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Superconducting vortex with extended core
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A bridge-type superconducting microcircuit in a magnetic field was analyzed using the nonlinear
Ginzburg-Landau theory. There exist two different spatial configurations of the order parameter; one
has a maximum in the central branch and minima in the current-carrying branches, while the other is a
vortex with zero order parameter over part of the central branch. For higher temperatures, near the
second-order phase-transition boundary, the vortex has a point singularity, while at lower temperatures
it has an extended core, a notable feature in superconductivity. The phase transition between the two
vortex states is first order.

Future implementation of superconducting microcircu-
itry will require fundamental understanding of currents
in micronets where the distances between the nodes are of
the order of magnitude of the temperature-dependent
coherence length (( T). With that in mind we investigate
a bridge-type circuit, consisting of two unit cells of equal
area and three branches of equal length, shown in the in-
set (a) of Fig. 1 [bridge], with respect to the phase-
transition boundaries, the magnetic properties in terms of
persistent currents, and the Gibbs free energy.

The starting point of this work is the one-dimensional,
nonlinear Ginzburg-Landau (GL) equations. Assuming
constant wire cross section and replacing the gauge-
invariant superfiuid velocity by the normalized current
density J, we obtain, after integrating once, the following
equation

2f (dfldx)2

=(fo f')[f'(2 f—o f') 2J—'lf o—]—

gJ =0

and

gdf Idx =0.

The first relation is KCL applicable to ordinary circuits,
while the second is the same as stated in Ref. 2, provided
that f %0 at the node (a signifies the branches connect-
ed to the node). If, however, f,=0 at a node, then the
difference between the nodal conditions of Refs. 2 and 4
becomes of significance as will be apparent below. The
SOPT boundary obtained from the linearized GL equa-
tion is '

+3 cos(srR /g) =2 cosy+1,
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where x is the curvilinear coordinate along a branch, nor-
malized by g(T). The normalized complex order parame-
ter %(x)=f (x) exp[ie(x)] Its . modulus is f (x)
[modulus of the order parameter (MOP)] and fo is the
value of f (x) at an extremum. Equation (1) is valid for
temperatures at or below the second-order phase-
transition (SOPT) boundary T, (ttp), shown in Fig. 1 by the
lower solid curve. For fixed R and g(0), the ordinate
Rlg(T) in Fig. 1 is a function on temperature T. The
equations describing these curves are obtained from the
linearized GL equations with J=0 by applying the nodal
conditions of Ref. 2 which assume without physical
justification that the algebraic sum of the derivatives of
df ldx is zero at a node and f (x) is continuous. In Ref.
3 the nodal conditions were explained by introducing the
concept of complex current conservation and in Ref. 4
the generalized Kirchhoff current law (KCL) was intro-
duced as a fundamental condition in terms of the conser-
vation of the complex momentum density at a node. This
led to the following nodal conditions:
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FIG. 1. The phase-transition boundaries of the bridge circuit
which is depicted in inset (a). The region below the lower lines
is the normal state. Curves u and w are second-order phase-
transition boundaries. Curve U is a first-order phase-transition
boundary separating a conventional vortex from one with an ex-
tended core Note tha.t R/g(T)~(T, —T)'~, where T, is the
transition temperature at P =0. Insets (b) and (c) depict
schematically f (x) of the even and odd (vortex) solutions,
along the various branches of the circuit.
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where y =2m'P/Pp, and P is the flux per unit eel/. Equa-
tion (2) is compatible with a vector potential A =Br'/2,
where B is the magnetic flux density and y is a unit vec-
tor in cylindrical coordinates (r, y, z).

Although f (x)~0 at the SOPT boundary, one can use
the solution of the linearized equation to predict certain
features for T & T, (P). They are a guide in the search for
nonlinear solutions and useful in checking the consisten-
cy of the linear and nonlinear results when f (x) «1.
These features are, assuming that f (x) « 1 but not zero,
the following.

(i) Along branch 2, the MOP in flux regions
(0&glgp& —,') and C( —', &Plgp&1), shown in Fig. 1, is

fz(x) =f, cos( —,'mR /g —x/g) I cos( ,'m.R /g—), (3)

exp[i(P a)]=—3 cos(mR /g)/(2 cosy+ 1).

Because of single valuedness of %(x), the phase
difference (a —P) along all three branches much be the
same within 2n.n, where n is an integer or zero. In flux
region A it is 0 [positive sign in Eq. (2)], in 8 it is m.
[negative sign in Eq. (2)], and in C it is +2m for branches
1 and 3. For branch 2, (a —P) is zero in flux regions A

and C since branch 2 does not carry a current and fz (x )

at point c is maximum. If flux region 8 branch 2 does not
carry a current either but fz(x) at point c is zero, thus
breaking the continuity of the phase of Vz(x) at this
point. Therefore, the phase 02 of %z(x) must change
discontinuously by +m at the point at which ~%z(x)

~

=0,
consistent with the line integral taken over the second
GL equation:

and in flux region 8 ( —,
' & Plgp & —', ) it is, for the smallest

values of R /g(T} (highest temperatures),

f2(x) =f, sin( —,'mR /g —x/g)/sin( —,'mR /g) .

