 0(A, ( I is a control parameter and U represents

Recent calculations on solid N20 have predicted a tran-
sition from the cubic Pa3 structure into an orthorhombic
Cmca phase at P, 4.75 GPa pressure. ' It was estab-
lished by comparing enthalpies of the competing phases in
the limit of zero temperature. In concert, x-ray-diffrac-
tion measurements3 have confirmed this transition at 4.85
Gpa for temperatures T l00 and 300 K. The above re-
sults are consistent with earlier Raman-scattering data
that showed distinct changes in the libron frequencies
near this pressure, although the structure could not be es-
tablished. Thus, it appears that the transition pressure is
virtually temperature independent.

The purpose of this work is to devise a method for cal-
culating the pressure of solid-solid phase transitions at
high temperature, with the objective of determining P, at
room temperature for N20. This is quite difftcults be-
cause the entropy must be accurately calculated to evalu-
ate the Gibbs free energy G, which establishes the thermo-
dynamic stability of a system. In fact, the condition for a
transition is that the difference in free energy between two
phases satisfies

AG 0.
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where the brackets represent thermodynamic averages
with respect to U;(X,). F;(V) and F (V) are the Helm-

(5)

the energy of a model system of noninteracting local har-
monic oscillators, three translational and two orientation-
al. U; is the energy of the physical system, either cubic or
orthorhombic in this case. U; for NqQ is given by the sum
of interactions between all pairs of molecules within a dis-
tance of 9 A, with continuum corrections beyond. The
overlap-dispersion contribution is represented using three
force centers along each molecular axis. The electric-
multipole interactions are represented by three point
charges, distributed to reproduce the first four known mo-
ments. This potential has had considerable success'2 in
predicting most known properties of condensed N20 and,
as mentioned, also predicting a high-pressure transition
into the Crnea phase, recently confirmed by experiment. 3

Monte Carlo calculations are conducted on the system
defined by Eq. (2) using an (N, V, T) ensemble, where the
Einstein oscillators of the model system are localized on
the lattice sites of the physical system at each volume V.
The number of molecules in the system is N. The orienta-
tional and translational force constants for the model were
determined by evaluating the appropriate second deriva-
tives of the N2Q potential at the equilibrium lattice sites
of the physical system. In principal, any set of force con-
stants will suffice, but, as briefly described in the sum-
mary, there is a practical advantage in choosing them
close to those of the physical system. The following exact
thermodynamic relationships apply:
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holtz free energies for the physical and model systems, re-
spectively. The pressure of the system is P;(V). The sub-
script of the bracket of Eq. (3) is a reminder that the aver-
age depends on k even though the argument does not.
Equation (4) follows from Eq. (2) which shows that U;(A, )
transforms continuously from that of the model system to
the physical system as A, changes from zero to 1. Clearly,
Eqs. (3)-(5) show that the free-energy difference between
two phases can be determined if (bU;(X, V)/dX) and P; (V)
are evaluated at any temperature. The integrands in Eq.
(4), and in the following Eq. (9), were evaluated for ten
values of )I, and the associated integrals were determined
using a standard Gaussian integration routine. The form-
er integrand is calculated in this work for both the cubic
and orthorhombic phases of solid NzO, using Monte Carlo
methods, and P(V) for each structure was previously
determined. ' Transforming these results to constant pres-
sure, the difference in Gibbs free energy between the cubic
and orthorhombic phases of N20 is readily determined:

AG (P) AF(P) +PAV (P),
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(b)
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where Hp Up+PVp and Up and Vp are the energy and
volume of the orthorhombic phase. An entirely similar re-
lation obtains for H„representing the cubic phase. As
before, the control parameter 0 ~ 2, ~ I, and

bG(~)/m. -(bH(~)/u, ),-(H, —H.)„ (8)

so the difference in free energy between the two phases is

and

~a(P) - (SH(~, P)/m. ),d)

pP
~G(P) =~G(Pp)+~, V(P)dP. (10)

