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Electromagnetic response of anisotropic superconductors
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We present a quantitative analysis of the ac electromagnetic properties of two-dimensional supercon-
ductors with an anisotropic energy gap and short coherence length. The mean-free path I, frequency f,
and temperature T dependencies of surface impedance and complex conductivity have been discussed for
the microwave and optical regions. The effect of the gap anisotropy has a strong influence on the calcu-
lated parameters. Some results seem to agree with puzzling experimental data on high-T, materials, thus
offering a possibility of an alternative interpretation.

I. INTRODUCTION

Finite-frequency electromagnetic properties reflecting
the dynamics of carriers involved in superconductivity
may play a central role in establishing the validity of any
theoretically proposed model. BCS theory, ' although
based on schematic interactions, successfully describes-
as calculated by Mattis and Bardeen —the electro-
dynamics of conventional, low-temperature superconduc-
tors. It seems not to be so successful in describing the re-
cently discovered high-temperature superconducting
(HTS) copper oxides .

Recently the electromagnetic properties of HTS have
been intensively studied both theoretically ' and exper-
imentally. ' The early experimental data on ceramics
scattered widely from sample to sample and it was not
obvious whether the observed behavior reflected the in-
trinsic characteristics of materials. The progress in tech-
nology resulted in the convergence of the data obtained
by different groups. In spite of that, the interpretation
problems still remain since the data do not always look
like they should for a BCS superconductor; this leads to
different proposals regarding the mechanism of supercon-
ductivity and the phenomenology of carrier dynamics.

The only way to overcome the interpretation ambigui-
ties is to perform the theoretical analysis in models that
take into account various peculiarities of the materials
and carefully study their influence on the experimentally
accessible parameters.

The BCS assumption of instantaneous interactions has
been relaxed in Eliashberg theory. The corresponding
calculations of electromagnetic properties have been per-
formed both for conventional as well as high-
temperature' ' ' ' superconductors.

The HTS are extremely unusual metals. They possess
layered structure with conducting Cu-0 planes, low car-
rier concentration, very short coherence length g, and
large field penetration depth A, ; they are also quite disor-
dered with mean-free path l of the order of 100 A, etc.

Though it would be equally important to consider all
the characteristic features of high-T, cuprate supercon-
ductors, the complexity of the materials, unknown values
of interactions, and their role in superconductivity makes
the theoretical analysis nontrivial. In this work we will
concentrate on the study of the finite-frequency elec-

tromagnetic response of two-dimensional superconduc-
tors with an anisotropic energy gap and finite mean-free
path.

The strong gap anisotropy with nodes at lines or points
has been invoked for the interpretation of electronic Ra-
man light scattering.

Anisotropy or variations of the gap b,(k) around the
Fermi line refers here to the crystal symmetry in ab plane
of copper-oxide superconductors. Instead of estimating
b (k) in an anisotropic model, we introduce here the func-
tion b, (k) in a form consistent with the lattice syminetry.
A simple parametrization

b,(k) =ho+ 6, cos(4$),

where p is the azimuthal angle of k in ab plane, has been
previously suggested by Mahan. It gives quite interest-
ing tunneling current characteristics, ' which seem to
be consistent with experimental data. The parametriza-
tion (I) allows the study of the gap which vanishes at
some points of the Fermi line. It happens for

~
b, o~

=
~ 5, ~.

We will study here the opposite case of anisotropic, but
never vanishing, gap.

The organization of the paper is as follows: In Sec. II,
we briefly recapitulate theoretical approach and the rela-
tions between measured quantities and theoretical param-
eters. The results of numerical calculations compared,
where appropriate, with experimental data are presented
in Sec. III. We end in Sec. IV with conclusions.

II. ELECTROMAGNETIC RESPONSE KERNEL
OF ANISOTROPIC SUPERCONDUCTOR

To obtain all the electromagnetic properties of a two-
dimensional superconducting system, one investigates the
so-called response kernel E(q, co). This function de-
scribes the current density induced by the external elec-
tromagnetic field A(r, t) In a real la. yered copper-oxide
superconductor, the Josephson coupling between adja-
cent sheets makes the system effectively three dimension-
al and may lead to a nonzero c component of the current
j. In this work, as a zeroth-order approximation we
neglect the possible coupling between planes. The huge
transport anisotropy observed in high-T, superconduc-
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tors justifies this assumption. The measurements show
metalliclike conductivity in the ab plane and semicon-
ducting one along the c axis implying the existence of the
gap in the single-particle spectrum for motion in the c
direction. The present analysis should thus be valid for
both frequency and temperature small in comparison
with that gap.

