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We have studied the dynamics of regular two-dimensional Josephson-junction arrays subjected to elec-

trornagnetic radiation at frequencies comparable to the individual junction's characteristic frequency.
The junctions are described using the resistively-shunted-junction model including capacitance with the

plasma frequency also comparable to the characteristic frequency. The dynamical behavior falls into

several different general classes, namely, periodic, quasiperiodic, and chaotic, depending on the particu-
lar characteristics of the junctions, the input currents, and the amplitude and frequency of the radiation.

Detailed examples of each of these types of behavior are given. Current-voltage characteristics are ex-

amined and related to the dynamical behavior and the junction s properties. The effect of finite tempera-

tures, included by means of a Langevin noise current, is also discussed, as is the stability of various types
of dynamical states.

I. INTRODUCTION

The dynamical behavior of Josephson-junction arrays
has been studied in considerable detail, both experimen-
tally' and theoretically. ' Emphasis in recent
theoretical work has centered on the dynamics in the
presence of an applied static magnetic field and in the
limit of zero-junction capacitance so that the junctions
are overdamped. An exception, and the work most close-
ly related to our research, is Ref. 10 in which the types of
dynamical states and their stability are studied for a
linear series array of junctions with capacitance.

In this paper we present some results from an extensive
and continuing study of the dynamics of regular two-
dimensional Josephson-junction arrays on a square lattice
in the presence of an incident electromagnetic (rf) field
and applied dc bias currents. A finite junction capaci-
tance is included. Our intention is to give a broad survey
of the possible behaviors of the arrays; more detailed ex-
ploration of particular types of states will be given sepa-
rately. Our study is motivated, in part, by the possibili-
ty'" of constructing detectors or generators of mi-
crowave radiation from arrays. A second, more theoreti-
cal, motivation is the possibility of observing dynamical
e.g., chaotic and quasiperiodic, behavior of an unusua1
sort in these nonlinear, continuous time, coupled systems.
We focus on the character of the locally stable modes of
oscillation given di8'erent input currents and incident rf
fields for arrays with various characteristic parameters.
Numerous similar investigations have been performed for
a single capacitive Josephson junction. ' ' Also, for use
as detectors, an important measure of the response of the
system is the mean voltage across the array and its varia-
tion with changes in the rf field incident radiation. Con-
sequently, we also present typical I-V curves for the ar-
rays and relate the characteristics of these curves to the
dynamical states.

Section II of the paper contains descriptions of the
model employed for the array, the numerical methods

used for its analysis, and the quantities studied; Sec. III is
devoted to presentation of the numerical results while
Sec. IV is given to a linear stability analysis of certain
dynamical modes; a discussion and summary compose
Sec. V.

II. MODEL AND METHODS OF ANALYSIS

We describe a Josephson junction using the resistively-
shunted-junction (RSJ) model' including the junction ca-
pacitance and noise. The essence of this model is that the
current through a junction between two superconductors
is written as a sum of several kinds of currents in parallel.
These include a displacement current ID through a ca-
pacitance C; a normal or quasiparticle current IN
through a resistance R; a supercurrent (the Josephson
current) Is,'and a fiuctuation or noise current IF. Thus,
the total current in the junction is

I =ID+I~+I~+IF .

The displacement and normal currents may be ex-
pressed in terms of the voltage V across the junction,

dVID=C
dt

and

VIN g
The supercurrent is expressed as a function of the super-
conducting phase difference P across the junction

Is =I,si (bn,

where I, is the critical current. Further, the relation be-

tween the voltage and phase is

dg
2e dt
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Finite temperatures can be introduced by means of IF
which is taken to be a Langevin noise current represent-
ing random quasiparticle currents tunneling through the
junction. This current is given the properties

(I,(t) ) =0

phases of the superconducting order parameters on the
individual nodes. We assume a uniform array, meaning
that all junctions have the same parameters co, co„and
I, . The equation for the current in the junction between
neighboring nodes k and l is

and

(IF(t +t')IF(r) ) = 5(t'),2kT
R

d'(r k 4( „, 0k

dr dT

+»n(((k Nl )+(lF )kl .

d1

(9)

where the brackets ( ) denote an ensemble average;
T is the temperature and k is Boltzmann's constant.

Combining these relations and dividing by the critical
current, one finds that the current in the junction can be
written as

CA d P + 'tt dP + yy ( )
2eI, dt 2eRI, dt ikl (le )k (10)

We further assume the nodes are suSciently small that
the phase of a node is spatially uniform and that charging
effects on a node are negligible so that the sum of the
currents entering a given node is zero. This condition
determines how the equations of motion of the various
junctions are coupled,

+P, '~ +sinP+iF,
d1

(8)

where p,:—(co, /coF ) . Equation (8) is the basic equation
of motion for the RSJ model of a capacitive junction.

Given an array of junctions meeting at a set of super-
conducting nodes k, one can write the RSJ equation for
an individual junction in terms of the difference of the

where iF =IF /I, . Notice that, from Eq. (5),

(iF(r +r')iF(t) ) = lr5(r')

with cr =2kT/RI, .
Introduce the junction's characteristic frequency

co, =2eRI, /R and plasma frequency coz=+2eI, /CR;
also, introduce a dimension-free time ~=co t. Then the
current may be written as

where the sum is over those neighbors l of k which are
coupled to it by junctions, and (i, )k is the input current,
in units ofI„to the kth node from external sources.

