Photoelectron-spectroscopy study of superconductive $Nd_2CuO_{4-x}F_x$

Jun Sugiyama, Rittaporn Itti, H. Yamauchi, Naoki Koshizuka, and Shoji Tanaka

Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13 Shinonome 1-chome,

Koto-ku, Tokyo 135, Japan

(Received 10 September 1991)

A photoelectron spectroscopic study was performed to investigate both the fluorine sites in and the electronic structure of superconductive $Nd_2CuO_{4-x}F_r$ (x=0, 0.1, 0.16, 0.2, and 0.3). The x-ray photoelectron spectroscopic (XPS) results for F 1s spectra showed that the doped fluorine ions were located on the oxygen sites in the tetragonal Nd_2CuO_4 lattice. Furthermore, comparison between the XPS spectra of $Nd_2CuO_{4-x}F_x$, CuF_2 , NdF_3 , and NdOF suggested that the fluorine ions were not located on the O(2) sites around the Nd³⁺ ion but rather on the O(1) sites in the CuO₂ planes. The XPS result for Cu 2p spectra indicated that the amount of $Cu¹⁺$ ions increased as x increased. In addition, according to the ultraviolet photoelectron spectroscopic measurements, the density of states in the vicinity of the Fermi level seemed to increase as the F content increased.

I. INTRODUCTION

The superconductivity in $Nd_2CuO_{4-x}F_x$ (Ref. 1) was discovered just after the appearance of the "n-type" superconductor $Nd_{2-\nu}Ce_{\nu}CuO_4$.² It was found that the normal-state properties of $Nd_2CuO_{4-x}F_x$ were parallel to those of $Nd_{2-\nu}Ce_{\nu}CuO_4$ from the measurements of transport properties^{$3-5$} and the observation of electroni structure using electron-energy-loss spectroscopy.⁶ In contrast to the case of $Nd_{2-v}Ce_vCuO_4$, however, there have been only several reports available $Nd_2CuO_{4-r}F_r$.

In particular, the determination of the sites for doped F ions has been an unresolved problem for $Nd_2CuO_{4-x}F_x$. In the Nd_2CuO_4 -type tetragonal lattice,⁷ there are two oxygen sites which are called $O(1)$ and $O(2)$ site, respectively: the $O(1)$ site is in the CuO₂ plane (Cu-0 bond) and the O(2) site is between two Nd planes (Nd-O bond). Previously, we suggested³ that F ions were doped into the O(2) sites based on the lattice parameter measurement results; that is, the *a* axis increased in proportion to x for the samples with $x < 0.3$, in spite of the fact that the ionic radius of the F^- ion $[r=0.133$ nm (Ref. 8)] is smaller than that of the Q^{2-} ion $[r=0.140$ nm (Ref. 8)]. However, the lattice parameters would be affected by not only the ionic radius but also the charge distribution, when F ions are doped into the sample. Thus, we may not simply conclude that F ions are doped into the O(2) sites.

Unfortunately, it seems impossible to assign sites for doped F ions by neutron diffraction analysis, because the neutron scattering cross section for fluorine is approximately the same as that for oxygen.⁹ Furthermore, it was found⁴ that the TEM observation gave no significant information on the sites for doped F ions.

On the other hand, photoelectron spectroscopic analysis of core levels can provide the information on the nature of bonding; hence, there is a possibility to identify the position of F ions, if the core-level binding energies in the case of the Cu-F bonding are apparently different from those of the Nd-F bonding. In addition, a photoelectron-spectroscopic study of the valence band gives the information on the electronic structure; indeed, numerous photoelectron-spectroscopic studies of high- T_c superconductors indicate the existence of an edge structure at the Fermi level.¹⁰ Although some photoelectronspectroscopic studies^{11,12} on $\overline{Nd}_{2-\nu}Ce_{\nu}CuO_4$ were already reported, there are, to the authors' knowledge, no reports on the F-doped samples.

In this paper, we report on a photoelectronspectroscopic study of $Nd_2CuO_{4-x}F_{y}$ in order to assign sites for the doped F ions and investigate the change in the electronic structure due to F doping.

II. EXPERIMENT

The polycrystalline samples of $Nd_2CuO_{4-x}F_x$ (x=0, 0.1, 0.16, 0.2, and 0.3) were synthesized by a solid-state reaction technique using reagent-grade Nd_2O_3 , NdF_3 , and CuO powders. Stoichiometric mixtures of the starting materials were thoroughly mixed by a planetary ball mill using ethanol as solvent. After drying, the mixtures were calcined at 860 °C for 10 h in 20% O_2 -Ar gas mixture flow. After regrinding, the calcined powder was pressed into rectangular bars and sintered at 1100'C for 14 h in 1% O_2 -Ar gas mixture flow. Then, the samples were annealed at 910°C for 14 h in nitrogen gas flow and furnace cooled to room temperature with a rate of \sim 4°C/min.