The value of x is measured from node a. Equation (4) in-
dicates that f2(x) is zero in the middle of branch 2, while
in flux regions 3 and C it is maximum.

(ii) Consistent with the nodal conditions, branches 1

and 3 have nonzero minima of f (x) halfway between
nodes a and b in flux regions A and C, and maxima in
flux region B.

(iii) In flux region 8 the curve denoted by u in Fig. 1 is
the highest-temperature SOPT boundary.

(iv} Assume that 4, =f, exp(ia) and 0's =fb exp(iP),
and f, =fb because of symmetry. One finds then from
the nodal equations that

Jp'd x
2~ n= g-

4p f i(x)

Figure 2(c) shows J& (dimensionless) as a function of P.
The current density in conventional cgs Gaussian units is
J„„„=J&(c/4m)[gp/(2m'P, )) statampere/cm . As P is
increased from zero to Pp/2, J& increases from zero,
reaches a maximum, becomes zero at the SOPT bound-
ary, and remains zero until the second SOPT boundary is
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with the usual nodal conditions, we obtain the persistent
current density J&=—J as a function of the extremal and
nodal MOP's. Figure 2 shows J& as a function of fpi, f„,
and fp2 for R /(=0. 45 for (a) flux region A and (b) flux
region B. In Fig. 2(a) the values of fp, and fp2 are the
extrema of f (x) in branches 1 (the same as in branch 3)
and 2, respectively, and f„ is f(x) at nodes a and b. In
Fig. 2b, fpi and f„have the same meaning. the value of
fp2

=0 is fz ( x ) in the center of branch 2 in flux region 8.
f2(x) extends from fp2 to f„and extrapolates to a max-
imum value fp2 outside the type-I circuit. Equation (1)
does not permit a solution of fz(x) larger than unity for
J =0, even if extrapolated. When P is varied for
R /(=0. 45, the bridge circuit goes from a strongly super-
conducting region [f(x)=1] at /=0 to a SOPT bound-
ary [f(x)=0] at tc)/pp=0. 293, then remains in the nor-
mal state until Plgp=0. 381, enters the superconducting
state at another SOPT boundary [f(x)=0] and remains
strongly superconducting [fp, =0.535] when P/Pp~ —,'.

After calculating f (x) for a fixed J value, satisfying
simultaneously the nodal conditions, we calculate the
corresponding magnetic flux, linking the circuit, by tak-
ing a contour integration of the second GL equation.
This yields [P is the flux per unit cell, n is the phase twist
number, and f3 (x)=f, (x)]

2m yb Jdx2—
Pp ~ fz(x) f 'A dx. .
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One can show that the line integral of the vector poten-
tial taken over branch 2 is zero. Therefore, the remaining
line integral must be +Pp/2 due to the singularity of
fz(x) at point c, giving rise to a phase flip center.

%e proceed now to the nonlinear calculations and re-
sults. Insets (b) and (c) of Fig. 1 show schematically the
MOP on the various branches of the bridge resulting
from computations of the even and odd (vortex) solu-
tions, respectively. When Eq. (1) is solved numerically
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FIG. 2. Normalized persistent current density J~ as a func-

tion of the moduli of the extremal and nodal order parameters
on the various branches, for R /gi T)=0.45: (a) for fiux region
A of Fig. 1; (b) for flux region 8 of Fig. 1; (c) shows the corre-
sponding J& as a function of magnetic fiux P, obtained from Eq.
(6).
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reached. Then it reverses direction, reaches a minimum
and becomes zero at Po/2. When P) atro/2, the current
reverses direction as P is increased through Po/2. J& has
point symmetry around Plgo= —,', J& =0.

It follows from Eq. (1) that

df /dx =[1—(1 f' —
) ]' /v'2
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in the center of branch 2 for the vortex solution. The
value foz is the maximum of the fz(x) function on the
extrapolated branch outside the bridge circuit. %hen
R /g is increased at constant P/Po, for example, fc2 in-

creases also and reaches a maximum value very close to
unity. When this occurs, the relation between R/g and

Plump is circumscribed by curve v in Fig. 1. For R /g and

P/Po above this curve it is impossible to find a solution of
the GL equation which satisfies the nodal conditions with

fz(x) being zero only in the middle of branch 2. We call
this spatial arrangement of fz(x) a conventional vortex.
The normal state, f (x)=0, is also a possible solution of
the GL equations in that region. However, this would
imply a discontinuity in the Gibbs free energy, which is
unreasonable. One can overcome this dilemna if we per-
mit an enlarged normal region in the center of branch 2.
This, one expects, would be a lower energy state than the
normal state and make the energy continuous as one de-
creases the temperature at constant magnetic flux, for ex-
ample. However, in that case another diSculty arises.
The point where the extended normal core region
[f2(x)=0] joins the superconducting region [f2(x)%0]
has to be treated as a node. If one takes the nodal condi-
tions of Ref. 2 at face value, one finds that the algebraic
sum of df2/dx is not zero at this node since f2(x) is a
Jacobian elliptic function which has a nonzero slope at a
point where f2 (x )=0.