Equations (9) and (10) are the equations of motion for
the array. Given some initial conditions on the phases
and their time derivatives, a set of input currents, and a
formulation of the fluctuation currents, they present a
well-defined dynamical problem involving the solution of
a set of coupled, second-order, ordinary, nonlinear
differential equations. They may be expressed in matrix
form' as

G +p, ~ = —sing —iF i, , ——lrZ d4
d1

where 6 is a matrix and p, sing, iF, and i, represent, re-
spectively, vectors comprising the pk's, sin(()k's, (iF)k's,
and (i, )k's. The elements of G are

nk if I =k and nk is the number of junctions entering node k,

Gkl = ' —1 if k%1 and k and l are joined by a junction,
0 otherwise .

(12)

For any given G, the inverse can be obtained numerically.
There is however, one technical point that should be
mentioned. If there are X nodes, then there are N equa-
tions. The matrix G for this set of equations possesses no
inverse, a fact that can be related to overall current con-
servation, meaning that the net current entering the array
must be zero, and to the fact that the system is invariant
under a shift of the phases of a11 of the nodes. We can ar-
bitrarily set the phase of one node equal to a constant,
thereby reducing the number of independent variables
and the number of equations by one. The matrix G for
the remaining N —1 equations possesses an inverse which
is easy to compute. Given this matrix, we recast the
equations of motion as

~+P ' ~ =6 '( —sing —i +i )
d ' d7.

(13)

A(k, l)= f dl-A,
+0

(14)

This form is more amenable to e%cient numerical solu-
tion than the original one.

We turn now to the inclusion of incident electromag-
netic fields. A static applied magnetic induction and in-
cident electromagnetic radiation may be described by
means of vector potentials A, and A&. The coupling to
the array is introduced by replacing the phase difference
in the Josephson current pk

—pl with pk
—

pl
—A (k, l),

where
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A„i(t)= Aosinco„t = Aosinp„' r

where p„=(co„/co ) . For this case,

277
A (k, l)= Ao ~ (rk —ri) .

0

(15)

4 0 is the flux quantum hc /2e. In the case of the radia-
tion field, we are interested in microwave frequencies.
The corresponding wavelength, or distance over which
the vector potential varies appreciably, is on the order of
a centimeter. We will suppose that this is much larger
than the size of the array and so shall approximate the
vector potential at all points on the array by that at its
center, in effect making the dipole approximation. Thus,
we employ, for a monochromatic wave of frequency ~„
such as may be obtained in a resonant cavity,

le (M)

1

(1,M)

i, (3)

F

(1»)

i~(2)

(1,2)

X

(2,M)

(2,3)

(2,2)

(2,1)

{S,M)

(3,3)

(3 2)

(3,1)

(N,Ml)

(N,2)

(N, 1)

Given an ordered array such that the nodes are on the
sites of a regular lattice, and with junctions only between
nearest-neighbor sites, the A (k, i) are the same for all
junctions oriented in a particular direction.

Because of the special character of A (k, i) in the dipole
approximation, a change of variables can be made to re-
move all reference to the vector potential from the terms
representing the Josephson currents. Define

pk =—pk+ Ao rksin(p„' r) .
0

(17)

In terms of this variable, the current in a junction be-
tween nodes k, h may be written, with a shift in the origin
of the time variable, as

d 2y t

ikt
4!

p iyz %II:

dT

+sin((()„' pI )+iF—
+ &0 (rk —ri)V p„+p„p, 'sin(p„' r) .

2K

0

An applied uniform static magnetic induction 8, can
be included by adding a simple vector potential, e.g. ,

A, =(B,Xr}/2. Then the A (k, l)'s will depend on the
positions of the sites (k, l) and a transformation of the
phases will not result in simplification of the equations of
motion.

In the work described in Sec. III, we employ M XM ar-

rays on a square lattice, as shown schematically in Fig. 1,
with a distance a between nodes. For definiteness, let the
array lie in the z =0 plane with the x direction along the
side of the lattice of length Na and the 7 direction along
the side of length Ma. We identify a node with two in-
dices (i,j), where i = 1,2, . . . , N and j =1,2, . . . , M. We
apply input currents along the opposite edges i =1 and
i =N. These currents may be functions of j. Total
current conservation is implemented by extracting the
same total current from one edge as is injected at the op-
posite edge. Along the two lateral edges of the array,
given by j =l to j =M, we allow no current to enter or
leave the system.

Because of the orientation of the array, only the x and

y components of the vector potential will enter the equa-

FIG. 1. Schematic diagram of a XXM array. The nodes are
represented by discs with the i and j values of a node shown in

parentheses. The junctions are represented by solid lines. Input
currents are also shown.

tions of motion. For an applied rf field, and in the dipole
approximation, we choose

A,&= Ao(cosax+sinay)sin(P„' r), (19}

a is the angle between A,f in the x-y plane and the x
direction. Then, from Eq. (16),

A,f(i,j;i + 1,j)= Aocosa sin(P,' r)
0

(20)

A„f(i,j;i,j+1)= Aosinasin(p„' r) .
40

i,((Nj ) = i„„—sin(P„' r) (22)

2m A0a sina
i,r(i, 1)= QP„+P„P, 'sin(P„' 'r)

0

= —i„f(i,M) —=i sin(P„' r) . (23)

These equations serve to define i, and i . Note that
both of these contributions apply at the corners of the ar-
ray.