The integrand in Eq. (9) and V(P) are calculated using a
constant pressure Monte Carlo method with periodic, de-
formable boundary conditions. In this process Eq. (8)
shows that the thermodynamic averages of both H, and
Hp must be evaluated. The 5N coordinates fr, e, &) that
define the mass-center positions and orientations of all
molecules, and the six coordinates defining the unit cell,

where dF is the difference in Helmholtz free energies and
similarly for d, V. The phase-transition pressure is then
defined by Eq. (1). Since the free energy of the model
system can be determined exactly, so can that of the phys-
ical system, using Eqs. (3)-(5). This is a valuable
feature.

The second method developed here defines a reversible
path directly between the cubic and orthorhombic phases
of N2Q. Note that the molecules of the Pa 3 phase oscil-
late about equilibrium orientations along the body diago-
nals whereas, in the Cmca structure, they fluctuate about
orientations in the bc plane, as shown on Figs. 1(a) and
1 (b). These structures are related by a transformation T
of the azimuthal symmetry coordinate p that rotates each
molecular orientation in the unit cell by 45' about the z
axis, normal to the ab plane, as shown on Fig. 1(c). For-
mally, we define

(c) N2
I

are randomly sampled along the Monte Carlo trajectories
to evaluate these quantities. Note that H, is a function of
fr, e, &j and Hp of tr, e, T&J. The procedure described here
is a straightforward generalization of that used by Moody,
Ray, and Rahman in model calculations of the fcc-hcp
free-energy difference. The value of P for which Eq. (9)
vanishes defines the transition pressure.

The circles and squares in Fig. 2 show the calculated re-
sults for h, G vs P at 300 K, for the first and second
methods described herein, respectively. As prescribed by
Eq. (1), the two methods predict the cubic to orthorhom-
bic transition at P, 4.91 ~0.2 and 4.87+ 0.15 GPa, re-
spectively. This compares with the experimental value of
4.85 GPa. The calculated entropy change on transition is
hS(P~) AH(P~)/T 0.28+ 0.08 cal/K, compared to
an estimated experimental value of approximately 0.5
cal/K.

In summary, both techniques described in this work
give virtually identical results for the transition pressure
at 300 K, and agree closely with the experimental value
of 4.85 GPa. These results, and our previous calculations'
at very low temperature, that gave limT pP, (T) 4.75

gj4

FIG. I. The (a) cubic and (b) orthorhombic structure of
solid N20. The solid and dashed arrows in (c) depict the projec-
tions of the equilibrium orientations onto the ab plane for the
Pa 3 and Cmca structures, respectively. The other arrows depict
the rotation that carries one structure into the other.
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FIG. 2. The circles and squares show the calculated
difference in Gibbs free energy between the cubic and ortho-

rhombic phases using the two methods described in the text, re-

spectively. The former utilizes the harmonic model reference

system. The dashed and solid lines through the data are intend-

ed as aids to the eye.

GPa, show that the transition pressure is virtually in-

dependent of temperature. This is in complete accord
with experimental evidence ' and is gratifying support of
the techniques developed in this work. As to which tech-
nique is best, it depends on the objectives of the calcula-
tion and the physical system in question. If the objective
is to determine the absolute free energy of the system, the
former method is required, since the model reference sys-
tem can be analytically described. However, when a re-
versible path between two physical states can be found,
such as for N20, calculated free-energy differences be-
tween them appear somewhat more accurate. Although
there is a variety of possible approaches to this problem
that are generically similar, it is too early to give a best
strategy. Nevertheless, it is apparent that designing a
tractable model system as similar to the physical state as
possible is desirable. Also for methods that utilize the
transition between two physical states, the maximum use
of symmetry transformations that connect these states is
helpful. In fact, the strategy is related to the nature of the
transition itself.

We wish to thank Richard LeSar for discussions on this
subject. The work was supported by Department of Ener-

gy Grant No. DE-FG02-86ER45238.
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