The vector potential A is taken here in the Lorentz
gauge, div A=O, and assumed to lie in the ab plane. The
relation between Fourier components of j and A reads

j(q, co) = —K(q, co) A(q, c0) . (2)

We are mainly interested in strong type-II superconduc-
tors with coherence lengths g much smaller than their
penetration depth A, and mean-free path l. Under such
circumstances, the electrodynamics is local and it is
enough to consider the q —+0 limit.

The linear response theory leads to the following ex-
pression for the kernel K(co) in terms of Green's func-
tions:

K(irv) =
2m

2k~ Tm
1+ g f,v„(k)[G (k, i ru+icu„)G (k, iru„)+F (k,i ru„)F(k, i ru+i co„)]

(2~)' "

6 and F are the impurity-averaged Green's functions, 1 1
&@=co 1+ +~2+g(y )2

~@n kk
G(k, iso„)=

F(k, iru„) = b, (P)
(i co„) —

gl,
—

I h(P) I

(4)

with gz =el, —p, I /r being a scattering rate, u„(k)
=(I lfi)(BEI, /Bk„) the velocity, and

&( )=&( ) 1+ 1 1

2'r &ru'+~(y)'

The relaxation time ~ describes the effects connected with
the scattering on the static centers like vacancies, impuri-
ties, etc. We do not consider the interaction of the elec-
tromagnetic wave with moving impurities.

Performing a summation over Matsubara frequencies
co„=(2n + 1 )vrkz T and integrating over the two-

dimensional k vector, we arrive at the following formula
for the response function:

ne 2~ sin ((()) a(p) g(y)+1 g(y) —1

(2m ) a(0) R~ — E2
—e)+i'/r e2+E) —i'/w

+ f dy [1—2f (y +fico)] y +

dy[l —2f( )] +
h(p) ep+E)+ill/7 E2 ) E+IA/7

(6)

with

sgn(y)+y —b, (P) for ~y~ & h(P),
i +5 (P)——y otherwise,

E2=+(y+fico) —b, (P),
y (y +fico)+6 (P)

E, )Ep

ing Eq. (6), we have neglected a variation of the term

u„(k) and replaced it by a constant —,'vF. In view of the

crude character of our model, this should not be a serious
approximation.

Once we know the response function E(co), we easily

get complex conductivity o, =o.
&
+i o.2, surface im-

pedance Z(co), penetration depth A, , and other parame-
ters. The relation

Here n is the density of electrons, I is the effective mass,
and f (y) denotes the usual Fermi-Dirac function
[exp(y/k~T)+1] '. For the isotropic energy gap bo,
expression (6) reduces to the standard result. 3 In deriv-

o, (co) =—lt'(~)
CO

connects the response function with complex conductivi-
ty. In the London limit g «A, , the surface impedance
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E(0)
II(Q)

becomes equal to

Z(co) =icoA(co, )=
~E(co)

where A, (co) is penetration depth.

III. RESULTS
FOR TVVO-DIMENSIONAL SUPERCONDUCTOR

KITH ANISOTROPIC ENERGY GAP

Numerical calculations of penetration depth, complex
conductivity, and surface impedance as a function of m,

T, and l will be discussed in this section for a number of
6, values. For 6,=0 we get the results for the isotropic
energy gap presented previously. They wiB be shown
here by dashed lines. It turns out that gap anisotropy
modifies some of the dependencies quite strongly, making
them look similar to that observed experimentally.

Here it is a good place to remind the reader of at least
some of the previous work on electromagnetic properties
of anisotropic three-dimensional superconductors. On
the experimental side, let us mention early measure-
ments of surface resistance showing an effect of gap an-
isotropy and subsequent theoretical analysis by Clem.
Some of our results obtained for the two-dimensional sys-
tem resemble those of Clem.

A. Mean-free-path dependence

The dependence of the real part of conductivity in the
superconducting state on mean-free path l is shown in
Fig 1. o.

