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Temperature dependence of the c-axis resistivity of high-T, layered oxides
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Electrical transport along the c axis of high-T, layered oxides is pictured as a coherent interplanar
tunneling between neighboring layers blocked by repeated intraplanar incoherent scatterings. This gives
the same temperature dependence for the c-axis resistivity as that for the in-plane resistivity. Additional
temperature dependence can arise from the temperature-dependent renormalization of the tunneling ma-

trix element by an ohmic coupling to adiabatic phonons because of the large effective electron mass

along the e axis. Our calculation is consistent with recent experimental results on single crystals, and
makes some definite predictions that can be put to test.

The anisotropy of the temperature dependence of the
normal-state electrical resistivity of high-T, layered ox-
ides is not understood at present, even at a qualitative lev-
el. ' This is due partly to the disagreement among the
different experimental groups as to the temperature
dependence of the resistivity along the c axis. Thus,
while there is a general agreement that the in-plane resis-
tivity p,b is metallic and grows linearly with
temperature' —right from T, upwards to the highest
temperatures of measurement —the out-of-plane resistivi-
ty p, has been reported variously to have a nonmetal-
lic, a metallic, ' or a mixed temperature dependence.
More specifically, a nonmetallic power-law temperature
dependence p, ( T) ~ T, with 0.5 (a ( 1, has been re-
ported by Martin et al. on their highly anisotropic single
crystals of the Bi 2:2:0:1series of compounds (with T, as
low as 7 K, which is very much smaller than the trans-
port Debye tetnperature). This is to be contrasted with
the metallic behavior, p, (T) ~ T in single crystals of Y
1:2:3as reported by Iye et al. A mixed behavior of the
form p, (T)= A /T+BT has been found by Hagen et a1.
from their resistivity measurements on single crystals of
Y 1:2:3 and is strongly supported by the Anderson-Zou
mechanism. One of the many questions now being asked
is whether we are observing here the intrinsic c-axis
transport at all —the high degree of anisotropy
(p, /p, b ))1) makes it entirely possible for any measure-
ment of the c-axis resistivity to pick up an in-plane com-
ponent of the resistivity tensor. This may be externally
due to a misalignment of contacts, or internally due to
the randomly distributed defects, or "shorts, " providing
easy conduction paths between the ab planes. However,
the very recent measurements of Friedmann et al. on
twin-free single crystals of Y 1:2:3show linear tempera-
ture dependence of resistivities p„pb, and p, along all
the three orthorhombic axes. Their samples are claimed
to have the lowest resistivities reported so far and may
thus approximate well the intrinsic behavior. (For our

purpose, the relatively small anisotropy in the ab plane is
not important and we will just consider p,b, the average
ofp, and pb).

Given this rather conflicting evidence and, indeed
motivated by it, we propose in this work a general mech-
anism that intrinsically gives p, ~p, b and, therefore, the
same metallic T-linear temperature dependence for p, as
is known for p,b. In our model for electrical transport,
the in-plane electron dynamics is taken to be bandlike,
characterized by a Boltzmann-like mean free path, or
equivalently a mean free lifetime v. between successive
scatterings that are assumed inelastic and, therefore,
break the quantum phase coherence. It is not necessary
for us to assume any detailed model for these incoherent
scatterings. All we need to say is that the temperature
dependence of the in-plane resistivity comes entirely from
that of r via the Drude relation p,b=rn, bine r, where
m,*b is the in-plane effective mass. Thus, for instance, if
the in-plane dynamics corresponds to that of a two-
dimensional correlated electron system, modeled semi-
phenomenologically as a marginal Fermi liquid, then 1/r
will be proportional to the imaginary part of the retarded
self-energy of the electrons which in turn is proportional
to temperature. The crucial point of our model is that
these incoherent in-plane scattering events interrupt and,
therefore, block the coherent tunneling of the electron to
the neighboring planes under the influence of the tunnel-
ing matrix element t„much the same way as the repeated
"measurements" block the quantum evolution due to
wave-function collapse. ' This blocking is manifested
quantitatively in the modification of t, to t, ~/A &&t, for
t, ~/%&&1. The latter inequality implies that a large
number of in-plane scatterings takes place before an
interplanar tunneling occurs. This translates simply as
large anisotropy, p, /p, b)&1, which will be assumed
throughout. Under this condition, the successive inter-
planar tunneling events get uncorrelated and it is, there-
fore, sufhcient to consider tunneling between just two
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neighboring planes, labeled a and P, say.
Thus, our model Hamiltonian is (in obvious notation)