It has been shown recently and mentioned above that
one of the fundamental nodal conditions in micronet-
works is the conservation of the complex momentum
density at a node. In our case this reduces to
g[df2(x)/dx2]=0. This nodal condition is satisfied at
the point where the extended vortex core joins the f2(x)
function and, therefore, justifies the extended vortex core
solution.

Figure 3 shows J& as a function of P for R//=0. 5.
Also shown are the MOP's for —,

' &Pl/v&0. 5. For

Plump

&
3

the solution is of the type shown schematically
in Fig. 1(b). For —,

' &Pl/v&0. 428 it is a conventional
vortex, and for 0.428 &//$0&0. 5 it is a vortex with an
extended core with fo2 =0.997 for the lowest Gibbs free
energy (see below), as Plgo is changed from 0.428 to 0.5.
The extended core diameter (1—a)mR changes from zero
for rtp/Pe&0. 428 (a=1) to about 0.2rrR at P/Pc=0. 5
(a=0.8 ). The fiux at which the transition to the vortex
with an extended core occurs is indicated in Fig. 1 by the
curve v. In the region enclosed by curves v and w only
the extended vortex core solution is possible, while for
R/g' values above the v and w curves, the even and the
extended vortex core solutions are possible.

The normalized Gibbs free-energy difference between
the normal and superconducting states is
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FIG. 3. Normalized persistent current density J& as a func-
tion of magnetic flux P for R/g(T) =0.5 for the even and odd
(vortex) solutions including the extended vortex core solution.
The inset shows the corresponding moduli of the order parame-
ters for the two vortex solutions.

b, G =f dv [ A J ,' f (x)]—, — (7)

where the integral extends over the volume of the bridge
circuit. Assuming uniform normalized cross-sectional
area S for all branches, the first term on the right-hand
side, which can also be written —,'LJ S, is proportional to
S, while the second term is proportional to S, where L is
the normalized self-inductance of the ring. Since dis-
tances are normalized by g(T), the self-field term is of
higher order for a thin filament and may be neglected to
first approximation. In particular, if we calculate hG at
/ =0.5$o, wh. ere J& =0, the self-field term is zero.

Figure 4 shows b,G as a function of R/g(T) for
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FIG. 4. Normalized Gibbs free-energy differences as a func-
tion of R /g(T) for /=0. 5$s for the odd (vortex) aud even solu-
tions. The energy is normalized by H, (T)Sg'(T)/8rr, where H,
is the thermodynamic critical field and S the cross-sectional
area of the wires. Also shown are the corresponding moduli of
the extremal and nodal order parameters and the core scaling
parameter a. For detail see text.
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/=0. 5/0 for the conventional vortex, the extended core
vortex, and the even solution. The phase transition be-
tween the conventional and extended core vortex is first
order. For R jg(T) ~ 0.667, the even solution is of lower
energy. Shown also is the scaling factor a of the extend-
ed core diameter (1—a)n.R which corresponds to the
lowest Gibbs free energy at a fixed value of R lg. Furth-
ermore, f0„f„,and fO2 are shown for the odd and even
solutions. For the even solution, fo&=0, which is con-
sistent with J&=0 at /=0. 5/0. The singularities in
branches 1 and 3 give rise to a phase flip 60=+~ in each
branch. Perturbation and variational approaches have
been also developed and applied to microcircuits near the
SOPT such as the bridge circuit and excellent agreement
with the exact results is found.

In conclusion, the magnetic properties of our bridge
circuit were analyzed using the nonlinear GL theory.
There exist two different phase boundaries with distinctly
different spatial arrangements of the MOP's. The even
solution leads to a maximum MOP on the center branch
and to minima on the other branches, while for the odd
solution the reverse happens, except that the minimum of
the MOP in the center branch is zero, where the phase of
the complex order parameter flips by +m. It is interest-
ing to note that the even solution resembles the Meissner
state of a bulk superconductor while the counterpart of

the odd solution is the surface sheath or the giant vortex
state on a cylinder. J& reverses direction when changing

P through /=0 (and / =$0), through P =go/2, and when
leaving and entering the superconducting regions via a
normal region, thus reversing the magnetic moment of
the circuit. The vortex (odd) solution divides into two
domains which are separated by a first-order phase-
transition boundary. In one domain, at higher tempera-
tures, a conventional vortex exists while, at lower temper-
atures, a vortex with an extended vortex core takes over.
The extended vortex core should occur in micronetworks,
where the current paths are fixed by the geometry, as the
distances between the nodes become larger (or at lower
temperatures for fixed nodal distance). This is a conse-
quence of satisfying the nodal conditions and the magnet-
ic flux constraint. Recent investigations on the ladder
circuit, at one-half flux quantum per unit cell, have found
evidence for a normal "core region" at lower tempera-
tures in the middle of every second transverse branch,
similar to the above result.
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