.
, is normalized to o~=ne /2rnco, which

expresses the normal-state conductivity of the pure sys-

tern l ~~. We plot characteristics for two frequency re-
gions, low frequencies (here 10 GHz) and the infrared re-
gion (here Re@=ho, 2do). We observe a slight shift of o,
values when the isotropic energy gap (dashed lines) is re-
placed by anisotropic A(P) (solid lines). This efFect is
large for frequencies near 250. The pair-breaking mecha-

nism leading to a sharp increase of o.
&

in the pure system
sets in at lower m in the anisotropic case.

The inset to Fig. 1 shows the position of the u, max-
imum in l and co space. In cleaner systems (long I), the
maximum of cr& is observed at lower frequencies. There
is, however, discontinuity of cr, at fico=260 for isotropic
gap materials. The anisotropy smoothes the mentioned
curve and makes it continuous.

We do not discuss O.
z dependence on l because it

remains almost the same for isotropic and anisotropic
gap material in the wide range of l values. In conse-
quence, the imaginary part X, of the surface impedance

Z, =8, +iX, is not influenced by the gap anisotropy.
Contrary to that, some interesting effects are observed

in 8, dependence on l as shown in Fig. 2. Here anisotro-

py causes an increase of the resistance at frequencies 10
GHz, 100 0Hz, and co=Do, but a slight decrease at the
highest studied frequency co=36o. The data presented in

Figs. 1 and 2 were obtained for temperature T =0.5T„
although similar behavior is observed at other tempera-
tures.

B. Temperature dependence

When studying the temperature dependence one needs
to know the temperature dependence of the gap function.
In our calculations we used a typical BCS-like tempera-
ture dependence of the energy gap. We assumed that
both ho and 6, do depend on 1 in the same manner.
Thus, we have
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FIG. 1. Mean-free-path I dependence of the real part of con-
ductivity ol for three frequencies: 10 GHz, 60, and 25o. The
conductivity a, is normalized to o.& = ne /2m~ and the mean-
free path i to ego. The inset shows the trajectory of maximum
value of o. , in (l, co) parameter space.

FIG. 2. Mean-free-path I dependence of the surface resis-
tance 8, normalized to Ro =(2m po/ne )' (k& T, /A). The
dashed lines refer to the isotropic energy gap and the solid lines
refer to anisotropic one with b, &/Do =0.8.
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b, =b 0( T)[1+2,cos(4$)], (10) 100 =

where d, 6i/6p is a T-independent factor characteriz-
ing gap anisotropy.

The anisotropy, as expected, has a pronounced effect
on the temperature dependence of surface resistance.
This is illustrated in Figs. 3(a) and 3(b) at low frequencies
and in Fig. 4 even more drastically at higher frequency.
At low frequencies (Fig. 3) the surface resistance depends
exponentially on T in region near zero and in the region
near T, . In between, R, is a somewhat weaker function
of temperature and this seems to be consistent with ex-
perimental data, denoted by open circles in Fig. 3(b).
Isotropic gaps lead to stronger temperature dependence.

At higher frequencies, e.g., Aco=hp, the anisotropy
when strong enough may lead (Fig. 4) to temperature-

10 =-

O
Ct'

0.1 =-

0.01 =-

0.001 =

0.0

'= 4o

/ r
//

1 /
/ / /

/ /
I i

i I i I i I I i I I I I J II I i I I I I i i I i i I i I 1 I I

0.2 0.4 0.6
I I i I I i I 1 i I I i I I i I I

0.8 &.O

10

f

10

10
O

lK

10

FIG, 4. The same as in Fig. 3(b) except that frequency
=5p.

independent (at low T) and fairly large values of R, . This
kind of behavior can easily be understood on physical
grounds. For a given value of the zero-temperature ener-

gy gap Ap, the pair breaking is much more efFective in
systems with anisotropic gaps for which b, |%0.

C. Frequency dependence
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Figures 5—8 show the dependence of surface resistance
and the real part of conductivity on frequency expressed
in Ap units. The dashed lines refer to the isotropic energy

gap and the solid ones to the anisotropic 6 with
6 ] /Ap =0.4 or 0.8. We have shown the surface resis-
tance R, versus co=2' at different temperatures and for
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FIG. 3. Surface resistance R, as a function of temperature
T/T, for frequency equal to 10 GHz and for three values of
mean-free path, as indicated. The dashed curves refer to isotro-
pic energy gap and the solid lines to anisotropic energy gap with
(a) 6i/kp=0. 4 (b) kl/kp=0. 8. The oPen circles rePresent the
experimental data from Ref. 25.

