PHYSICAL REVIEW B

VOLUME 45, NUMBER 9

1 MARCH 1992-1

Real-space renormalization-group study of hard-core dirty bosons

Lizeng Zhang
Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794

Michael Ma
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
(Received 29 April 1991; revised manuscript received 23 September 1991)

We investigate the critical phenomena of hard-core bosons in a disordered medium. Such a system is
mapped onto a quantum spin-% XY model with transverse random field. The system then is studied
through a quantum real-space renormalization-group method. We find that randomness is always
relevant in a one-dimensional (1D) system, in agreement with exact results. In two and three dimen-
sions, there is a critical amount of disorder, below which the superfluid phase is stable. In 2D, the dy-
namic exponent z =1.7 for compressible states, and is close to the value of z =d as predicted by Fisher
et al. z is smaller for incompressible states. The correlation length exponent v is insensitive to z, and
roughly equals 1.4. Unlike the superfluid—Mott-insulator transition without disorder, which has two
distinct universality classes, we find there is only one universality class for the superfluid—Bose-glass

transition.

I. INTRODUCTION

The effect of randomness on the superfluid (SF) proper-
ties of bosonic systems is a challenging problem of great
interest. It is well known that disorder can result in the
localization of single-particle states. For an ideal-gas sys-
tem, all particles will Bose condense into the lowest-
energy state at T =0. Since the lowest-energy state is lo-
calized by any finite disorder, superfluidity is therefore
destroyed. Repulsive interactions between bosonic parti-
cles, however, prevent this condensation into a single lo-
calized state. Instead, interaction allows only a finite
number of bosons to occupy each localized state. Thus,
naively, one expects that, as the chemical potential is
raised, a “Bose-glass”—~ (BG-) SF transition, correspond-
ing to filling up of localized states and Bose condensation
into the first extended state, should take place at zero
temperature.! This phase transition, as a result of the in-
terplay of quantum-mechanical effects, disorder, and in-
teraction, may display very different critical phenomena
from the usual SF transition at finite temperature in a
pure system. This problem, as interesting theoretically as
it is, is by no means a purely academic question. The
most direct experimental realization of disordered boson
systems is perhaps the recent experiments on *He in
Vycor glass and in other porous media.’? In these sys-
tems the porous medium provides the random potential
experienced by the “He atoms. Also, in disordered (con-
ventional) superconductors, disorder may reduce the
coherence length, and hence the size of Cooper pairs, to
the scale of interparticle distance.® One may view, there-
fore, strongly disordered superconductors as disordered
(composite) boson systems. Yet another example is the
disordered negative-U Hubbard model, with the
“medium”-T, compound BaBiO as a possible realiza-
tion.*

The dirty-boson problem was studied a few years ago
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by Ma, Halperin, and Lee.’ In their work the authors
studied a model of hard-core bosons on a lattice with ran-
dom potential at zero temperature. It was established
that the SF phase in the ground state (GS) can indeed be
destroyed in the strongly disordered limit. However, this
transition, which was shown to be driven by disorder-
enhanced quantum-mechanical fluctuations, has no clas-
sical counterpart. Some scaling relations were derived.
Fisher et al.® studied the dirty-boson problem more re-
cently. They considered a system of bosons on a lattice,
with soft on-site interaction. This system exhibits a
Mott-insulator— (MI-) SF transition without disorder.
With disorder, the transition can be a direct BG-SF one,
or there can be an intermediate MI phase. Based on gen-
eral scaling arguments, they deduced some specific prop-
erties of this zero-temperature BG-SF critical point.

Let 6 denote the “distance” from criticality. Then the
correlation length £ diverges near criticality as £§x<8™ ",
which defines the critical exponent v. Besides £ there is
also a characteristic time 7, diverging as 7 <8 *’, which
defines the dynamic exponent z. The critical exponent v
is bounded by the (rigorously proven) inequality v>2/d.’
Since the system is compressible in both the SF and BG
phases, it is reasonable to expect that it is so at criticality.
By further assuming that the compressibility is complete-
ly due to collective excitations (i.e., phonons), Fisher
et al.® deduced that z should be exactly equal to the
dimensionality of the system. Their results, while physi-
cally appealing, should be systematically examined on a
more solid ground. Furthermore, by considering whether
or not the transition can be reached by tuning the chemi-
cal potential u, they argued that the critical behavior of
the MI-SF transition without disorder should depend
upon whether or not there is a “particle-hole” symmetry
in the system. It would be of interest to know whether
that is also the case for the BG-SF transition with disor-
der. Finally, the exponent v, which cannot be obtained
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by scaling arguments, needs to be calculated indepen-
dently.