The total input current to the array we take as the rf
currents i,f of Eqs. (22) and (23) and dc currents i, intro-
duced in Eq. (10). Hence, the "external" currents appear-
ing in the equations of motion, Eq. (11) or Eq. (13},be-
come

le = le + l~f

when P is replaced by P'.

(24)

When the transformation Eq. (17} is made to the vari-

ables P', we find that this vector potential is equivalent to
an ac input current along the edges of the array given by

2~A0a cosa
i f(1,j)= Qp„+p„p, 'sin(p„' r)

0
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III. CALCULATIONS AND RESULTS A. Zero temperature: i+=0

Our numerical procedure is to integrate Eq. (13) using
a fourth-order Runge-Kutta method. This general tech-
nique, but without including the junctions capacitance,
has been used by numerous other workers to solve for
the behavior of arrays. The step size in time is typically
chosen to be around 0.02 of the smallest of the three
periods 2n/co. ~, 2n. /co„and 2~/co, . Smaller step sizes are
frequently employed to check the accuracy of the results.
Runs lasting anywhere from 10 to several thousand such
periods are generally sufficient to determine the character
of the asymptotic behavior of the array and to obtain reli-
ably such properties as phase-space trajectories and
Fourier transforms of the voltage or supercurrent across
individual junctions or the entire array. The array size
used in calculations is routinely 8 X 8, but arrays of size,
e.g. , 32X32 or 16X64 have been analyzed to examine
specific features and to check for size dependence. The
properties discussed in this paper tend to be quite insensi-
tive to the size once it is 8X8 or larger. In practice, we
measure times in units of the period of the applied rf
field; that is, we employ the time variable

(25}

Also, we express time derivatives using this unit of time,
defining

~, dP'
dr,

2m dP'
co„dt (26)

Similarly, frequencies are measured in units of co, .
There are numerous parameters entering the equations

of motion. These include P„P„, Ao, o, and the various
dc input currents. We have focused attention on the re-
gime where the three frequencies are comparable (P, —1

and P, —1) and where the dc input currents and effective
rf input current are comparable to the critical current,
i, —1 and i —1; Ao is taken parallel to the x direction so
that i~=0. We first studied the dynamical behavior in
the absence of noise currents (T=O) and then added
noise to determine whether any significant changes in the
dynamical states occur over and above simple Auctua-
tions superposed on the T=0 motion. In the following
we first present representative results with applied dc
currents and effective rf currents at zero temperature
(i~=0) with no static applied field. We then address the
effect of finite temperatures.

We have evaluated and analyzed both detailed and glo-
bal dynamical properties of arrays. These include the
time-dependent supercurrents and normal currents, or
voltages, in individual junctions and their time averages;
time-dependent voltages across the entire array and their
time averages (yielding I- V characteristics}; and the
configuration and motions of vortices. Also, in the case
of chaotic states, the character of the chaos and its onset
have been studied in some detail. In this paper we do not
discuss the motion of the vortices or the properties of the
chaotic states.

We describe the rf field in terms of the equivalent input
currents i, . As stated earlier, we suppose that i =0,
meaning that the array is oriented with the x direction
parallel to the vector potential, or the electric field, of the
incident radiation. Finally, for the most part, we take the
dc input current in the nodes (1,j) to be uniform along
the y direction (independent of j) and given by the single
number i, . Then the parameters of the system in the ab-
sence of noise are i„i„„P„andP„. For various sets of
these parameters we solve for the motion starting from
random initial conditions.

For many parameter sets, the junctions' motions
decouple in the sense that, at long enough times, there
are no currents in any junctions oriented along the y, or
transverse direction. Thus, there are simply independent
lines of current along the x, or longitudinal direction.
For this type of motion, one need not study a two-
dimensional array to determine the dynamical properties.
The shapes and locations of the regions in parameter
space where decoupled states appear are usually rather ir-
regular. For example, Fig. 2(a) shows points on a grid in
i, -i, space where the motion did not decouple in com-
puter runs for times up to 2000m. /co„with P, =l and
P„=l. In these runs, i, and i„„wer eset equal to multi-
ples of 0.05 from 0.0 and 2.0 and the system was started
from a random configuration of P's and P "s. It should be
emphasized that, for some of the points at which the
motion did not decouple in our runs, it would have
decoupled if we had run a (much) longer time. Also, the
amount of time necessary for the system to settle into a
decoupled state depends, in some cases quite strongly, on
the initial conditions. Indeed, there are instances, as in
the case of a single junction, ' where the character of the
long-time state depends on the initial conditions because
there are numerous locally stable states of motion. This
behavior tends to be especially true, not surprisingly, if
the parameters are such that the system is close to a
boundary between regions of predominantly coupled and
predominantly decoupled states. Hence, the figure
should be interpreted as meaning that, where there is a
point, the system is likely to remain in a coupled state for
a long time if started with random initial conditions;
there may be, but need not be, one or more locally stable
decoupled states for the same parameters. Similarly,
where there is no point in the figure, that means the sys-
tern is likely to remain in a decoupled state at long times,
although there may be locally stable coupled states.

