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Critical exponents in Cd1 — Mn Te spin glass
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We argue that the conventional dynamic scaling expressions in spin glasses are relevant only above

the temperature at which a maximum of the imaginary part of the ac magnetic susceptibility is ob-

served. Then different methods to derive the critical exponent zv in Cd06Mn0. 4Te independently from

the spin-glass temperature give the same result zv=10. We also discuss the values of the critical

scaling exponents P and y.

I. INTRODUCTION

The Cd~-„Mn„Te semimagnetic semiconductor is the
archetype of Heisenberg frustrated disordered antifer-
romagnets, for which the nature of the spin freezing has
been subject to debate in the past. In a recent paper, '

however, Geschwind et al. have shown that critical dy-
namics in Cd~, Mn„Te are inconsistent with the activat-
ed scaling they had previously suggested, and now agree
with the prior works that the conventional power-law
scaling applies to this material. As a consequence, there is
now an overall agreement concerning the fundamental
property that Cd~ —„Mn„Te and related compounds un-

dergo a spin-glass phase transition at finite temperature
T„characterized by critical exponents.

The numerical values of the dynamic and static critical
exponents zv, and P, y, however, are still subject to con-
troversies; they have been found larger by Geschwind,
Huse, and Delvin' than by other authors. Still their ac-
curate knowledge is needed, for example, to investigate
the existence of universality classes among spin glasses. It
is thus desirable to determine the origin of the scattering
in the values reported so far, and to define how the scaling
analysis of the data must be achieved to obtain reliable
values for the critical exponents. In the present work, we
emphasize and discuss basic features which must be kept
in mind in any attempt of scaling analysis. The paper is
divided as follows: in Sec. II, we suggest that the dynamic
scaling holds true only at temperatures T & T~, where T~
stands for the temperature of the peak of the imaginary
part g" of the ac magnetic susceptibility. In Sec. III, we

apply to Cd~-„Mn, Te (x =0.4) a method of indepen-
dently determining zv and T, , which is different and corn-
plementary to that of Ref. 1.

II. DYNAMIC SCALING

A. Derivation of the basic equations

~ Wf

p(r) =e '+ — [M(r')h(r'), e ']dk'. (2)

M(t') stands for the magnetization operator expressed in

the interaction representation, and the square bracket is
the commutator. This approximation, however, explicitly
supposes that the departure from thermal equilibrium is
small at the observation time t. Only when this condition
is fulfilled, the substitution of Eq. (2) into the expression
of M is allowed, which is needed to obtain the expression
of g under the form explicited by Eqs. (4) and (5) of Ref.
8. Then, in this prior work, we derive the scaling relations
on g', g" [Eqs. (9) and (10) in Ref. 8] which can be cast in

the form of Ref. l:
g"(co) Tlro~' "=f(r/ro"-'), - (3)

Let us explicitly show how the dynamic scaling expres-
sions are derived for the magnetic susceptibility g=g'
—ig". The magnetization (M) resulting from a
magnetic-field perturbation h applied to the system is
(M) =tr[p(t)M], where p(t) is the density operator in the
Heisenberg representation. The system is supposed to be
at thermal equilibrium before introduction of the pertur-
bation, i.e.,

p( —~) =e (1)
with Ho the unperturbed Hamiltonian. At observation
time t, the perturbation will induce a departure from
thermal equilibrium by p(t) —p( —~) in a power series
of h. When truncated to the first-order term in h, this
series reduces to
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where t is the reduced temperature (T T—,. )/T. The criti-
cal exponents z v and P have their usual meaning.

g"(co) = q(co) .
BT

(4)

This expression can be viewed as the Fourier transform of
Eqs. (4) and (8) in Ref. 8. Since the temperature depen-
dence of q(co) is critical at the finite temperature T„, we
can neglect the T ' dependence of the prefactor in Eq.
(4), and assimilate the temperature dependence of g"(co)
to that of q(co) near T„. In the limit co& r ', we can
make the approximation

B. Range of validity

Let g(r ) be the distribution of relaxation times in the
system, characterized by a width r . The time-Fourier
transform of g(r) will be a distribution g(co) of typical
width i . As in the previous section, the scaling law on
g"(co) (and the same holds true for g') is valid only if the
system is close to equilibrium at the observation time t
This condition is fulfilled only if the system is observed at
long enough time, typically t & r . To make contact with
experiments, let us consider the situation where the obser-
vation time t = I/co is fixed for every temperature. Then,
the condition t ) i can be written T& T~, with T„ the
temperature at which co =z '. The thermal dependence
of g" is related to that of the spin autocorrelation function
q(co) by the Kubo theorem:

C. Discussion

Various attempts of dynamic scaling have been per-
forrned for semimagnetic materials, such as Cd

~ —,--

Mn, Te, Hg~ —,Mn, Te. In Refs. 4 and 5 the relation
g"/g' =cor „„cx.cot -', only valid in the limit of a small

value of p,
' has been used to derive zv from a straight-

line plot of ln(t) vs ln(co) at fixed p. The criterion of a
small p, i.e., that p/co does not depend on co for any given
temperature T, has been sho~n to be valid in our scaling
(p= 10 ). '' Note that only data points corresponding
to T & T~ have been considered in the scaling analyses of
Refs. 3-5, which all lead to zv=9. 5 ~0.5. Finally, a new
method has been reported in Ref. 1 to determine zv in-

dependently from T, When only data points above T~
are taken into account (see curve 0.3R-0.8R in notations
of Ref. 1), the result displayed in Fig. 2(b) of Ref. 1 gives
z v =10, in agreement with prior works.

Unfortunately, all the other scaling attempts in Ref. 1

involve data points below T~ and are consequently ir-
relevant. In fact, the inclusion of data points at tempera-
tures smaller and smaller below T~ aA'ects the quality of
the scaling and leads to larger and larger overestimations
of zv, well evidenced in Fig. 1(b) of Ref. 1. Inclusion of
data points slightly below T„(0.92L in notations of Ref.
I) is sufficient to raise zv to 11.4, whereas zv reaches 12.3
if more data points below T„(0.8L) are also introduced.
These deviations with respect to zv =10 are indicative of
the errors that can be done on zv by including, in the scal-
ing analysis, data points for which Eq. (3) does not apply.

q(co) =q(0) for T & Tp . (5)

As T decreases and approaches T,. from above, r in-
creases (and eventually diverges like t "at T, ), so the
width r ' of the g(co) or q(co) spectra decreases. Note,
however, that the sum rule

liI + oo

q(co')dco'-(S'(t =0))=S(S+1)

implies that the integral of the q(co') peak is a constant,
whatever the temperature is. Therefore, the shrinking of
the q(co') peak, as T decreases, results in an increase of
q(0). Taking Eqs. (4) and (5) into account, it follows
that g"(co) increases upon cooling for T & T„. A decrease
of the temperature below T results in an additional in-
crease of r„; hence, co & r . We thus conclude that the
temperature T„ is nearly that of the maximum of g"(co).
This demonstration is not rigorous since the decrease of
g"(co) upon cooling at T & T„has been derived within the
linear-response formalism which is precisely not valid in
this temperature range. It is believed, however, that the
error on g" introduced by the nonlinear effects is quantita-
tive [i.e., generates deviations with respect to Eq. (3) cru-
cial for any scaling attempt], but not qualitative. Indeed,
the fact that the experimental curve g"(co) actually goes
through a maximum at temperature T„(co) supports our
model.

Note our conclusion disagrees with the claim of Ref. 1

that the scaling plot according to Eq. (3) may be extended
even to t &0. The condition T& T„ is indeed more
stringent than t & 0, except in the static limit m 0.

I&l. RESULTS ON Cdp. 6Mnp 4Te

%'e have already pointed out that it is difficult to deter-
mine unambiguously both T, and the critical exponents
from the conventional dynamic scaling plot of g" (Ref. 4)
or from the static scaling plot of the nonlinear magnetiza-
tion M„I. ' It is thus necessary to determine T, indepen-
dently from any scaling attempt. This is discussed below
for Cd~ —„Mn, Te where diAerent samples with nominal
concentration x =0.4 have been studied to elucidate the
critical behavior. ' '

In Ref. I, and in agreement with Eq. (3), T, =12.3 K is.
determined as the temperature where the g"(T) curves
cross together, for any frequency. Unfortunately, this
crossing occurs at a temperature which is smaller than T„
at finite frequency, for which we have argued that Eq. (3)
is no longer valid. This is, in our view, the reason why the
experimental g"(T) curves do not cross together at a
well-defined temperature (see Fig. 3 in Ref. 1); definitely,
T,. cannot be estimated by this method.