The conventional field-theoretical renormalization-
group (RG) analysis, which is one of the most powerful
theoretical means developed in the past two decades to
study critical phenomena, however, has not been applied
successfully to this problem so far. Essentially, this is
due to the fact that the BG-SF phase transition, which is
a pure quantum critical phenomena and has no classical
counterpart, does not have a proper Gaussian (mean-
field) theory upon which one can build a perturbative ex-
pansion.® This motivates us to perform a real-space
renormalization-group (RSRG) study of this problem. In
this paper we investigate the lattice hard-core-boson
model previously studied by Ma, Halperin, and Lee® us-
ing a RSRG method. The belief is that for the generic
BG-SF phase transition, the hard-core model will have
the same critical behavior as that of the more general
soft-core systems. We wish to calculate v, verify the scal-
ing prediction z =d, and explore the critical properties of
the BG-SF transition at and away from the particle-hole
symmetric point to decide if they are in the same univer-
sality class. Since the hard-core model is equivalent to a
spin-+ model, the calculation will also be relevant to
disordered quantum spin systems. In our calculation two
RG procedures are used, corresponding to zero or finite
compressibility. In one dimension (1D), the SF phase is
found to be always unstable, in agreement with exact re-
sults.®° In 2D and 3D, there is a BG-SF transition. The
exponent v is approximately 1.4 in 2D and 1.0 in 3D, and
is not very sensitive to which procedure is used. The ex-
ponent z, however, is found to be highly sensitive to
whether the compressibility is zero or finite, and is equal
in 2D to 1 and 1.7, respectively, in semiquantitative
agreement with scaling prediction. The rest of the paper
is organized as follows. In Sec. II we describe our RSRG
procedures for the disordered hard-core lattice boson
model, clarifying along the way certain unexplained
features of the RSRG calculation of the pure quantum
spin model by Jullien and co-workers.'® This part is
mainly technical, and the readers may choose to skip to
the next section if they wish. In Sec. III we present and
discuss our results. We conclude our study in Sec. IV.

While this work was in progress,'' other groups have
also performed numerical calculations for the dirty-boson
problem. !> However, the emphasis of these calcula-
tions is on the phase diagram!>!* and critical exponents
in one dimension. !>

II. PROCEDURE

Hard-core bosons on a lattice may be described by the
Hamiltonian®

H=—t 3 blb,+H.c.+ 3 (W,—pb/b, , (1)

(i j) i
where biT, b; are the usual boson creation and annihilation
operators on the lattice site i. The hard-core condition is
reflected by the restriction on the eigenvalue of the num-
ber operator #; =b;b[ so that it can only take the values O
and 1. {i,j) indicates the nearest neighbor. W, is a ran-
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dom on-site potential such that
(W;)=0, (W, W;)=W?,; .

This is equivalent to a quantum spin-; XY model with
transverse random fields:

J z
H==3 3 (SIS/+SiS)— Shist, @
L] !

with
S;eb!, S7ob;,
Jot, hyou—Ww,; .

Superfluidity in model (1) corresponds to spin long-range
order in the XY plane in (2).

The pure quantum XY model, corresponding to (2)
with h; =h, was studied sometime ago through RSRG by
Jullien and co-workers!® using a block-spin method.
Here we generalize their work to include disorder. Along
the way we also clarify some questions which appeared in
their calculations. Our method is closely analogous to
Ma’s work'® on a dirty-fermion problem. In our ap-
proach the lattice is divided into blocks of a chosen size.
Each block is governed by a block Hamiltonian. The in-
teraction between neighboring blocks is due to the cou-
pling between the spins at the edge of the blocks. We use
two low-energy states on each block to define the block-
spin variable. The renormalized (transverse) block field is
given by the difference in energy in these two states, and
the renormalized coupling between two blocks is ob-
tained from the interaction energy between them. The
randomness generated in the block couplings and block
fields is then treated approximately, so that we can re-
strict our RG transformation to a finite parameter space,
as we will describe in detail below.

To study the XY model (2), an essential point is to treat
correctly the conservation of the z component of the total
spin. To reflect this symmetry of the Hamiltonian in the
RG procedure, the quantum states represented by the
block spins must be chosen to be eigenstates of the z com-
ponent of the total spin on the block. Or, in the boson
language, these states must be the eigenstates of the
block-particle-number operator. This is a rather delicate
and crucially important point, and we will come back to
it again. We would like to point out now, however, that
the mysterious nonconvergence of the RG iteration re-
ported in Ref. 10 in their study of the pure XY model can
be understood quite clearly in the boson representation of
this problem. Hereafter, we will use the spin and boson
representations interchangeably, depending on whichever
is more convenient to describe the physics.