The regions where the motion decouples depend
strongly on P, and P„. General trends are somewhat
elusive. One might expect that, if P, —1 so that co, -co,
then the long-time dynamical state is more likely to be
decoupled if co„ is either much larger or much smaller
than the other frequencies, i.e., P„))1 or P„«1. This
expectation is borne out to some extent. For example, us-
ing the same grid as employed to obtain Fig. 2(a) we
found a small number —about 25—of coupled states at
long times with P, =4 and with either P„=25 or P„=—,', .
In these two cases the locations of the coupled states are
distributed quite differently. For P„=25 they are widely
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FIG. 2. Points on a grid with spacing 0.05 in the space of i,
and i„„atwhich coupled long-time dynamical states are found
for (a) P, =P„=1, (b) P, =1 and P„=25, and (c) P, =4 and
p„=H/25. Arrays measuring 8X8 were used to obtain these
results as well as those in all of the figures that follow.

spread in i,„but all close to i, =0.7, whereas for p„=—,', ,
they are dispersed at relatively large i, and small i„ im-
plying that there is no simple rule for the probable loca-
tions of coupled or decoupled states.

Another trend we have found is the following: if the
capacitance, or P„ is sinall, so that the displacement

current is not important and the system is overdamped,
then too the dynamical state will be decoupled. Then, as
P, increases, more coupled states can be expected. For
example, in Fig. 2(b), we show the regions of coupled
states for P, = 1 and P„=25. In contrast to the results for
the same p„and p, =4, we find a large region where cou-
pled states appear at long times. For further contrast, we
show in Fig. 2(c) the behavior for P, =4 and P„=sr /25
which demonstrates that the distribution of coupled
states can be quite complex.

To summarize, all cases shown give decoupled states if
the input currents i, and i„„are small compared to unity
and also if i, is significantly larger than unity. Our gen-
eral findings are that, when started from some random
configuration, the arrays show long-time behavior in
which the currents either travel straight through the ar-
ray, so-called decoupled states, or travel in irregular
paths so that there are sizable currents in the transverse
junctions, so-called coupled states. If P„P„,i„and i„„
are of order unity, it is difficult to predict, in general,
which type of behavior will be observed in the absence of
detailed numerical study of that particular case. Howev-
er, in some instances the behavior is already determined
from knowledge of the dynamics of a single junction hav-
ing the same co, and co and driven with the same input
currents. For example, if the single junction shows
chaotic behavior, so will the array and a coupled state
will result.

It is worth commenting on the behavior should the in-
put currents i, (j) not be independent of j, which is likely
to be the case for a real tray. We have done studies with
the individual currents i, (j) varied by random amounts
5i, (j) relative to a given mean value i,o, employing 5i, (j )

as large as 0.5. Then the currents in the array cannot fules

ly decouple into a set of parallel line currents. Rather,
states which would be decoupled for uniform inputs tend
to show transverse currents on the order of the variation
5i, (j) at the edges where the input and output take place;
these transverse currents decay toward the center of the
array. We find this to be the case even for large 5i, (j),
relative to the distance from a boundary between the
decoupled and coupled dynamical states, indicating that
the qualitative response of the array is quite stable
against nonuniformities in the inputs. An example is pro-
vided by arrays corresponding to Fig. 2(c) with i„„=1.0.
using i,&=0.32, which is less than 0.02 above a region of
coupled dynamical states, we find that, even with varia-
tions of the individual input currents as large as 0.5, the
dynamics remains effectively decoupled and periodic with
the transverse currents becoming small in the center of
the array; for an 8X8 array, these currents are already
smaller at the center than at the edges by an order of
magnitude. We have studied this effect by computing the
mean value of the absolute curr nt through transverse
junctions in larger arrays and find that it decreases ex-
ponentially with the distance from the end (i = 1) of the
array. For an array with M=8, the decay length is on
the order of 2—,

' junction spacings. This length is, some-
what surprisingly, quite insensitive to P„P„,i,o, or i„„. It
is, in fact, a size effect and is proportional to the array
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h M. Hence, our conclusion is that, for a sufficientlywidt . ence,
l (l r e-N} array, the global character of the g-lon -time
stable state is quite insensitive to nonuni. ormitie
dc bias current; rather, it depends, very sensitive y, on
the total input current.

%e give next a more detailed description of the charac-
f the different possible types of dynamica states,ter o e i

coupled and decoupled, including representative
ples of each kind of behavior. The decoupled states, by

nt conservation, must be such that the currents incurren con
all of the longitudinal junctions are the same a a
If one looks separately at the supercurrent and normal
current or voltage, however, one finds that in some in-

th se are the same in all junctions in t e line at a
given time and in other instances they are no . n
former case, the array is simply a coherent superposition

f sin le unctions and we refer to the dynamical state as
a sin - "; no"single-junction" state; it is a so no

andlocked state. n e aI th 1 tter case, the supercurrents an
d ff rent 'unctions in the line are the same, u

they are shifted in time relative to one another. e ave
given the name c ain s a e" h t tes" to dynamical states of this
kind; they are also found in one- ime- imensional arrays
where they are nownk ' as antiphase solutions. Note,

owe ver, that the existence of such states in two-
dimensional arrays is, at first sig t, qui e

he fact that the phase differences across two ad-
t 'unctions in a longitudinal chain do no varyjacen junc

'

ase difference istime in the same way, no current or p ase i e
pro uced d across any transverse junction.

states we find,For the single-junction or phase-locked s a e,
for all parameter sets investigated, t a pat the eriod is

1.0
I I I I I I I I I I I I I I I I I I I

0.5

ig 0.0
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(b)

1
I
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I I I I I I I I
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I I I I
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I I I

0 2
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sin (I)'
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=+&25, I, = l.o, and i, =0.4, we show for a longitudinal junction (a) the super-
cu«ent as a function of r„, (b) the power spectrum of ((} ', and (c) the phase-space trajectory
equivalent in this state.
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equal to the period of rf field or to some inte 1 1' 1

of it.o it. As an example of this type of behavior, we present
in Fig. 3(a) the supercurrent, Fig. 3(b) the Fourier trans-
form or power spectrum of P', and Fig. 3(c) the phase-

~ ~
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perturbation. Further properties of these states, such as
their stability, will be addressed in a separate publication.