Powder x-ray-diffraction studies and electron-probe microanalysis indicated that the samples with $x \le 0.2$ were nearly single phase of the Nd_2CuO_4 -type tetragonal structure. In contrast, the sample with $x=0.3$ included sma11 amounts of NdOF and CuO phases besides the $Nd_2CuO_{4-x}F_x$ phase. The electrical resistivity and magnetic susceptibility measurements showed that the values of $T_{c, on}$ were \sim 27 K for the samples with $x > 0.1$, though the zero-resistance states were observed only for the samples with $x=0.2$ and 0.3 at 20 and 19 K, respectively. The characterization and physical properties of the samples are reported in detail elsewhere. $3-5$

The photoelectron-spectroscopic measurements were carried out in an ultrahigh-vacuum system equipped with an Al x-ray source (1486.6 eV) for x-ray photoelectron spectroscopy (XPS) and a noble-gas discharge lamp for ultraviolet photoelectron spectroscopy (UPS). The energy distribution of the photoelectron was determined by an electron-energy analyzer, the resolution of which was set at 0.8 and 0.15 eV for XPS and UPS measurements, respectively. Core-level binding energies were referenced to the adventitious C 1s peak at 285.0 eV. For the UPS measurement, the Fermi energy was determined directly from the zero binding energy of the analyzer, because no charge-up was observed and the accuracy was better than 0.15 eV. The typical pressure during the measurements was \sim 2 \times 10⁻¹⁰ torr. The sample was scraped in vacuum by a diamond file before each measurement. In this study, all of the spectra were taken at room temperature.

III. RESULTS AND DISCUSSION

A. Core-level spectra

The F ls core-level XPS spectra from $Nd_2CuO_{4-x}F_r$ $(x=0, 0.1, 0.16, 0.2,$ and 0.3) are shown in Fig. 1. The peak observed in the spectrum for each of the F-doped samples indicates that the binding energy of F ls in $Nd_2CuO_{4-x}F_x$ is about 684 eV. Since the peak intensity (at \sim 684 eV) increases with x, the F content in $Nd_2CuO_{4-x}F_x$ rises with x, as expected. Furthermore, this increase in the peak intensity at the same binding energy of \sim 684 eV suggests that the F ions are doped into a certain site in the Nd_2CuO_4 -type tetragonal unit cell; this is also supported by the fact that the observed binding energy is different from that of F in NdOF, which was the only impurity phase including F ions in the samples, as will be mentioned later.

Figure 2 shows the F 1s XPS spectra from $Nd_2CuO_{3.8}F_{0.2}$, CuF_2 , NdF_3 , and NdOF. There is a marked difference between the top two spectra and the bottom two spectra. The binding energies of F 1s are estimated to be about 683.9, 684.6, and 684.6 eV in CuF₂,

FIG. 2. XPS core spectra of F 1s from $Nd_2CuO_{3.8}F_{0.2}$, CuF₂, NdF_3 , and NdOF.

 NdF_3 , and NdOF, respectively. The binding energy of F in $Nd_2CuO_{4-x}F_x$ (~684 eV) is close to that in CuF₂ rather than to those in NdF_3 and NdOF. This suggests the possibility of the existence of Cu-F bonds in the sample. While it is difficult, based only on the XPS results at this moment, to assign sites for the doped F ions, the similarity of the spectra for F 1s from $CuF₂$ and $Nd_2CuO_{4-x}F_x$ suggests that the F ions are doped into $O(1)$ sites in the CuO₂ planes. This seems to be against the result of the lattice parameter measurements.³ However, as described above, it is difficult to assign sites for the doped F ions only from the changes in the lattice parameters.

The XPS spectra for other inner core levels of Nd, Cu, and O are shown in Figs. $3-5$. The Nd 3d core-level spectra show no special changes caused by the F doping. Thus, the valence of the Nd ions in $Nd_2CuO_{4-x}F_x$ is considered to be trivalent. This situation is similar to the case of $Nd_{2-y}Ce_yCuO_4$.¹⁰ Additionally, this seems to indicate that the Nd-F bond does not exist in the F-doped samples.

The Cu2p core-level spectra for $Nd_2CuO_{4-x}F_x$ are shown in Fig. 4(a). Each spectrum consists of a main

FIG. 1. XPS core spectra of F 1s from $Nd_2CuO_{4-x}F_x$ with $x=0, 0.1, 0.16, 0.2,$ and 0.3.