We now illustrate our RG procedure in detail with the
2D triangular lattice as an example. Analogous to Ref.
10, our RG procedure consists of the following steps.

(i) Break the lattice into N /ng blocks of spins. Each
block is governed by a block Hamiltonian H; and in-
teracts with its neighbors through the coupling between
the blocks (n, =size of a block, N =size of the lattice).

(ii) Select the subspace with z;;lS,f ;=+Qand ;O +1

[or E?LIbiiji, ;=g and g +1 in the boson representation,
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where Q and g are integers, with ¢ =1(Q +n,)] for each
block, and the subscripts i,j indicate site j of block i.
Find the lowest eigenvalue and corresponding eigenvec-
tor of H? in each of these subspaces. These two states,
together with renormalized spin operators S’ defined to
have the same function on them as the original spin
operators have on the site spins, define the block spin.
Note that the same Q or g value is chosen for all the
blocks. We call this the fixed-g procedure. The physical
content of this step and which g to choose will be dis-
cussed later.

For example, consider n,=3 on the 2D triangular lat-
tice (see Fig. 1):

H|'0= _J(Sij,-lsx%Z +Siflsif3 +S:%2Sz%3 )
"(hi, lsfl +hi,2sfz +hi,3sfs ).

In the S”? representation,

X 0 0 0 0 0 0 0
0x, 1.1 0 0 0 0
0O 1x1 0 0 0 0
01 1x; 0 0 0 O
H=-J1g 0 0 0 —x, 1 1 o0 |
0000 1 —x, 1 0
0000 1 1 —x3 0
0000 0O O 0 =—x
where

x0=(h1+h2+h3)/.f, x1=(h1+h2—h3)/.],

x2=(h1—h2+h3)/J, X3=(—h1+h2+h3)/-].
There are four
Q=3,1,—1,-3.

(iii) Renormalize the fields and coupling constant: The

renormalized field of the block i is given by the energy
difference of the two states:

h,=EQ_EQ+l’ (3)

subspaces  corresponding to

The renormalized coupling constant is obtained through
rewriting the interaction between the blocks. In the

|

2

~O3------=Cu

FIG. 1. Renormalization on triangle lattice where block size
n; =3. See text for details.
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above example, it is calculated as
Ji=C+i—ilI(S5S +858 D —i+5) . 4)

Now both the block field 4; and block coupling J;; are
random variables depending on the original site random
fields, and their distribution functions are very complicat-
ed in general. However, if we assume that the block
fields are sufficiently described by two parameters, the
mean and variance of the fields, then these block fields
may be represented by a Gaussian distribution with re-
normalized mean and width. Although J;; is random, it
remains always ferromagnetic. Assuming critical proper-
ties are unaffected by the fluctuations in block coupling
Jij, we can use its mean to represent the renormalized
coupling constant. This is in the same sgirit as Ma’s cal-
culation on the Hubbard-Anderson.'® As explained
below, one need not be concerned with the flow of the
average field in the present RG procedure; we thus keep
track of only the renormalization of the variance of the
random fields.

(iv) Repeat the procedure to find the fixed point(s) of
the RG transformation and calculate the critical ex-
ponents associated with them.

Before we proceed, we would like to make following re-
marks.

(a) As the RG iteration proceeds, one will finally reach
a stage that the whole system is represented by a single
spin variable (assume n/'=N, for some integer n). The
corresponding lowest-energy state, written in the Hilbert
space of the original Hamiltonian, is the (approximate)
GS. The wave function constructed in this way will,
presumably, be closer to the true GS of the system as ng,
the size of the block in our procedure, be chosen larger
and larger (when n, =N, it becomes the exact GS). Thus
this block RG procedure may be viewed as a systematic
way to construct a trial wave function for the GS of the
system.

(b) Assuming that the random field can be character-
ized by its mean h and its variance &, the Hamiltonian is
described by the three parameters J, h, and h. Out of
these we can take h /J and & /J to be our two dimension-
less variables and study their RG flows. However, in the
fixed-g procedure, the choice of g predetermines and so
fixes the density n(g) of the system, with
n(qg)=q/(n,—1). Thus the flow of h/J will not con-
verge unless one chooses h to exactly equal the correct
chemical potential for the density n(q). These are the
unstable fixed points of Ref. 10. The flow of 4 /J there-
fore contains no physics. Worse, there is nothing to
guarantee that n (q) is commensurate with the block size,
in the sense that the product n,n(q)=g ++. For exam-
ple, if g =1, n; =5, n(q)=3. This means that the correct
chemical potential for the whole system is not the correct
chemical potential for the block. This is the origin of the
oscillatory behavior of the h/J flow in Ref. 10, which
merely corresponds to unavoidable successive overshoot-
ing and undershooting of the density. We note here that
a case where commensurability is guaranteed is when n;
is odd and g =(n, —1)/2, which gives a density of 1 bo-
sons per site. This will prove to be useful later. Since the
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scaling of h/J is meaningless because of the procedure
fixing the density, we simply drop this parameter from
the problem and keep only the variance of the field. We
have then effectively a one-parameter (4 /J) theory. De-
pending on whether % /J scales to 0 or o, the system is
then in the SF or BG phase. The phase diagram obtained
this way corresponds to changing 4 /J while keeping the
density constant, with the density given by the choice of
q.