As for the coupled states, we have examined the
motions for many different parameter sets and have seen
just three qualitatively different types of long-time behav-
ior, these being periodic, quasiperiodic, and chaotic. The
first of these have periods which are integral multiples of
2m/co„. For example, at P, =4, P„=~ /25, i, =1.235,
and i = 1.0, there is a coupled periodic state with period
5(2n. /co„}. These periodic states also have, in general,
some spatial periodicity which is typically two junction
spacings. In any given state this pattern may be repeated
throughout the array or may be only local with different
periodic (in space) states present in different parts of the
array. Finally, the coupled periodic state tend not to be
very robust, meaning that they usually have relatively
small basins of attraction and are not found for most sets
of initial conditions. Rather, in those places where these
states can appear, there is usually a more robust periodic
decoupled state.

An example of a coupled quasiperiodic state is provid-
ed by an array with P, = 1, P„=25, i, = 1.25, and
i„„=0.5. Figure 5(a) shows the supercurrent in a typical
longitudinal junction in the interior of the array; Fig. 5(b)
displays the power spectrum of p

' for the same junction;
and Figs. 5(c) and 5(d) present, respectively, the phase-
space trajectories for this junction and for an adjacent
transverse junction. In addition to peaks at integral mul-
tiples of the driving frequency, there is a pronounced
peak at a frequency close to, but not precisely equal to,
~ =co, =0.2', . Further, there are smaller peaks at har-
monics of this one's frequency. These peaks are narrower
than the resolution of our Fourier transform. As was the
case for the chain states, the motion appears to be quasi-
periodic rather than truly periodic.

A clear contrast to Fig. 5 is shown by Fig. 6 where we
plot in Fig. 6(a) the supercurrent in a longitudinal junc-
tion, Fig. 6(b) the power spectrum of p

' in that junction,
Fig. 6(c) the phase-space trajectory for the same junction,
Fig. 6(d} the power spectrum of a neighboring transverse
junction, and Fig 6(e) th.e phase-space trajectory for that
transverse junction, in an array with p, =4, p„=n /25,
i, =0.69, and i„„=1.0. This is a chaotic state as is
demonstrated by the power spectrum and the phase-space
trajectories. The power spectrum also shows sharp peaks
at harmonics of the driving frequency; these are absent
from the power spectrum for a transverse junction.

For applications, one is interested not so much in the
behavior of individual junctions in the array, but rather
in global properties, in particular, the current-voltage
characteristics. In Fig. 7(a) we display the time-averaged
mean voltage across an 8 X 8 array as a function of i, .
The parameters for this system are P, =4, P„=m. /25,
and i„=1.0. The curve shows a number of voltage pla-
teaus or Shapiro steps where the mean voltage is indepen-
dent of the input current. In these regions the dynamical
states are the decoupled states with single-junction be-
havior; compare Fig. 2(c). There is a wide plateau for
0.31 ~i, ~0.65 and smaller ones in other regions includ-
ing many at small i„as in the case of a single junction, '

which are two narrow to appear in the figure. There are
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FIG 7. F«0, =4, P„=n /25, and i„„=1.0, we show the I- p'

curves for (a) an 8 X 8 array and (b) a single junction. The volt-
ages on corresponding plateaus are seven times larger for the ar-
ray than for the single junction.

no plateaus for i, larger than about 1.5, although this is a
region where the dynamical states are decoupled. These
states are, however, chain states rather than single-
junction states. Floquet analysis, similar to that done in
Ref. 10, demonstrates that the single-junction states are
unstable here. As a rule, chain states correspond to re-
gions where the voltage varies with i, F. igure 7(b) shows,
for contrast, the I-V curve for a single junction with the
same parameters as used for Fig. 7(a). The structure of
the curve is similar but with more pronounced voltage
variations. Also, of course, the voltage is seven times
larger for the array.

These I-V curves may be contrasted with what is found
if the capacitance is zero, co ~ 00. In that case, there is a
sequence of wide, evenly spaced voltage plateaus for
currents up through and well beyond what is shown in



4784 RAVI BHAGAVATULA, C. EBNER, AND C. JAYAPRAKASH 45

the figures. Hence, we can conclude that the addition of
capacitance to the junctions in this instance suppresses
the higher Shapiro steps, at least for the dynamical be-
havior at the times which we investigated. At the same
time, the edges of the remaining steps tended to become
sharper with the addition of the capacitance, rejecting
the fact that the presence of capacitance does not, in gen-
eral, result in an overall degradation of the steps, as has
been demonstrated also by others. ' ' In the present ex-
ample, as described above, there is just one wide plateau
remaining with a number of narrower ones which do not
necessarily occur at voltages that are integral multiples or
simple fractions of the voltage of the wide one (which is
at the same voltage as the first step produced by an array
with negligible capacitance).

