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A semiempirical method for the computation of alloy energies is introduced. It is based on the
equivalent-crystal theory of defect-formation energies in elemental solids. The method is both simple
and accurate. Heats of formation as a function of composition are computed for some binary alloys of
Cu, Ni, Al, Ag, Pd, Pt, and Au using the heats of solution in the dilute limit as experimental input.
The separation of heats into strain and chemical components helps in understanding the energetics. In
addition, lattice-parameter contractions seen in solid solutions of Ag and Au are accurately predicted.
Good agreement with experiment is obtained in all cases.

Recently, there has been substantial success in predict-
ing the heats of formation of binary alloys both with first-
principles and semiempirical methods. ' There is still a
good deal of progress to be made, however, in that experi-
mental trends in the cohesive energy and heats of forma-
tion as a function of composition are often not accurately
reproduced.

In this work, we propose a method for calculating heats
of formation, cohesive energies, and lattice parameters as
a function of concentration for binary alloys. We make
use of equivalent-crystal theory (ECT), ' a semiempiri-
cal approach to calculating the energetics of solids with
defects that has successfully reproduced surface energies
and surface relaxation in metals and semiconductors.

We seek to develop an approach that requires only in-
formation about pure metal properties and certain experi-
mentally determined alloys properties. We build on the
formulation of ECT by dividing the total binding energy
of the alloy into a chemical energy and a strain or
structural energy (see, e.g., Refs. 1 and 3). The strain en-

ergy associated with a given atom is computed as if all of
its neighbors were of the same atomic species. It arises
from neighbor locations being different from in the ele-
mental single-crystal environment. The remainder of the
total energy is defined to be the chemical energy, which is
due to some of an atom's neighbors being of a different
atomic species.

We now proceed to outline the procedure for calcula-
tion of the heats of formation versus concentration for fcc
binary alloys. We first apply the method to ordered alloy

We approximate the strain energy associated with atom A

by replacing all of its B neighbors by A atoms at the same
sites. This "strain" may involve defect-formation energies
such as surface energies, vacancy-formation energies, etc.
It is obtained from a standard defect energy calculation of
ECT as applied to elemental solids. ' The strain energy
becomes

a, =REF'[a,'(i)], (2)

where F*[a, ]=1—[1+a, ]e " and a,*=(a,—a, )ll.
a,. is the equilibrium lattice parameter, hE is the cohesive
energy, and / is a scaling length' for the pure species 8 or
B. Finally, a, is the lattice parameter of the equivalent
crystal. For this simple case of crystalline alloys, a, is the
actual alloy lattice parameter. There is an Eq. (2) for
each atom. The remaining part of s~ we call the chemical
energy s, . This is the energy change due to some neigh-
bors of A atoms being B atoms rather than A atoms, or
vice versa.

~e have found that the chemical energy s, can be accu-

structures and then use the Connolly and Williams'' pro-
cedure for relating the ordered compounds to the disor-
dered ones.

The contribution to the heat of formation of an A atom
in the alloy A-B, is written as a sum of a distortion or
strain energy s„anda chemical energy s, :

~(A) +~(A)
&s c
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rately computed as follows:

a- = yhEe ' F*[a„*],

where y=l for a,*~0, y= —
1 for a,* &0, and a,* is the

argument of the strain energy term, Eq. (2). The argu-
ment a,*. for an A atom is determined from the solution R]
of the following equation:

lV(R""e '" ' gR—g"e " "=0

where a; =aq if the neighbor is an A atom and a;=a~+ hii~ if the neighbor is a B atom, R~ is the ground-
state nearest-neighbor distance for the elemental A crys-
tal, pz =2nz —2, and nz is the principal quantum number
for atom A. Equations exactly analogous to Eqs. (1)-(4)
apply to the computation of aa. Equation (3) is refer-
enced to the case where all atoms are identical. Equations
(3)-(4) determine the excitation energy of an elemental
solid due to atomic substitutions with no distortion or
strain. They are therefore complementary to the strain
energy Eq. (2). As in ECT, we choose to vary the lattice
constant of the crystal being perturbed, and denote the
equivalent crystal as that crystal whose nearest-neighbor
distance R~ is such that the perturbation energy terms
[Eq. (4)] are equal to zero. Note that the strain and
chemical energies are coupled nonlinearly. The coupling
function e " guarantees that the chemical energy will go
to zero exponentially with increase in interatomic spac-
ings, as it should. Finally, the constants h~a and ha& are
determined so the corresponding predicted heats of solu-
tion agree with the experimental values. ' '

Strictly speaking, the ECT (Refs. 8-10) only applies to
defect energies in elemental solids, while here we attempt
to compute a chemical energy associated with the change
from an elemental solid to an alloy. Nevertheless, in for-
mulating Eqs. (3) and (4), we followed the perturbative
spirit of the ECT by assuming that a significant term in

the chemical energy, given by the left-hand side of Eq.
(4), is of the same form as the principal perturbation term
of ECT. We introduce the interaction between different
species in the right-hand side of Eq. (4) by means of the
parameters Aza and d,az which are fixed by alloy proper-
ties. The form of Eq. (3) was chosen to satisfy a few sim-

ple conditions. From Eq. (4), the lattice constant a„*is
zero when all neighbors of an atom are atoms of its same
species, i.e., when there is no chemical change. Thus
e,.(0) =0. Second, there must be a provision for s, (a„*)to
range to values greater than and less than zero, since h,H,
the heat of formation, covers that range (see Fig. 1). Fi-
nally, e,. (a,. ) is a function which is everywhere continuous
and has continuous first derivatives. The function in Eq.
(3) satisfies all these conditions and has some similarity to
Eq. (2) through the common use of the universal form
F*[a *].