A procedure to independently determine T, and zv has
been proposed by Souletie and Tholence' and successful-
ly applied to spin glasses. ' ' In the case of the power law
&=corot~ =" (Ref 8) valid fo.r small p, the method con-
sists in plotting P, = —clln(T)/c)ln(z') vs T: one elimi-
nates the parameter ro in the diAerentiation, and obtains
a straight line which intersects the temperature axis at T,.,
and the T=0 axis at I/(P —zv). The notation r' has been
used so that no confusion with the relaxation time defined

by r = zot =' in the scaling hypothesis occurs. (The ap-
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FIG. i. Scaling of g"/g„„according to the data of Fig. 4 in

Ref. 1 above the temperature of the peak of g", for zv 10,
P 0.7, and T, 12.4 K. Thesymbolsh, e, O, x, and+ denote
frequencies between 9.75 Hz and 97.5 kHz, in decade steps.
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FIG. 2. Plots of |)in(T)/aln(ro) as a function of T, with T the
temperature defined by lg"/g'l 10 ', after the data of Ref. l.

proximation r r' has been made in the earlier works re-
ported in Refs. 4, 5, and 13.) The value of the critical ex-
ponent P will be discussed in the next paragraph. In a first
stage, it is su%cient to note that it is small (P & 1). Such
a plot of P, vs T is reported in Fig. 1 for CdosMno4Te:
the data are from Ref. I, and we have chosen to determine
the temperature dependence of r' by using the criterion
P(T) 10, justified earlier in the text. " The low-
frequency (0.975 Hz) curve is doubtful and does not scale
with the higher-frequency data, in contrast with other ex-
perimental results obtained on similar samples. Thus
we have rejected the lower-frequency data in the scaling
analysis. We then find T, =12.4 and zv —P=9.7. Note
this value of zv is in agreement with the result zv 10, re-
ported from another method allowing an independent
determination of z v and T, [curve 0.3R-0.8R in Fig. 2(b)
of Ref. 1], already discussed in Sec. II. Taking zv 10,
another estimation of T„can be deduced from the dynam-
ic scaling given by Eq. (3) which involves the two parame-
ters T, and P. The re.scaling of the data of Ref. I for
T& T„ is best achieved for P 0.07+'0.2 and T, 12.4
K, as is illustrated in Fig. 2. Therefore, we find a value
T„12.4 K for the sample of Ref. 1, compared with 12.13
K used in the scaling analysis of Eq. (3) by the authors of
Ref. l. We thus find a real difference of 0.4 K in the
values of T, for the samples studied in Refs. 1 and 4, cer-
tainly due to a small difference in Mn concentrations:
indeed, the peak in g'(97.5 Hz) appears at 13.48 K for
their sample' compared with 13.85 K for our sample.

Finally, let us discuss our static scaling analysis for

another Cd~, Mn, Te sample. ' In this case, T, has been.
calibrated from quasistatic experiments with respect to
the sample used in Ref. 4: the temperature at which the
slow relaxation of the field-cooled magnetization changes
sign with step cooling of 0.05 K is 12.9 K for the sample
used in Ref. 4, and 0.43 K lower for the sample of Ref. 12.
This difference should reflect on the spin-glass tempera-
ture, hence T, 12.8 —0.43 12.37 K for the sample of
Ref. 12. This is the value of T, which has be. en used in the
scaling analysis of the nonlinear magnetization, leading to
the exponents y 3.3+'0.3 and P 0.9~0.2 [see Ref. 4,
and also Fig. 1(a) of Ref. 6]. Different exponents can be
obtained naturally if a wrong value of T, is artificially .in-
jected in the scaling attempt [Fig. 1(b) in Ref. 6].

IV. CONCLUSION

We conclude that the critical exponents in the semi-
magnetic spin glasses are those reported in Ref. 7. Al-
though the discussion has been focused on Cdo6Mno4Te
in the present work, the values of these critical exponents
are not specific to this particular material and have been
determined on other compounds of the same family at
different magnetic ion concentrations, and other systems
as well. Different values of the exponents reported by
Geschwind, Huse, and Delvin' are attributable to the
underestimation of T, in the static scaling analysis, or
(and) the inclusion of data points at too low temperaures
(T & T„) in the scaling analysis.
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