In the regions between plateaus, where the voltage typ-
ically increases with i„ the dynamical state is either a
chain state or a coupled state. Specifically, at relatively
large i„ i, —1e5 and above, it is the chain state that is
present while for i, in the region below about 1.0, there
are chaotic states. Thus there is a simple correspondence
of decoupled, periodic dynamical states with the voltage
plateaus and either coupled states or aperiodic decoupled
states with the regions where the voltage changes with in-
put current. Similar statements apply in this case of a
single junction; there are periodic states on the voltage
plateaus and either chaotic or quasiperiodic states else-
where.

We have studied the transition from periodic to chaot-
ic behavior in some detail. As an example, we cite the
transitions as one moves from the large plateau in Fig.
7(a) either upward or downward in i, into chaotic re-
gimes. In the former case, there is a sequence of period
doubling transitions with increasing i, until chaotic be-
havior sets in around i, =0.66, a standard route to chaos.
The behavior for decreasing i, is not the same. In this
case we find no period doubling. Rather, the power spec-
trum, which is necessarily initially a set of perfectly sharp
peaks at integral multiples of cu„, evolves by developing
widths in the peaks accompanied by the gradual appear-
ance of a noisy background at all frequencies. Hence,
two quite different routes to chaos appear in this one ex-
ample.

It is appropriate to compare the behavior of the array
with that of a single junction having the same charac-
teristics. In many respects the two are comparable. That
is, the single junction also displays periodic, quasiperiod-
ic, and chaotic behavior. Of course, with a single junc-
tion one cannot observe coupled as opposed to decoupled
dynamical states. Roughly speaking, the regimes where
the array shows coupled chaotic states are also ones
where the single junction is chaotic; where the array
displays periodic behavior, the single junction is also
periodic with the same period, and where the array shows
aperiodic but decoupled behavior, the single junction is
also aperiodic. It is, however, sometimes difficult to
make a detailed comparison. As a rule, if the single junc-
tion is chaotic then the array is; there are some regions
where the array is apparently chaotic but the single junc-
tion is not. This observation may be a consequence of the
finite times we are able to follow the motions of the array.

That is, it is not inconceivable that in some of these cases
the array would exhibit long-time periodic or quasi-
periodic behavior were we able to follow it long enough.
Consider as an example junctions with P, =4, P, =sr /25,
and i„=1.0. For i, between 0.07 and 0.13, there is a re-
gion, corresponding to the voltage plateau in Fig. 7(b),
where the single junction is periodic. At many values of
i, in this range we found, for 8 X 8 arrays, chaotic rather
than periodic behavior starting from randomly selected
initial states.

B. ES'ects of noise

The addition of noise currents to the system provides a
means by which it may escape from one locally stable

1.0

0&
o

0.0—

—0.5—

—1.0—
(a)

5 ~ I I I I I I t I I I I I I I I I I I I I I I I I I I I I

-1.5 -1.O -O.S 0.0 O.S 1.O 1.5

sin (I)'

I I I I

I
I I I I

I
I I I I

I

I I I I
)

I I I I
I

I I I I

0.04—

0.02

0.00—

~ ~

~ e ~
~ ~

~ e

~Q

oV
r

~ ~

~ee eI
ee

Qe
ge~'

'r

~ ~ ~ ~ e~ ~Je ~ ~ ~ ~ ~ ~

~ ~

e ~

—0.02—
ee

e e

eye e o+4e $ ~ ~
~ ~

e ~ ~ oe
o

o ~

~o
e ee

~ ~ ~

e

e ~

—0.06— (b)

—0.08
—0.15

I I I t I I I I I I I I I I I I I I I I I I I I I I I

-O. iO -O.OS 0.00 O.O5 O. 1O O. 15

sin tt)'
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dynamical state to another. Further, the characters of
various types of states must change somewhat;
specifically, the decoupled states are no longer truly
decoupled because Auctuating currents must appear in
the transverse junctions. In addition, periodic states are
no longer truly periodic because of the noise. The most
interesting question associated with the presence of noise
is whether states are destabilized by it.

One well-known' consequence of the noise is that the
edges of the plateaus in the current-voltage plot become
rounded. Small plateaus are lost altogether. Purely
periodic states become quasiperiodic in that the power
spectrum still has sharp peaks with some background
present. The phase-space trajectories demonstrate the
quasiperiodic behavior very vividly; Fig. 8, which may be
compared with Fig. 3(c), is for P, =4, P„=n. /25,
i,„=1.0, and i, =0.32, with the rather large noise
current ~iz(t) ~

(0.4. Even this large fluctuating current
is not sufficient to disrupt the basic periodic state; notice,
however, that in the absence of noise, if i, were reduced
to 0.30, a reduction of just 0.02, a chaotic state would re-
sult. The periodic unperturbed state is evidently quite
robust against noise, even as it is robust against nonuni-
form input currents.

Comparably large noise currents also do not destroy
other types of unperturbed states. We mention, in partic-

ular, the chain states which maintain their basic charac-
ter, described above, in the presence of the noise.

+sin(P» P't )—+i,'(k) =0 . (27)

In the following, we shall specify a node using indices i,j
as in Sec. II, P»(r)~P'(i j;r).