(c) In our actual calculation, the random average in
step (iv) is carried out numerically by averaging over a
finite number of random configurations. More
specifically, for a given block of size n;, we use a random
generator to generate typically a few thousand indepen-
dent configurations of random fields on the blocks ac-
cording to a (symmetric) Gaussian distribution. After
performing step (iii), we obtain a set of block fields {h;}
and a set of coupling {J;;} between two blocks. We use
the average and standard deviations of these block fields
to approximate the mean and variance of the block ran-
dom field and use the average of these couplings to obtain
the renormalized coupling constant between the block
spins. In this way the renormalized Hamiltonian is
confined at each iteration to the same parameter space as
that of the original Hamiltonian.

By choosing the value of g to be the same for all blocks
in step (ii), we have forced the density to be uniform.
Clearly, in the presence of the random potential, this can-
not be the case. Allowing the density to adjust to the
random potential will “screen” the latter and stabilize the
SF phase. This will change the critical value of 4 /J, but
may not be crucial to the critical phenomena. A more
unfortunate consequence of (ii) is that since g is discrete,
so then is the density n (q), and we have forced the sys-
tem to be incompressible. While this may or may not be
a serious problem for all the critical exponents, scaling
arguments indicate that it should drastically affect the ex-
ponent z. Fortunately, at least for the aforementioned
special density of 1 bosons per site, a procedure which
gives a finite compressibility can be used. This modified
RG procedure is based on the observation that the parti-
cle density can also be fixed statistically, instead of being
fixed by fixing ¢ as one did in step (ii). Thus we modify
our RG procedure by replacing step (ii) with step (ii’).

(i) For a given block Hamiltonian H? with quenched
disorder, find the lowest eigenvalue for each subspace
characterized by Ey;lb,:rjb,-, ;=4 in the boson representa-
tion (27;155 ;=+Q). Find the minimum among them.
Denote the corresponding g value by g;.. We find nu-
merically that the g value corresponding to the subspace
which has the next lowest eigenvalue is either g,;, +1 or
qmin — 1. We choose the lowest-energy state of these two
subspaces with adjacent g values, to represent the block
spin.

Obviously, g,,;,, and hence the density of such a block
state, fluctuates according to the random configuration of
the on-site potentials in the block. The finite compressi-
bility is due to the fact that upon the addition of a small
uniform field, there may be blocks with the appropriate
random fields so that the value of g,;, may change, or the
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g value of the state with the next lowest energy may
change (from q_;,+1 to g, —1, say). In other words,
by allowing g to change from block to block, the density
is now continuous and can change continuously with the
chemical potential.

The dependence of g.,;, on a uniform field means that,
in general, we do have to keep track of the renormaliza-
tion of h /J. Fortunately, for the particle-hole symmetric
case, corresponding to the case where there is on the
average 1 particle per site (or {.S7) =0 in spin language),
the average field is zero by symmetry. If one starts at this
point so that the original random field has zero mean, the
probability for (3) to be positive or negative with the
same magnitude is equal. Thus, at stage (iv), when the
random average is carried out, the system is again renor-
malized at this symmetric point, and A /J remains zero
under RG iteration.

This modified RG method, utilizing the ‘“conserva-
tion” of the particle-hole symmetry, also introduces an
artificial dependence on the choice of the size of the
block. In the zero-disorder limit, g, is the same on all
blocks. If the block size n; is chosen to be even, there is
no g value such that the states determined by step (ii) are
particle-hole symmetric. For example, if n,=2, then
g min =1, and the other g state needed to define the block
spin must be arbitrarily chosen to be either ¢ =0 or 2,
thus breaking the particle-hole symmetry. h/J will be-
come nonzero under renormalization and, in fact, oscil-
lates about O with successive iterations, as previously dis-
cussed. The pure fixed point at A =0 is unstable and
pathological. With disorder, ¢ =0 and 2 will be chosen
with equal probability in the above example according to
the random fields of the blocks, and A /J will remain zero
under renormalization. As a result, the SF phase will be
given by a stable fixed point with finite & /J for n, even
(see Sec. III).