FIG. 5. Normalized surface resistance R, as a function of
frequency in the microwave region. The dashed lines refer to
isotropic energy gap and the solid ones to anisotropic energy

gap with 5, /hp=0. 8. Temperature is taken to be equal to
0.7T, .
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D. Frequency dependence —optical region

Here we discuss results of our calculations for frequen-
cies of the order of the energy gap Aco=ho. Figure 7
shows R, plotted versus frequency in units of 60 for two
values of I and anisotropy parameter d

&
=0, 0.4, 0.8. %e

choose two mean-free-path values I /~go = 1 and 10,
which should cover the typical range for the high-T, su-

perconductors. The long-dashed lines represent the iso-
tropic 5 characteristics. The short-dashed and solid
curves refer to the anisotropic energy gap with
b, , /ho=0. 4 and b, &/60=0. 8, respectively. Temperature
T is equal to 0.5T, . In a system with short values of I,
anisotropy influences the results so strongly that the R,
of the superconductor does not even demonstrate evi-
dence of the energy gap. For longer l, the nonmonoto-
nous dependence on co remains even for anisotropic ma-
terials, but it shows very complicated behavior especially
for larger anisotropies.

Recently the frequency dependence of the conductivity
of two-dimensional Cu02 sheets in the 1:2:3 phase has
been measured at different temperatures. The authors
found that the various features of the cr(co) curves
remained unchanged even though the experiments have
been performed at temperatures T ranging from T =0 up
to T ) T, . Furthermore, they have concluded that this
fact indicated T independence of the superconducting
gap and thus "the phenomenology of dynamic properties
[that] is fundamentally difFerent from that of convention-
al superconductors. "

We have performed calculations of o, (m) with the pa-
rameters, which should be relevant for this experiment.
Figure 8 shows the results. Dashed curves have been ob-
tained for the case with isotropic 5 and the solid lines for
anisotropic energy gap with 6,=0.45o. The temperature
dependence of 5 has been taken in the BCS form in order
to minimize non-BCS input, as already discussed [see Eq.
(10)]. The sharp minimum of o, (co), which moves to
lower frequencies with increasing temperature and which
traces the T dependence of 6 for isotropic gap material
broadens and shows no (or even opposite than expected)
T dependence for weakly anisotropic gap. This behavior
is very similar to that found experimentally.

Direct comparison of our results with experimental
data is perhaps not legitimate as we have not taken any
phonon oscillators into considerations. These, however,
should lead to even closer agreement between theory and
experiment. Similar experiment has been performed by
van der Marel et al. These authors found that their re-

suits are in good agreement with the two-fluid model and
in "strong disagreement with standard BCS theory. "

In our opinion, the gap anisotropy provides an alterna-
tive, and, in fact, more conventional explanation of these
experimental data. Our finding does not invalidate non-

standard interpretations, of course; it merely provides a
simpler one based on the well-established picture of su-

perconductivity.

IV. CONCLUSIONS

%e have investigated the anisotropy of the layered su-
perconductors and its influence on the finite-frequency
electromagnetic properties of the two-dimeasional super-
conducting systems. The anisotropy is understood here
as the dependence of interactions and thus superconduct-
ing gap on the directions in the ab plane, as is usual in
crystals (even with cubic or square symmetry) and not the
anisotropy between a and b directions, which is small.
GeneraHy speaking, the aaisotropy essentially does not
change the surface reactance X, .

%e have calculated the effect of gap anisotropy on
various characteristics of superconductors. None of the
results obtained is in contradiction with existing experi-
mental data. Moreover, in a few eases our calculations
seem to show the trends which fit those observed experi-
mentally, in particular, the frequency dependence of R,
at low co and T remains quadratic in accord with other
calculations and with experiment; the temperature depen-
dence of R, at moderate values of T [Fig. 3(b)] obtained

for anisotropic materials has, similarly as experimental
data, much lower slope than the one found for isotropic

gap; calculated T dependence of the London penetration
depth (not presented in this paper) only weakly changes
with gap anisotropy; and 0.~(co, T) curves (Fig. 8) strongly

resemble the experimental data ' and oFer their novel,

though more classic, interpretation.
In conclusion, the anisotropy of the gap is an impor-

tant factor, which strongly modifies the behavior of some
characteristics of supereonductors. It thus has to be tak-
en into consideration in the interpretation of experimen-
tal data.
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