We begin by considering the stability of the single-
junction states. These are characterized by a single-phase
function Po(r) If w. e let the phases of the individual
nodes in the single-junction state be designated as
$0(i,j;r), then these are related by

po(i j;r) $0(i',j—', r)=(i i')—p 0( r) .

To test this mode's stability, we write p'(i,j;r) as

p'(i,j;r )=$0(i,j;r) +p(i,j;r ),

(28)

(29)

and expand Eq. (27) in powers of g, keeping just linear
terms,

IV. STABILITY ANALYSIS

From Sec. II, the condition of current conservation at
node k may be expressed as, for iF =0,

d2
+0, ' ' (p' —p', )

ICv(k)

2

+p, '/2 [4$(i,j) p(i + l,j—) p(i ——l,j ) p(i,j +1—) —g(i,j —1)]
d7

+cosgo[2$(i j)—P(i+ 1j ) P(i ——1,j))+[2$(ij ) P(ij +—1) g(i j——1)]=0 . (30)

Finally, we Fourier transform the linearized equations of
motion in space, making use of the fact that the nodes are
on a square lattice with spacing a, and obtain

d20qr +P—1 2d/Pqlr +f[ .P( )]g( .
)
—0

d 7-

(31)

where

dti(r)
d7

so that

I
X) =X2

and

(34)

(1—cosq„a )cosgo+(1 —cosq a )

2 —cosq~ a —cosq„a
(32)

In the single-junction mode, cos[po(r) ] is periodic, and
as a consequence f (q, r) is also periodic so that Floquet
theory ' may be applied. First, note that, for ~q„~ ( ~q ~,f (q, r) )0 for all r. Consequently, the uniform solution
is stable against perturbations which satisfy this condi-
tion on q. More generally, we convert the second-order
equation (31) to a pair of first-order equations by intro-
ducing

X'= AX,

where

X—
X)

X2

and

or, in matrix form,

(35)

(36)

and

x ) (r) =Q(r)

(33)

0 1

p
—1/2
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We have analyzed these equations, finding, in particu-
lar, the two characteristic multipliers a; for a variety of
single-junction states. In all cases examined we find that
the absolute values ~a; ~

are less than unity for any finite

q . However, one of them is very close to unity for q
small. The implication ' is that the periodic uniform
states are (locally) asymptotically stable, although the de-
cay time of a perturbation can be very long. These pre-
dictions are supported by our numerical results; all
periodic uniform states that we have encountered have
proved to be locally stable.

Next, suppose that cos[$0(r)] is chaotic corresponding
to a decoupled uniform state in which each junction un-
dergoes the same chaotic motion. In this case the uni-
form solution is one in which the entire system behaves
like a single junction and exhibits uniform global chaos.
We may argue, however, that this state is unstable with
respect to small perturbations. Suppose a phase at one
node is perturbed relative to its value in the uniform
state. This disturbance will grow as a consequence of the
state being a chaotic one with a positive Liapunov ex-
ponent. Further, the disturbance will spread to the near-
by nodes, which are coupled to the original one, and so
will grow in spatial extent as time progresses as well as
growing on each node where it is present; hence, the uni-
form state is unstable. This conclusion is also supported
by our numerical results. All chaotic states that we have
studied show short-ranged spatial correlations in the
chaotic part of the motion. However, the chaotic fluctua-
tions tend to be accompanied by some underlying period-
ic motion with longer-ranged correlations.

V. DISCUSSION AND SUMMARY

We have studied the dynamical states of two-
dimensional arrays of capacitive Josephson junctions
with dc bias and an applied monochromatic rf field using
the RSJ model. For wide ranges of junction parameters,
we find stable or metastable solutions of several basic
types. First, the states are either coupled, meaning that
there are currents in junctions perpendicular to the input
currents, or decoupled, meaning that the input currents
pass straight through the array, producing no currents in
the transverse direction. In the latter case, the arrays
display either single-junction (phase-locked) states or
chain states in which the junctions in a longitudinal chain
all behave in the same fashion but successive junctions in
the chain are time shifted by apparently random multi-
ples of the period of the rf field. At the same time, the
states of parallel junctions in different chains are identical
so that the system is invariant under translation in the
transverse direction.

Also, both kinds of decoupled states are generally very
robust in that random changes in the initial conditions do
not often lead to a different dynamical state at long times;
in the case of the chain state, such a perturbation typical-
ly produces a different chain state in that the amounts by
which different junctions are time shifted relative to each
other change. Similarly, thermal noise, included by
means of a Langevin noise current in each junction, does
not easily destabilize these states although it does, of

course, cause them to fluctuate around some mean prop-
erties. Similarly, random variations in the input currents
do not have significant effects on the decoupled states so
long as the total input current is unchanged. In the latter
case, there are produced currents in transverse junctions
close to the nodes where the current is injected, but these
die out exponentially with distance with a decay length
on the order of one-half of the array's transverse length.

The rather impressive stability of the dynamical modes
against thermal noise and disorder in the inputs is some-
what surprising. It would be useful to know also whether
the dynamical states are as stable when there is
configurational disorder in the array; we intend to study
this question and report on it separately. We do not at
this point have an explanation for this stability. Never-
theless, it is encouraging in that it implies that reliable
devices such as rf radiation detectors could be construct-
ed from junction arrays.