Suppose now that one starts a RG iteration away from
the particle-hole symmetric point. The random field has
a nonvanishing mean h. Since both the SF and BG
phases are gapless,® & will renormalize to zero. 4 /J, on
the other hand, may still have some nontrivial fixed
point. According to Fisher et al.,® the general lattice bo-
son system can be described by the effective classical ac-
tion

_ 1 .
s—;fwg;(r,.ﬂwg,.)lnpi(w)iz
1 2 4
+Efk’w(k2+w2)|1/}(k,w)l +uff§|¢| ,

where ¥;(w) is the local order parameter at site / and o is
the frequency. This system has a SF-MI transition
without disorder and a SF-BG transition, but possibly
also a SF-MI transition with disorder. Note the lack of
space-time isotropy due to the term linear in w. The
coefficient g; is equal to dr; /du, where r; is the mean-field
local transition temperature in the equivalent (d +1)-
dimensional statistical-mechanics problem. In the pure
system, r; and hence also g; are, of course, independent of
i. Therefore, for densities where the SF-MI transition
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cannot be tuned by u, g;=0. Otherwise, g;70. In the
former case, the action has space-time isotropy, and the
SF-MI transition is in the same universality class as the
(d +1)-dimension XY model. In the latter case, the re-
sulting space-time anisotropy is relevant, and the (gener-
ic) MI-SF transition corresponds simply to a transition
from commensurate to incommensurate densities (the
vacuum or filled state to an unfilled state in the hard-core
case). In the presence of disorder, g; changes from site to
site and is never identically zero. Nevertheless, where the
critical disorder for the SF-BG transition is a local max-
imum or minimum, and hence where the transition can-
not be tuned by changing u, it has a zero mean g. It is
not known whether the g =0 and the more generic g0
systems or, for that matter, the g; =0 model considered in
Ref. 5 belong to the same or different universality classes.
A related point is that for the generic system, the
compressibility is also just the “specific heat” of the
equivalent statistical-mechanics problem. This imposes a
priori a relation between the compressibility and specific-
heat exponents which is not necessarily present in the
case of g =0. For the hard-core-boson Hamiltonian (1),
it is clear by symmetry that the critical disorder is a max-
imum or minimum for the particle-hole symmetric (-
filled, & /J =0) system. In fact, since the %-ﬁlled system
has the lowest kinetic energy without disorder, the criti-
cal disorder should be a maximum. Thus it is of interest
to investigate whether this system has different exponents
from the transition away from particle-hole symmetry.
One can probe this in the fixed-g procedure [step (ii)] by
seeing if the critical exponents depend on whether the
choice of g is particle-hole symmetric. More reliably, one
should study the RG flow on the (4 /J,h /J) plane using
the modified method [step (ii')], to see if h /J is relevant at
the critical fixed point with 4 /J=0. Because of the
reason we discussed before, even this modified method
will become ill defined as one approaches the pure limit
h /J —0 with finite 4 /J. Away from the pure limit, how-
ever, the fluctuation in random field accommodates
enough density fluctuation so that the density can in fact
follow the renormalization of A. Thus one can obtain
within this RG scheme the RG flow of 4 /J near the criti-
cal fixed point and in the disordered phase.

III. RESULTS

The RG procedures described above are carried out on
one-, two-, and three-dimensional systems. For a 1D
chain, we find no (nontrivial) fixed point, and the system
is found to be in the disordered phase for any amount of
randomness. This agrees with our exact result obtained
previously® and also with the more general scaling studies
of Giamarchi and Schulz® and Nagaosa.’

In two dimensions the calculation is performed on both
the triangular and square lattices. The blocks we used in
our calculations are shown in Fig. 2(a). Renormalization
with fixed g (incompressible) and renormalization at the
particle-hole symmetric point, but allowing density to
fluctuate locally (compressible), are both performed.
However, for block S3 we calculate only in the case of
g =1. Calculation in three dimensions is performed on
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FIG. 2. (a) Blocks used in our calculations on the 2D triangu-
lar and square lattices. (b) Blocks used in our 3D calculation on
the cubic lattice.

the cubic lattice, with the block shown in Fig. 2(b), for
the case of uniform g with ¢ =1 only. Since the dirty-
boson system has a finite compressibility, it would seem
the calculations with uniform g are useless. However, in-
compressibility occurs if there are long-ranged interac-
tions, with the range of the interaction determining how
the static density-density correlation function vanishes at
long wavelength. This in turn gives z through scaling. '’
Thus we can apply our results for fixed g to the appropri-
ate incompressible system. Alternatively, we can view
the calculations as calculating critical exponents for
different z’s.