We have now outlined a procedure constructed entirely
in terms of pure metal components plus two additional pa-
rameters, h&~ and h, ~&, which must be fixed from alloy
properties. We now proceed to show how these two pa-
rameters can be specified by use of the Connolly-Williams
approach and experimental values of the heat of solution.
We first compute the heat of formation of the ordered

compounds A„,B4 within the tetrahedron approxima-
tion. " Following the method of Ref. 11, the heat of for-
mation of the disordered phase as a function of composi-
tion is computed. The excess internal energy per atom for
the ordered alloy is given by

hE„,(r) =E„,(r) —
—,
' mE4(R~) —(1 —

—, m)EO(Rii),
(~)

where E4 and Ep are the cohesive energies of the pure ma-
terials, and E„,(r)= (m—/4)c&(r)+(1 m/4—)eq(r) is the
binding-energy curve for the alloy. Following Connolly-
Williams, ' the excess energy for the disordered com-
pound A 8 [ —,is given by

&ED(r,x) =pc„,(x)AE„,(r), (6)

where e„,(x) =(„,)x (1 —x) "'. hH is given by the
minimum value of BED(r,x) for each value of x. The
heats of solution Eq~ =[BAH/8xjo and Ezz = —{BAH/
Bx}~ are then E8~ =AE„,=3(R&) and E~q =BE =~(Rq).
We then solve this system of equations, subject to the
minimization constraint of BED(r,x), for the values of
4q~ and h~g which reproduce the experimental heats of
solution. '

Note that the amount of effort to apply Eqs. (1)-(6) is

trivial. In fact, once h~q and hq~ are determined, one can
actually solve for alloy heats of formation with a hand cal-
culator if desired. Figure 1 shows the results of this pro-
cedure for predicting the heats of formation versus con-
centration curves for some of the compounds of Cu, Ni,
Al, Ag, Pd, Pt, and Au. Note that in all cases there is

both qualitative and quantitative agreement with experi-
ment. We further note that the hH are computed from
differences of numbers which are typically 1 or 2 orders of
magnitude larger than hH and thus the degree of agree-
ment between experiment and theory is perhaps surpris-
ing.

In general, these curves result from a competition be-
tween chemical and strain energies. For all of the alloys
exhibited except for Cu-Ni and Ag-Al the chemical-
energy contributions to AH of the ordered alloys were neg-
ative. That is, the chemical energy was attractive, pro-
moting mixing of the elements. This was even true for
Cu3Ni and Ag3Al. On the other hand, the strain energies
were positive for all the alloys, as defined. So strain
effects promote segregation and chemical effects typically
promote mixing. For Ag-Cu, the strain energy dominates
presumably due to the significant difference in lattice con-
stants. For the noble metals Ag-Au the two lattice con-
stants are close and the chemical energies dominate. Ni-
Pd and Ag-Al exhibit similar behavior, but for different
reasons. For both of these alloys, h, H is small and actually
changes sign with x. Lattice constants for Al and Ag are
close, leading to quite small strain energies. Chemical en-
ergies are also relatively small, however, and are negative
for Ag3Al but positive for AgA1 and AgA13. This change
in sign of the chemical energies is presumably the source
of the change in sign of h, H for Ag-Al. The lattice con-
stants of Ni and Pd are not as close, so there is a

significant strain energy. Chemical energies are also rela-
tively strong for Ni-Pd, and, in fact, tend to cancel the
strain energy in NiPd. Although lattice constants of Ni
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FiG l Comparison between the heat of formation as a function of concentration for diff'erent alloys: the solid curve indicates the

results obtained in this work and the symbols indicate the experimental values.

and Cu are relatively close, leading to relatively weak
strain energies, chemical energies are also weak and, in

fact, are positive (repulsive) for CuNi and CuNi3. The
result is a weakly positive hH for Ni-Cu, suggesting segre-
gation. For the rest of the alloys, the chemical energy
tends to dominate the strain energy, suggesting mixing.
The only other alloy exhibited where the strain energy is
not significant is Al-Au. That, coupled with the relatively
large chemical energies, explains why h,H can be relative-
ly large for Al-Au.

As suggested in the introduction, it is difficult to accu-
rately predict the dependence of the heat of formation on
concentration as we have. This difficulty is perhaps em-
phasized in the case of Ni-pd, where diAerent calcula-
tions, including the embedded-atom method ' and the
method of Miedema and de Chatel disagree on the sign
of the heat of formation as well as the behavior in the di-
lute limit. While the method of Miedema and de Chatel
provides reasonably accurate results, the EAM (Ref. 5)
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FIG. 2. Comparison between the results obtained in this work
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parameters of Ag-Au alloys as a function of composition.
Vegard's law results are also shown (dashed line).
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results are rather inaccurate. There are other versions of
EAM for alloys. Johnson employed an EAM method to
compute heats of formation, and he also found that Pd al-
loy predictions appeared to be rather inaccurate.

The predictive power of our formalism is further em-
phasized in our estimates of the lattice parameters of
binary alloys, for which there is no experimental input in
this method. Figure 2 shows the lattice parameters of the
solid solutions of Ag and Au, which show a peculiar be-
havior given by an experimentally seen contraction with

respect to the pure metals. '-' The contraction is due to an
attractive chemical energy dominating a weak strain ener-
gy. The strain energy is weak because of small lattice
mismatch. The agreement with experiment again demon-
strates the sensitivity of this approach.

In conclusion, we have developed a semiempirical pro-
cedure for the concentration dependence of the heats of
formation and lattice parameters of binary alloys. This
method accurately predicts the experimental behavior
qualitatively and quantitatively.
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