H=HO+H', with

The corresponding anisotropy ratio can now be written
as
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where we have assumed ~ s to have the usual Poisson
distribution with mean ~. From the in-plane survival
probability given by Eq. (2), we can read off the rate of
interplanar transition y &

as
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With y &
as the basic interplanar transition rate, we

can now proceed to calculate the transport coefficient
along the c axis. Let an external electric field of magni-
tude E be applied perpendicular to our pair of ab planes.
This will generate a chemical-potential difference
hp=edE, where d is the distance between the two planes.
This will expose a number of 4pg of unoccupied states
per unit area into which the electrons are free to make
interplanar transitions. Here g is the density of states per
unit area of the planes (counting both spins) and we have
assumed a two-dimensional degenerate quasiparticle pic-
ture. The net interplanar current density will then be
given by

j =e(~pg )r.~ .

Thus we get the c-axis resistivity

p, =(E/j)=—g2

dgt
(5)

=H +Hp+H p,
where H' is the unspecified in-plane inelastic scattering
term leading to the finite lifetime ~ for transport of the ab
planes. The effect of the "blocking" of the coherent
interplanar tunneling due to repeated in-plane incoherent
scatterings can be calculated straightforwardly following
the treatment due to Simonius. ' Thus, consider the time
(t) evolution of an initial state la, koo ) of an electron ly-

ing in the plane "a," of wave vector ko and spin projec-
tion cr, under the tunneling Hamiltonian H &, interrupt-
ed by the n-successive in-plane scattering:
la, koo ) —+la, k&a )~ ~la, k„o ), caused by H'.
Let ~, , ~2, . . . ,~„be the corresponding time intervals be-
tween these n-successive scatterings, with the total time

g; r; = t. The survival probability P for the electron to
persist in the same plane "a"is now given by'

n 2

&, a, k;.Ie 'Haf3"' la, k;o)

Here "a" is the in-plane lattice constant and 6 is the
number of change carriers per site in the plane. Also t,b
is the in-plane transfer matrix element. In arriving at Eq.
(6) we have expressed r in terms of p,~ via

p, b =(m,'b /ne r), and reexpressed m,'b, as also the densi-
ty of states g in terms of the in-plane bandwidth =8t,h.
Finally, the carrier concentration n is related to 5 via
5=(nda ).

Equation (6) is our main result. It predicts intrinsically
the same temperature dependence for p, as for p,b. It
also predicts a linear dependence of the anisotropy ratio
on the carrier concentration 5. This is a verifiable
feature. For the simple case of La 2:1:4type systems we
can identify 5 with the hole concentration due to doping
as, e.g. , in La2Cu04 s. The ratio (t,b/t, ) is essentially
the effective mass ratio and can be estimated from the an-
isotropy of the London penetration depths (A, ) via the an-
isotropic Ginzburg-Landau phenomenology, i.e.,
(A,, /A, ,b) =(m,blm, ). Here 1,, and A,,b correspond, re-
spectively, to the magnetic fields along the c axis and the
ab plane. Thus, for (t,b/t, ) =25 to 100, (a /d ) =0.5, and
typically 5=0.1, we get the anisotropy ratio p, /pab ——10
to 10 . We can expect much higher anisotropy for the Bi
series because of presumably much larger (t,b /t, ) ratio.

We would like to point out that additional power-law
temperature dependence of p, can come from the temper-
ature dependence of the effective tunneling matrix ele-
ment t, itself due to its renormalization by the coupling
of the slow interplanar electron tunneling to some adia-
batic bosonic degrees of freedom as discussed by Kondo"
in the context of the muon (heavy-electron) motion in
metals. (Indeed, the electronic effective mass along the c
axis here is comparable to that of muon. ) In the present
case we can reasonably identify the bosonic degrees of
freedom with the acoustic phonons along the c axis.
Such one-dimensional acoustic phonons can provide the
necessary, indeed "ohmic" coupling in our case. ' This
would give an adiabatic modification of the tunneling ma-
trix element t, ~t, given by'

k~T
(7)

Rw,

with

d A 1

2~% MC'

Here w, is an upper cutoff frequency (- the Debye fre-
quency), C, is the acoustic phonon speed along the c axis,
M is the unit-cell mass, and A is the deformation poten-
tial relevant to the electron phonon coupling. For a de-
formation potential of 0.5 eV A and C, —5 X 10
cm s ', a is of the order of unity. It is, however, not pos-
sible at the moment to estimate the exponent a accurate-
ly enough. It is believed, however, that in these materials
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the electron-phonon coupling is rather weak and the a is
expected to be small. It is clear, however, that this effect
can qualitatively change the temperature dependence of
pc.