In 2D and 3D, we find the SF phase to be stable
against weak disorder, and there is a critical (unstable)
fixed point at a finite value of 4 /J. For the fixed-q pro-
cedure [step (ii)], the RG flow is shown schematically in
Fig. 3. As remarked and explained earlier, if the block
size is even, the stable fixed point for the SF phase is not
at h /J =0, but at & /J finite. The physics around the
BG-SF transition point, however, is not expected to have
and has no apparent dependence on whether the size of
the block is odd or even.

The critical exponents v and z are calculated at the
nontrivial fixed point (4 /J)* as follows. '®

(1) By linearizing the RG iteration function
(h/J)=f(h/J)as
-~ ’ -~ * -~
h h h
7 7 +aA 71 5
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we obtain v according to

In( nsl /d)

= (6)
Ina
(2) The dynamic critical exponent z relates the energy
rescaling to length rescaling. Since the Hamiltonian is
scale invariant except for the overall energy (frequency)
rescaling, z is obtained from the RG recursion relation
for J at the fixed point (F.P.):

In(J /J")
= /YRR o

In( nsl /d )

Table I shows the results of the RG procedure with fixed
g on 2D lattices, and Table II gives the results of the
modified RG method with (ii) replaced by (ii’).

Because of the approximations we used in the calcula-
tion, especially the truncation of the random distribution
of the renormalized block field and coupling, we expect
that the results should improve with increasing block size
and also with increasing connectivity inside the block, so
as to minimize boundary effects. Hence we believe T3 to
give the most reliable results. The value of v calculated
by either method is essentially the same, roughly equal to
1.4, independent of whether the procedure gives zero or
finite compressibility. However, as expected from scaling
arguments, the z value is considerably larger for the latter
case, with z equal to 0.9 and 1.7, respectively. Since 1.7 is
quite close to 2 and since the value of z slowly increases
with increasing block size ng, this result may be viewed as
a partial confirmation of the scaling prediction of z =d
(i.e., 2) in 2D.

For 3D our calculation gives v~1 for the fixed-q pro-
cedure which corresponds to an incompressible system
with z=1.2. Unfortunately, because of computational
limitations, we are unable to perform the calculation for
compressible states. Assuming that the relatively weak
dependence of v on the compressibility in 2D is not mere-
ly coincidence, we postulate v=1 for that case also. Both
our 2D and 3D values of v satisfy the modified Harris cri-
teria.’

We would like to remark that a third independent criti-
cal exponent 7, defined by the power decay of the SF
correlation function at the criticality through

<bi bj)OC,R[*le_(d+Z_2+7’) , (8)

TABLE I. Results of RG procedure with fixed g on 2D lat-
tices.

Block Basis (q) (h/D)* v z
T1 1 1.7 1.6 0.9
T2 2 14 1.6 0.8
T3 3 2.5 1.5 0.9
T3 4 2.3 1.5 0.9
T3 5 1.5 1.7 0.9
S1 2 1.0 1.8 0.9
S2 2 1.2 1.6 0.8
S2 3 0.9 1.8 0.8
S3 7 0.7 2.1 0.9
Cl1 6 1.6 1.0 1.2
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TABLE II. Results of modified RG method with (ii) replaced
by (ii’).

Block (h/D)* v z
T1 3.8 1.6 1.6
T2 3.7 1.9 1.6
T3 49 1.4 1.7
S1 2.6 1.5 1.7
S2 2.5 1.6 1.6

or in spin language,
Wm|Ri_le_(d+z—2+n) , )

can in principle also be calculated. Suppose the spins on
a block transform in the RG iteration according to

S, =&,SY, p=12,...,n,, (10)

X

and similarly for y and z components. §;,’s can be calcu-
lated in a way similar to (4).® If one further ensemble
averages the spin renormalization

1 P
Si,p_—.;l—.zgzp‘six :§ Si ’ (11)
s p
then the critical exponent 7 can be computed as
d+z—2+n=—20 (12)
Inn

s

However, this is more like treating the randomness as an-
nealed and, therefore, is unreliable for the present situa-
tion. Equation (10) itself, with no ensemble averaging,
must be used for determining 7. This would require
keeping track of the complete distributions of the renor-
malized fields and couplings, and not just the first and
second moments, throughout the RG calculation. This is
planned to be addressed in a later work.

