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Systematic study of equilibrium and low-pressure crystalline phases in Li using the full-potential
linearized augmented-plane-wave technique (as embodied in the code wrEN) gives hcp & fcc (bcc as the
equilibrium energetic ordering. The equilibrium hcp phase stability is enhanced slightly by relaxation
from the ideal c/a ratio. The first pressure-induced phase transition is hcp~fcc at a compression of
V/V0=0. 79. These results confirm, in whole or in part, the predictions of all other studies of the low-

pressure crystalline phase ordering of Li except for one. The one anomalous calculation [H. Bross and

R. Stryczek, Phys. Status Solidi 8 144, 675 (1987)] finds bcc to be the most stable phase up to a compres-
sion V/Vo =0.28. That result is traced to a peculiar dependence of the total energy of bcc alkali metals

upon the details of the Brillouin-zone scan used in the calculation.

A recent calculation of the T=O K phases of Li by
Bross and Stryczek' using the modified augmented-
plane-wave (MAPW} method found the bcc phase to be
stable with respect to the fcc phase over the compression
range 0.28 ~ V/Vti (1. That result contradicts three pri-
or calculations. One of those considered hcp as well
and found that the P=O energetic preference of phases is
hcp(fcc(bcc. Though Ref. 4 used a pseudopotential
technique, two other groups did independent all-electron
calculations. ' Both confirmed the hcp & fcc & bcc order-
ing.

Reference 1 suggested that the other calculations were
Qawed by some unspecified inadequacy in methodology
[linear-muffin-tin-orbital (LMTO), pseudopotential, and
augmented-spherical-wave (ASW) methods were used in
Refs. 2, 4, and 5, respectively]. Presumably, the same
reasoning would apply to the subsequent Ref. 6, which
used the LMTO method also. Nothing was said in Ref. 1

as to why the LCGTO (Ref. 3) calculation (which is all
electron and full potential) might have suffered a parallel
failure.

Shortly after Ref. 6 appeared, we did an a11-electron
full-potential linearized augmented-plane-wave (FLAPW)
calculation and found the same ordering. At the time we
did not publish it (though some results were quoted in
Ref 7). Howe. ver, Sigalas et al. have recently published
APW (and LAPW) calculations for Li in cubic structures
only and found fcc &bcc. They did not note that, in con-
sonance with prior work, their result is a direct contrad-

iction of Ref. 1 nor did they comment on any of the other
prior work.

The most direct test of the methodological critique
voiced in Ref. 1 would be a careful full-potential LAPW
calculation with a completely independent code which
can handle hcp, fcc, and bcc structures. We provide such
results here and diagnose the probable cause of the anom-
alous result of Ref. 1.

The calculations presented here used the Hedin-
Lundqvist (HL} local-density approximation (LDA) and
the linearized augmented-plane-wave method in its full-
potential form (hence FLAPW) as embodied in the wIEN
code. ' Scalar-relativistic corrections were included. For
the sake of reproducibility we list the relevant parameters
of choice. The largest plane-wave vector E,„was deter-
mined by R M&K,„=8.00 with R Mz the muffin-tin radius
(touching spheres), a choice which consistently yielded
total energies converged to within 0.01 mRy. The
highest angular momentum component in the sphere was
L=12. Brillouin-zone (BZ) scans of 259, 240, and 91
points were used in the irreducible wedges of, respective-
ly, the hcp, fcc, and bcc systems. (All BZ scans included
the vertices of the irreducible wedge of the BZ and used a
uniform mesh along each of the reciprocal lattice vector
directions. ) The relatively small number of bcc points is
a direct consequence of the high stability of E„,b„with
respect to meshes above about 50 points in the irreducible
wedge, a behavior which has been pointed out in Ref. 4
(see their Fig. 1). As previously remarked in Ref. 6, it
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turns out to be important that these BZ scans are at
much higher point densities than were used in Ref. 1.

Because we need only to confirm one or the other order
of P=O phases and the appropriate location of the first
pressure-induced transition, a grid of eight volumes
proved adequate. The hcp phase was assumed to have
the ideal ratio c/a =&8/3, as in Ref. 6, for the initial
calculations.

In Table I we give the calculated total energies as a
function of V/Vo. We find V0=128.16 a.u. /atom for
the lowest-energy phase, hcp. The highest-energy phase
at P=O is bcc, in contradiction with Ref. 1 and agree-
ment with Refs. 2—6 and 8. Relaxation of c/a at this
volume causes the hcp phase to become very slightly
more favored energetically (by about 0.002 mRy) with
c/a =1.003&8/3. The only reported calculation of c/a
gives a coefficient of 0.996 and quotes the experimental
coefficient of 1.002. Obviously, the shift from ideal hcp is
itself small and characterized by a small, difficult-to-
calculate energy difFerence. The first pressure-induced
transition is hcp~fcc at V/Vo =0.79, in good agreement
with the value 0.73 found by both Refs. 5 and 6.