At this point we would like to note that recently Ku-
mar et al. ' have considered a model for anisotropic
transport that involves scattering events of the type
~a, ko.

) ~ ~ p, k'cr ~, i.e., the scattering not only randomizes
momenta parallel to the ab plane but also causes interpla-
nar transfers. This gave p, ~1/p, b. This mechanism is
entirely different from the blocking of coherent tunneling
considered in the present work. Also, both these mecha-
nisms can operate simultaneously and can lead intrinsi-
cally to the mixed temperature dependence of the kind
observed by Hagen et a1.

We will now comment on two finer points of our re-
sults. The first is the carrier concentration independence
of p, (T) given by our Eq. (5). This is a direct conse-
quence of our assumption of constant density of states
(for the ttco dim-ensiona! sheets) taken in conjunction with
our mechanism of transport along the c axis. In the case
of the usual Boltzmann transport in metals (as in the in
plane transport in our case) involving hopping in the
momentum space, the carrier concentration enters in-
directly through the (Fermi) velocity. It is not that all
the electrons are involved in transport, but that all the
electrons determine the (Fermi) velocity of those few that
are. In the present case, the c-axis transport between the
sheets involves tunneling (real space h-opping) between the
states at the chemical potentials of the two sheets a and
p, offset by the applied electric field as given by our Eq.
(4). Here only the density of states at the chemical poten-
tial enters, and we have taken it to be constant because of
two dimensionality. A systematic experimental study of
concentration (in)dependence ofp, is called for.

The other point concerns the zero-temperature inter-
cept of the experimental T-linear p, (t). This is clearly an
effect of disorder, which, although expected to be small
for these single-crystal untwinned samples, can have con-
siderable effects on p, because of the smallness of the
interplanar matrix element t, . This effect can be included
approximately by reinterpreting our Eq. (3) physically in
a manner analogous to Eq. (38) of Kondo. " Thus, fi/r in
our Eq. (3) is the homogeneous level broadening due to
intraplanar scatterings. In the presence of disorder, we
should expect, in the zeroth approximation, an additional
inhomogeneous level spread 6 which is temperature in-

dependent, and thus A'/r is replaced by R/r+b, . On sub-
stituting in Eq. (5) this gives us a zero-temperature inter-
cept.

It may appear at first sight that the disorder 5 will
affect the in-plane resistivity p,b in the same proportion
as it affects p, through the above replacement of A/v. by
A'/~+A. That this is not so and, indeed, that disorder
affects p,b qualitatively differently can be clarified by the
following consideration. As we have argued above, the
interplanar tunneling between the states ~a, k ) and
~p, k), where a and p label the nearest-neighboring
planes, proceeds via the relatively small tunneling matrix
element t, and the effect of disorder is to broaden out in-
homogeneously the density of states —it makes the
matching of the energies of the two states ~a, k) and

~ p, k ) having same k less favorable. In the case of the in-
traplanar conduction, the static disorder acts primarily as
a mechanism of elastic scattering, ~a, k) —+~a, k') say,
and contributes an elastic relaxation time ~, given by the
Golden Rule as I lr, =(2n/R) X (the density of states at
the the Fermi level) X (the square of the matrix element).
The modification of the density of states at the Fermi lev-
el by the static disorder can be important only if the un-
perturbed density of states has a sharp structure at the
Fermi level. Thus, disorder enters p, and p,b qualitative-
ly differently. At the very least, 6 enters linearly for p, in
terms of fi/~+6, while it is expected to enter quadrati-
cally for p, b in terms of the matrix-element squared.

The slight upward turn of p, (T) at lower temperatures
close to T, can be attributed to the effect represented by
our Eq. (7), though a weak-localization effect cannot be
ruled out.

In conclusion we have presented a mechanism for the
anisotropy of the temperature dependence of resistivity in
the layered oxides involving blocking of coherent inter-
planar tunneling by the incoherent in-plane scattering.
This gives intrinsically p, ~p,z. The ratio p, /p, b O-5,
which can be and should be tested experimentally. Addi-
tional power-law temperature dependence may arise from
the renormalization of the tunneling matrix elements due
to ohmic coupling to adiabatic phonons. This mecha-
nism, taken in conjunction with the one proposed recent-
ly by Kumar et al. , can give intrinsically a mixed temper-
ature dependence of the kind observed by Hagen et al.
Finally, we believe that similar consideration should ap-
ply to other anisotropic layered systems; notable amongst
them is graphite. ' '
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