The fixed-point value (/4 /J)* of course also gives us the
critical randomness for the SF-BG transition. For the
fixed-g procedure, the values of (h/J)* for different g’s
and blocks are listed in Table I. Here the critical value is
that for the SF-BG transition at constant density given
by n(g)=q/(n;—1). In the modified RG method [step
(ii’)], one has instead a separatrix on the (h /J,h /J) plane
(see Figs. 3 and 4), so that the value of 4 /J on the separa-
trix gives the critical disorder for the SF-BG transition at
constant chemical potential. However, for h/J =0,
particle-hole symmetry implies that the average density
must be independent of 4 /J and equal to that for the
particle-hole symmetric choice of ¢ =(n,—1)/2. Since
for (ii’) the local density adjusts to the randomness and,
in fact, partially screens out the latter, the net result is to
have the fixed point (k1 /J)* at a much larger value and
presumably closer to the true one than the one obtained
from the procedure with fixed local density [(ii)]. Our
most reliable estimate (73 and S'1) is for the transition at
average density equal to § to occur at h/ZJ=0.8 (Zis
the coordination number) for the triangular lattice and
h /ZJ =0.6 for the square lattice.

As we discussed at the end of Sec. II, the critical prop-
erties of the BG-SF phase transition may depend upon
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jifAl
FIG. 3. Schematic RG flow for procedure (ii’) for n; odd.

whether or not there is a particle-hole symmetry in the
system or, more precisely, whether the transition can be
tuned by the chemical potential. Our results with fixed
density (see Table I) show no clear difference in the values
of z and v between the particle-hole symmetric choice
and other choices of g, suggesting that this is not the
case.

To confirm this we study the RG flow through the
modified RG method with finite h. The following
scenarios are possible.

(1) The only nontrivial fixed point outside the pure lim-
it is at £ /J =0 and is stable in the A /J direction. In this
case all SF-BG transitions belong to the same universality
class.

(2) Same as (1), but the fixed point is unstable in the
h /J direction. The generic SF-BG transition is in the
same universality class as the generic SF-MI transition of
the pure system, but that with particle-hole symmetry is
in a different universality class.

(3) There are additional nontrivial fixed points with
(h /J)*+0. By symmetry, they always come in pairs, one
on either side of the axis. Consider one additional pair
and that they are unstable in the A /J direction. Now
there are a finite range of densities surrounding the
particle-hole symmetric one whose SF-BG transition is in
a different universality class from that (the generic pure
SF-MI universality class) of other densities.

(4) Same as (3), but these fixed points are stable, while

&')\' 1/

FIG. 4. Schematic RG flow for procedure (ii’) for n, even.

4

h/J
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the particle-hole symmetric fixed point is unstable in the
h /J direction. In this case the SF-BG transition has two
universality classes, depending on whether there is
particle-hole symmetry, and both are different from the
generic pure SF-MI one.

Scenarios (3) and (4) would imply there are partially
filled densities which are special but not due to symmetry,
a rather unlikely possibility (additional pairs of fixed
points or even fixed lines will be even more unlikely).
There is no a priori reason to rule out (2), although it
seems physically strange. It should be emphasized that
the fixed point at 4 /J =0 is a consequence of symmetry,
and its presence is not in question, only its stability. Let
us add a small positive uniform field & to the particle-hole
symmetric fixed-point Hamiltonian. For a given block,
the eigenstates of the block Hamiltonian will be un-
changed, while the eigenvalues for each g subspace will
be shifted by 1Qh =(q —1in;)h. Suppose for the ith
block the lowest-energy states without the uniform field
correspond to g and ¢ +1, and h; is the renormalized
block field; then, if ¢ and g +1 remain the lowest-energy
states with the uniform field, the new renormalized block
field is simply given by h/(h)=h;+h. Since h; has a zero
mean, the renormalized uniform field is then A'=h.
Since J' < J, this would imply that 4 /J is relevant. How-
ever, the above does not take into account that in some
blocks the values of g for the lowest-energy states will
change. Specifically, the important case is when, without
the field, ¢ +1 is the ground state, g the first excited state,
but with the field, ¢ +2 becomes the first excited state.
For such a block, the renormalized block field is now
h{(h)=—h/+0(h). Because typically h;=~h, the renor-
malized uniform field, when taking these special blocks
into account, is

h'=h(1—P,h), (13)

where P, is a (g-averaged) joint density of states of hav-
ing q as the first excited state and g +2 as the next excit-
ed state in zero uniform field. If 2'/J'<h /J, then the
particle-hole symmetric fixed point will be stable.

Our numerical calculations (see Figs. 3 and 4) show
that this is in fact the case, although, because of statisti-
cal error, h /J does not completely renormalize to zero,
but shows small random fluctuations about zero. Further-
more, we find no signs of additional fixed points, thus
providing further proof for discarding scenarios (3) and
(4). Thus we conclude that the SF-BG transition has only
one universality class.