FIG. 3. XPS core spectra of Nd 3d from $Nd_2CuO_{4-x}F_{x}$.

peak at 932.4 eV and a broad satellite peak at \sim 942.5 eV; usually, 12 the former is assigned to the charge-transferscreened $2p3d^{10}L$ final state and the latter is assigned to the unscreened $2p3d^9$ final state. Since F^- ion is considered to be a hard base,¹³ the substitution of O by F in $Nd₂CuO₄$ should provide electrons in the CuO₂ planes; as

FIG. 4. (a) XPS core spectra of Cu 2p from $Nd_2CuO_{4-x}F_x$ with $x=0$, 0.1, 0.16, 0.2, and 0.3; (b) the comparison of two XPS spectra of Cu 2p from Nd_2CuO_4 and $Nd_2CuO_{3.7}F_{0.3}$; (c) the relationship between I_m/I_s and x, where I_m and I_s are the intensity of the main and satellite peak, respectively.

FIG. 5. XPS core spectra of O 1s from $Nd_2CuO_{4-x}F_x$ with $x=0, 0.1, 0.16, 0.2,$ and 0.3.

a result, the amount of $Cu⁺$ ions in the sample would increase with x . Hence, as x increases, the intensities of the main and satellite peaks are expected to enlarge and reduce, respectively. Indeed, as shown in Fig. 4(b), apparent growth of the main peak is observed, making a comparison between the two spectra for Nd_2CuO_4 and $Nd_2CuO_{3.7}F_{0.3}$. To understand the changes in the intensities of the two peaks due to the F doping, Fig. 4(c) shows the main-to-satellite peak intensity ratio I_m/I_s as a function of x . It is clearly observed that the magnitude of I_m/I_s rises in proportion to x, indicating a linear increase in the amount of $Cu⁺$ ions.

As shown in Fig. 5, the 01s core-level spectra for $Nd_2CuO_{4-x}F_x$ consist of the sharp peak at 528.8 eV and the shoulders at \sim 531 eV. It is worth noting that the position of the main peak exhibits no systematic shifts due to F doping. In contrast, for $Nd_{2-y}Ce_yCuO_4$, it was observed that the sharp peak at 528.6 eV shifted slightly to-
ward a higher binding energy due to Ce coping.¹¹ To exward a higher binding energy due to Ce coping.¹¹ To explain the shift for $Nd_{2-y}Ce_yCuO_4$, it was supposed that the oxygen valence increased with y, such as the oxygen valence increased with y, such as
 $Q^{2-} \rightarrow Q^{(2-p)-}$. However, our result implies that the

FIG. 6. Valence-band UPS spectra (He I, $hv=21.2$ eV) from $Nd_2CuO_{4-x}F_x$ with $x=0, 0.1, 0.16, 0.2,$ and 0.3.

FIG. 7. Enlargement of the UPS spectra of Fig. 6 in the Fermi-level region.

valence of oxygen is not affected by the substitution for O by F. Only the valence of Cu seems to reduce due to F doping. On the other hand, the broad peak at \sim 531 eV is considered to be from the oxide impurities, probably CuO and $Nd₂O₃$, which are segregated at the voids and/or the grain boundaries. Therefore, although the intensity of the shoulder varies slightly with x , this change is not an essential feature.

B. Valence-band spectra

Figure 6 shows the UPS valence-band spectra for $Nd_2CuO_{4-x}F_x$. The fact that the shapes of the spectra do not change with x indicates a stable electronic structure to the F doping. In order to understand the detailed electronic structure at the Fermi level (E_F) , the UPS spectra in the vicinity of E_F are shown in Fig. 7. For each of the samples with $x \ge 0.1$, a finite density of states can be observed at E_F . Furthermore, as x increases, the density of states at E_F , $N(E_F)$, seems to grow. Previous-
ly, we reported³⁻⁵ that all of the resistivity, Hall coefficient and thermoelectric-power coefficient reduced in magnitude with x . This indicated an increase in the charge-carrier density due to F doping. We also pointed out the existence of the insulator-to-metal transition around $x=0.16$.⁵ The UPS result, which indicates the growth in $N(E_F)$ with increasing x, is consistent with the results of the transport properties. However, no drastic differences of the electronic structure between $x=0$ and 0.2, which might be related to such insulator-to-metal transition, were observed.