The calculated Vo corresponds to a nearest-neighbor
spacing aNN =5.66 a.u. This value is matched quite nice-

ly by the fcc aNN=5. 61 a.u. of Ref. 3 (which could not
treat hcp and used a slightly different choice of local-
density model). Reference 1, on the other hand, finds a
somewhat contracted V0 =124.49 a.u. /atom and, since
their result for the P=O phase is bcc, aNN =5.45 a.u.

The apparent discrepancy of the Vo's in Refs. 4 and 6
with our results is resolved upon observing that they used
the Wigner interpolation (WI) and Kohn-Sham-Gaspar
(KSG) local-density models, respectively. Reference 4
determined the shift in lattice parameter in going from
WI to HL in bcc Na as )La/a = —0.01238. Assuming
the same shift for their hcp calculation gives @=5.6998
a.u. and V0=130.70 a.u. /atom, very close to our result.
Similarly, the Vo in Ref. 6 corresponds to a hcp
uN&=5. 86 a.u. virtually identical with the KSG result
for fcc in Ref. 3. Thus the shift in Vo between this work
and Refs. 4 and 6 is purely a manifestation of the
different local-density models employed. Experience
shows that though the choice of LDA affects the calcu-
lated Vo, it typically does not reorder the predicted se-
quence of crystalline phases.

Table II compares calculated equilibrium-energy
differences. The only evident oddity is that the pseudo-
potential calculation overestimates the magnitude of the

TABLE II. Calculated total-energy differences (mRy) for
equilibrium Li for the present work (FLAPW), Ref. 4 (PW),
Ref. 5 (ASW), Ref. 6 (LMTO), and Ref. 8 (APW).

Method

FLAPW
PW
ASW
LMTO
APW

Ehcp
—Ef~

—0.08
—0.47
—0.10
—0.06

Ebcc Efcc

+0.24
+0.20
+0.20
+0.23
+0.28

fcc-hcp energy splitting. Otherwise, the four calculations
that treat bcc, fcc, and hcp are in good agreement.

The consistency of our calculations with all prior ones
except for Ref. 1 (and consistency with Ref. 8 also) shows
that the LDA prediction of the ordering of T=O K Li
equilibrium phases is hcp (fcc &bcc, not bcc & fcc as in
Ref. 1. The difFerence apparently does not arise from use
of the APW method, as had been surmised in Ref. 1.
Since their P=O fcc result is essentially identical with
both ours and that of Ref. 3 while their bcc result differs
notably, the most likely source of the discrepancy is a
fiaw in the Ref. 1 bcc calculation.

This suspicion can be focused by consideration of Fig.
1 of Ref. 4, which shows a 1-mRy downward notch in the
total energy at a 20-point BZ scan for bcc Li and stable
results only for scans of 44 and more points. (Reference 8
rediscovered the same peculiar sensitivity. } Our calcula-
tions are similarly sensitive to inadequate BZ scan density
for the bcc phase. In fact, we can reproduce the predic-
tion of Ref. 1 that bcc is stable relative to fcc at Vo by us-

ing relatively coarse BZ scans, e.g., 20 and 30 points in
the irreducible wedges of the fcc and bcc phases, respec-
tively.

In that case we obtain 0.06 mRy for Ef —Eb„as op-
posed to Ref. 1, which gets 3.5 mRy. However, Ref. 1

used a special-point scheme. In the present context, the
very nature of such specialized schemes is to optimize the
energy recovered from a coarse BZ grid in a giuen sym-
metry. There is nothing in special-point methods which
is specifically designed to ofFset the kind of sensitivity to
scan density first pointed out in Ref. 4. (In fact, such
methods appear to be better adapted to the energy bands
of insulators and semiconductors than to Fermi surfaces. )
4'ith that appraisal in mind, the Ef„—Eb„difference
calculated here for a coarse scan is in reasonable accord
with the coarse special-point value found in Ref. 1. We
conclude that the incorrect equilibrium-phase ordering

TABLE I. Calculated total energies (Ry) for Li at the compressions shown, with V0=128.16
a.u. /atom in the hcp phase.

V/Vo

1.1111
1.0000
0.9764
0 9AAA

0.8889
0.7222
0.5556

—
Ehcp

14.833 905
14.834 639
14.834 606
14.834 432
14.833 716
14.826 704
14.805 153

—Ef„
14.833 823
14.834 557
14.834 527
14.834 363
14.833 664
14.826 737
14.805 352

—Eb-

14.833 585
14.834 322
14.834 292
14.834 116
14.833 389
14.826 304
14.804 729

Favored phase

hcp
hcp
hcp
hcp
hcp
fcc
fcc
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found in Ref. 1 for P=o Li most probably resulted from
use of an inadequate BZ scan.
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