IV. DISCUSSION

We investigated the lattice hard-core dirty-boson prob-
lem through the RSRG method. Our method reproduces
the exact result® in 1D system, which shows, for hard-
core bosons with no additional interaction, instability of
the SF phase against any amount of disorder. It is also in
agreement with the more general perturbative scaling
studies of Ref. 9, which shows that the SF phase is stable
(unstable) against weak disorder if the exponent of
power-law decay of the order-parameter correlation func-
tion in the pure system is less than (greater than) 1, since
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it equals  for the hard-core model. In 2D and 3D, we
find a nontrivial fixed point which separates the SF and
disordered (BG) phases. Thus our results show that the
lower critical dimension d;p for the zero-temperature
BG-SF phase transition is below 2 (1=<d;cp <2). The
aforementioned calculations by Giamarchi and Schulz’
and Nagaosa’ for more general 1D boson systems point
todycp=1.

In 2D the critical exponents v and z were calculated
with two RG procedures, corresponding to zero and
finite compressibility. Our results tend to agree with the
scaling prediction z=d (=2) for the generic BG-SF
phase transition,® which is believed to have a finite
compressibility at the transition. It should be noted that
the scaling prediction is based on the assumption that,
even at the transition, the compressibility is completely
due to the phonon mode. This does not have to be so:
The SF can disappear by the phonon remaining robust,
but with vanishing speed of sound, or by the appearance
of low-energy single-particle-like excitations.!* In the
latter case, there is no reason for z =d, as the action for
the phonon mode is no longer well defined. Our calcula-
tion can be viewed as support of the former scenario.
However, we also cannot rule out z close to but less than
2. We hope to resolve this question in the future by going
to larger blocks and carrying out the RG calculation ac-
tually on a large but finite lattice, thereby eliminating the
errors incurred in approximating the distributions of
fields and couplings by first and second moments in step
(iii). This will also allow us to calculate the exponent 7.

The incompressible case may be relevant to bosons
with long-range interactions, and we obtain a smaller
value of z (=1), also in agreement with scaling predic-
tions."?° Viewing our calculations as calculating v for
different values of z, we find v to be roughly 1.4 in both
cases. This gives us confidence in its correctness, since, al-
though we can relate our two procedures to compressibil-
ity, any feature artificially put in by the RG procedure is
undesirable. Dirty bosons with Coulomb interactions in
2D have been used to model the superconductor-
insulator transition in thin films.?’ It would be interest-
ing to compare our value of v to the appropriate experi-
mental data.?! One possibility is to study the transition
temperature T, < 8", where 8 is the deviation from criti-
cality, thus allowing v to be determined if we assume z is
correctly given by scaling. In a recent experiment, Liu
et al.?? found that the low-temperature conductivity of
Bi films obeys scaling through a characteristic tempera-
ture that vanishes with an exponent close to 1.4 or 1.5 as
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one approaches the transition from the superconducting
side. While the scaling behavior is not completely under-
stood (and the data on the insulating side scale with a
different exponent), if we take this exponent to be zv and
assume the scaling prediction z =1, then the experimen-
tal value of v=~1.4. While the equality between our
rough calculated value and rough experimental value of v
must be completely fortuitous, they are at least not way
off from each other. For 3D our calculation suggests
~1. Our values of v satisfy v>2/d.”

Fisher et al.® have shown that the pure SF-MI transi-
tion has two distinct universality classes, depending on
whether the transition can be tuned by the chemical po-
tential. It is possible that this is the case for the SF-BG-
transition also. Within the present context, this implies
that the critical phenomena may depend on whether
there is “particle-hole” symmetry, since it will determine
if, in the effective action, the term of first order in fre-
quency has a zero average coefficient. The model used in
Ref. 5 was precisely criticized because it neglects this
term completely, thus implicitly assuming this symmetry,
and may not describe the generic SF-BG transition. The
present calculation shows that the critical phenomena are
independent of this symmetry and that the SF-BG transi-
tion has only one universality class. Thus, provided only
the mean value of the coefficient of this linear term is im-
portant, we believe the model considered in Ref. 5 to be
adequate. However, the calculation of Ref. 5 also
artificially put in a gap in the insulating phase and so is
applicable only to the SF-MI transition (about which we
can say nothing) and not to the SF-BG transition.

The hard-core-boson model is the limiting case of on-
site repulsive boson models, when the strength of the
repulsion, U, goes to infinity. Clearly, in an exact renor-
malization procedure, the hard-core condition is not
preserved under renormalization. Hence, even if U is
infinite initially, it becomes finite under renormalization.
In our approximate procedure, where only two states are
kept, this flow of U is ignored, and the RG flow corre-
sponds to the actual flow projected onto the hard-core
plane. However, this does not per se prevent one from
obtaining reliable critical exponents. Thus, although we
study specifically the hard-core-boson model in this pa-
per, our results should apply to the more general soft-
core model also.
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