Figure 8 shows the UPS results for Nd_2CuO_4 , $Nd_2CuO_{3.8}F_{0.2}$, and $Nd_{1.85}Ce_{0.15}CuO_4$. Although the difference in shape around 5 eV between $Nd_{1.85}Ce_{0.15}CuO_4$ and $Nd_2CuO_{3.8}F_{0.2}$ may suggest the characteristic difference between the Cu $3d - O2p$ and

FIG. 8. Valence-band UPS spectra (He I, $h\nu$ =21.2 eV) from Nd_2CuO_4 , $Nd_2CuO_{3.8}F_{0.2}$ and $Nd_{1.85}Ce_{0.15}CuO_4$.

Cu $3d$ – F 2p hybridization, the overall shapes of the three spectra are quite similar, especially in the vicinity of E_F . This indicates that the electronic structures of $Nd_2CuO_{4-x}F_x$ should be approximately the same as those of $Nd_{2-\nu}Ce_{\nu}CuO_4$. In fact, the calculated electronic structure using the tight-binding approximation showed¹⁴ that there were no significant differences between $Nd_{2-y}Ce_yCuO_4$ and $Nd_2CuO_{4-x}F_x$. Furthermore, the calculation indicated that E_F shifted by 0.34 eV towards the high binding-energy side (comparing with Nd_2CuO_4) and the value of $N(E_F)$ was 0.71 states/(eV unit-cell) for $Nd_2CuO_{3.6}F_{0.4}$, if the F⁻ ions were doped into only the O(1) sites. Of course, at this moment, it is difficult to estimate the value of $N(E_F)$ only from the UPS measurements. Nevertheless, the measured photoelectron spectra for $Nd_{2-y}Ce_yCuO_4$ (Refs. 11 and 12) and $Nd_2CuO_{4-x}F_x$ seem to be in good agreement with the calculated one.

IV. SUMMARY

A photoelectron-spectroscopic study was made in order to investigate both the fluorine sites in and the electronic structure of superconductive $Nd_2CuO_{4-x}F_x$ $(x=0, 0.1, 0.16, 0.2,$ and 0.3). The x-ray photoelectron spectroscopic (XPS) results for F 1s spectra showed a possibility that the doped fluorine ions were not located on the O(2) sites around the Nd³⁺ ion but rather on the O(1) sites in the $CuO₂$ planes. Although the XPS spectra for Nd $3d$ and O 1s exhibited no significant changes due to F doping, the amount of $Cu⁺$ ions was found to increase with x from the XPS spectra for $Cu 2p$. In the ultraviolet photoelectron-spectroscopic measurements, it was observed that the density of states in the vicinity of the Fermi level also increases with x , as reported for other high- T_c superconductors.

- ¹A. C. W. P. James, S. M. Zahurak, and D. W. Murphy, Nature 338, 240 (1989).
- ²H. Takagi, S. Uchida, and Y. Tokura, Phys. Rev. Lett. 62, 1197 (1989).
- ³J. Sugiyama, Y. Ojima, T. Takata, K. Sakuyama, and H. Yamauchi, Physica C 173, 103 (1991).
- 4J. Sugiyama, M. Kosuge, Y. Ojima, H. Yamauchi, and S. Tanaka, Physica C 178, 131 (1991).
- 5J. Sugiyama, K. Matsuura, M. Kosuge, H. Yamauchi, and S. Tanaka (unpublished).
- ⁶M. Alexander, H. Romberg, N. Nücker, P. Adelmann, J. Fink, J. T. Market, M. B. Maple, S. Uchida, H. Takagi, Y. Tokura, A. C. W. P. James, and D. W. Murphy, Phys. Rev. B 43, 333 (1991).
- ⁷Powder Diffraction File of Joint Committee on Powder

Diffraction Data (International Center for Diffraction Data, Swarthmore, PA, 1988).

- 8R. D. Shannon, Acta Crystallogr. A32, 751 (1976).
- $9G.$ E. Bacon, International Tables for X-ray Crystallography (Kynoch, Birmingham, 1974), Vol. IV, pp. 270—271.
- ¹⁰M. S. Golden, R. G. Egdell, and W. R. Flavell, J. Mater. Chem. 1, 489 (1991).
- ¹¹T. Suzuki, M. Nagoshi, Y. Fukuda, K. Oh-ishi, Y. Syono, and M. Tachiki, Phys. Rev. B42, 4263 (1990).
- ¹²A. Fujimori, Y. Tokura, H. Eisaki, H. Takagi, S. Uchida, and E. Takayama-Muromachi, Phys. Rev. B42, 325 (1990).
- ¹³R. G. Pearson, J. Chem. Education 45, 581 (1968); 45, 643 (1968).
- ¹⁴B. K. Agrawal, S. Agrawal, P. S. Yadav, and S. Kumar, Phys. Rev. B43, 1166 (1991).