The coupled dynamical states are either periodic,
quasiperiodic, or chaotic. The periodic states that we
found to be uncommon in that they have relatively small
basins of attraction and do not appear very often if the
simulation is started with random initial conditions.
More commonly, for those parameters where these states
can appear, a periodic decoupled state usually is the re-
sult of starting from an arbitrarily chosen configuration.
The periodic states are interesting in that they also
display spatial periodicity. As for the quasiperiodic
states, these behave in time rather like the chain states
but have, in addition, currents in the transverse junctions.
Finally, chaotic states are quite common; we have found
that chaos can appear by a sequence of bifurcations dur-
ing which the array is in a single-junction state and also
by intermittency.

The current-voltage characteristics of the array have
been examined and correlated with the dynamical states.
There are voltage plateaus where the voltage remains
constant for some range of i, or i,„.The dynamical states
on these plateaus are single-junction states or periodic
coupled states. Off the plateaus one finds coupled and
chain states. The presence of capacitance in the arrays
tends to suppress the plateaus and produce fairly smooth
variation of the voltage with the input currents, especial-
ly in the region of relatively large i, (larger than about
1.5) where predominantly chain states are found. For
smaller i, and with i„,—1, chaotic states are not common
off the voltage plateaus. Also, in this region there are
numerous very small plateaus. Overall, the behavior of
the I-V curves is not unlike that for a single junction with
the same properties as the junctions in the array, al-
though much of the detail of the curve for the single
junction is lost.

Of the various phenomena we have found, several seem
worthy of further investigation. These include the de-
tailed character of the chaos in this extended,
continuous-time system, the rather remarkable stability
of the various dynamica1 states, especially the decoupled
ones, to difterent kinds of noise and disorder, and certain
features of the chain states. Further work on these and
other aspects of the dynamics of capacitive arrays is in
progress.



45 DYNAMICS OF CAPACITIVE JOSEPHSON-JUNCTION ARRAYS. . . 4787

ACKNOWLEDGMENTS

This work was supported in part by the Air Force
Office of Scientific Research through Grant No.
AFOSR-89-0527. One of us (C.J.) acknowledges support
from the Department of Energy, DOE, Office of Basic

Energy Sciences, Grant No. DE-FG02-88ER13916. The
simulations were done using the Ohio Supercomputer
Center Cray Y-MP8/864. Use of the Ohio State Univer-

sity Department of Physics VAX 8650 is also acknowl-
edged.

S. P. Benz and C. J. Burroughs, Appl. Phys. Lett. 58, 2162
(1991).

S. P. Benz, M. S. Rzchowski, M. Tinkham, and C. J. Lobb,
Phys. Rev. Lett. 64, 693 (1990).

D. W. Abraham, C. J. Lobb, M. Tinkham, and T. M. Klapwijk,
Phys. Rev. B 26, 5268 (1982).

4R. F. Voss and R. A. Webb, Phys. Rev. B 25, 3446 (1982).
5K. H. Lee, D. Stroud, and J. S. Chung, Phys. Rev. Lett. 64, 962

(1990).
J. U. Free, S. P. Benz, M. S. Rzchowski, M. Tinkham, C. J.

Lobb, and M. Octavio, Phys. Rev. B 41, 7267 (1990).
7K. K. Mon and S. Teitel, Phys. Rev. Lett. 62, 673 (1989).
W. Xia and P. L. Leath, Phys. Rev. Lett. 63, 1428 (1989).
J. S. Chung, K. H. Lee, and D. Stroud, Phys. Rev. B 40, 6570

(1989).
P. Hadley, M. R. Beasley, and K. Wiesenfeld, Phys. Rev. B
38, 8712 (1988).

'D. R. Tilley, Phys. Lett. 33A, 205 (1970).
R. L. Kautz and R. Monaco, J. Appl. Phys. 57, 875 (1985),
and references therein.

'sM. Iansiti, Q. Hu, R. M. Westervelt, and M. Tinkham, Phys.
Rev. Lett. 55, 746 (1985).

t4See, e.g., K. K. Likharev, Dynamics of Josephson Junctions
and Circuits (Gordon and Breach, New York, 1986).

S. R. Shenoy, J. Phys. C 18, 5163 (1985).
See, e.g., P. Hadley, M. R. Beasley, and K. Wiesenfeld, Phys.
Rev. B 38, 8712 (1988).

t7See also M. Iansiti, Q. Hu, R. M. Westervelt, and M. Tink-
ham, Phys. Rev. Lett. 55, 746 (1985), where single junctions,
with somewhat different parameters, are studied.
M. Levi, Phys. Rev. A 37, 927 (1988).

' See, e.g., J. S. Chung, K. H. Lee, and D. Stroud, Phys. Rev. B
40, 6570 (1989).
In the interest of numerical eSciency we have used noise
currents distributed uniformly on the stated intervals, rather
than ones with Gaussian distributions which would be more
appropriate for thermal noise. Tests using a Gaussian distri-
bution demonstrate that our results are not sensitive to this
distinction. More generally, one should also be sensitive to
the question of the frequency of sampling which is done here
at intervals of the basic time step used for solving the equa-
tions of motion. Comparison of results with different time
steps did not yield any qualitative differences. These points
are discussed by J. Voss, J. Low Temp. Phys. 42, 151 (1981).
For a description of linear stability theory for the solutions of
ordinary differential equations, see, e.g., R. Grimshaw, Non-
linear Ordinary Differential Equations (Blackwell, Oxford,
1990), Chaps. 3 and 4.


