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Perturbation of y-ray angular correlation by an Ornstein-Ulhenbeck process
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We derive explicitly the effect of Ornstein-Ulhenbeck noise on the perturbed angular correlation. Nu-

merical results of the derived expression are also presented graphically.

I. INTRODUCTION

The theory of perturbed angular correlation (PAC)
with a first-order treatment of random time-dependent in-
teraction was put forward by Abragarn and Pound. '

Since then it has been used in a number of experimental
situations with reasonable success. A major break-
through occurred with the appearance of a paper in
which the case of very strong interactions was treated.
The need for refinement of Abragam and Pound's first-
order theory with a proper consideration of the perturb-
ing environment has then become inevitable and has
gained much theoretical and experimental interest in re-
cent years.

In the PAC experiment, the nucleus, having emitted its
first y ray, is under the influence of its surrounding be-
fore emission of the second y ray. The large surrounding
(having a large number of degrees of freedom) affects the
system (the nucleus) in a very complicated way. In the
experimental time scale of interest, what we really ob-
serve is the average global effect of its surrounding on the
system. Since the detailed mechanism of the interaction
of the surrounding is not of primary concern, the proper
way to incorporate its effect is by modeling its charac-
teristics by a specified random noise. This is the famous
Langevin approach.

Upon reflection, one immediately realizes that the per-
turbing field, being a vector (with a dipole approximation
of the nucleus), can be specified by its magnitude or
strength and its direction. Since we model the field as
random, the probability distribution for both the magni-
tude as well as the direction are to be specified in order to
represent its global effect on the angular correlation.
Moreover, there could be situations where the axis of per-
turbing field flips in different directions within the life-
time of the intermediate state of the nucleus. This is im-
portant because the nucleus would then be subjected to
different strengths at different time points, depending on
the angle between the nuclear dipole axis and the axis of
the interacting field.

An attempt was made towards this goal by Bosch and
Spehl when they specified the distribution of the
strength of the perturbing field by a purely Gaussian and
a uniform angular distribution, although no considera-

tion was given towards the flip of the axis of interaction
during the lifetime of the intermediate state. Obviously,
this model is applicable if the average duration for which
the direction of the perturbing field does not change ap-
preciably (the correlation time for direction distribution)
is of the order of the lifetime of the intermediate state of
the nucleus. That is, to the nucleus in the intermediate
state the direction of the perturbing field appears fixed.
This is known as the fixed-orientation Gaussian approxi-
mation (FOGA) model. It is expected to fail when the
correlation time of the "direction" distribution is small
compared with the lifetime of the intermediate state. In
this case, the nucleus will be affected by perturbing field
acting in various directions as time proceeds. Experi-
mentally what one observes is the average effect of such
different orientations. Since one does not have detailed
information about the mechanism of change in the direc-
tion of the surrounding field, which is an impossible pro-
position, one again invokes, as argued previously, the
idea of a probability distribution of a number of different
directions at different time points within the lifetime of
the intermediate state. Following this approach, Bosch
and Spehl published a subsequent paper where the prob-
ability distribution of a number of different directions has
been modeled as a Poisson distribution. They carried out
an average over the ensemble of a class of nuclei in the
presence of a number of flips of the direction of the per-
turbing field. The question, therefore, naturally arises at
what point of time the nucleus is affected by the flip and
the duration for which it observes the specified orienta-
tion of the field. The specified orientation results in only
a fixed value of the strength. Apart from the probabilis-
tic approach towards the strength, the length of the time
interval during which the specified strength acts on the
nucleus is important since the phase change of the state is
proportional to this interval. Because of this extremely
complicated mechanism, here one again does not know
the exact point of time at which the perturbing field flips.
Consequently one further invokes the probability of get-
ting different time points at which the flips occur for each
member of the ensemble, characterized by a fixed number
of flips. Since the flips can occur at any instant of time, it
is natural to choose a uniform probability of selecting
time points with a note of caution of ordered time
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points —the flips being associated with the transition of
the phase of nuclear states cannot be perrnuted among
themselves.

Having clarified the issue of handling the flipping of
the axis of the perturbing field, it can be mentioned, how-
ever, that Bosch and Spehl have assumed the purely
Gaussian distribution of the strength of interaction at
each point of time without any correlation. Therefore in
their model they have not included any memory effect of
the past. This is, of course, a mathematical idealization
of the actual state of affairs. In a real situation, no distri-
bution is free from its autocorrelation. A particularly
simple way to incorporate memory effect is to model the
noise as an Ornstein-Ulhenbeck process (OUP). The need
to consider such colored noise has been demonstrated re-
cently ' to get a closer approximation to the experirnen-
ta1 results. Therefore we have modified the calculation of
Bosch and Spehl by introducing an exponential auto-
correlation function in the distribution of the perturbing
field. This clearly brings out the special features about
the dependence of PAC on the characteristic property of
the surrounding media.

In Sec. II the statement of the problem with a brief ac-
count of the underlying physical structure is made in
mathematical terms. The statistics used in the derivation
are discussed in Sec. III. Section IV deals with the actual
derivation of the attenuation coefficient along with the re-
sults of the numerical calculation. Finally, we offer a few
concluding remarks in Sec. V.

i R —A(t, t') =RA(t, t'),
at

where the operator E refers to the interaction of nuclear
intermediate state with the surrounding perturbing field.

If the time scale is initialized at the formation of the in-
terrnediate state, after some time, let us say, t, the density
matrix would be

p (t)=A(t)p (0)A (t)

=+A(t)H, Im;&g;&m;I8, A (t) .

Suppose at time t, the nucleus emits another radiation
in the direction k2 accompanied by a transition from the
intermediate state of spin I to the final state of spin If. If
H2 is the corresponding interaction operator that induces
such transition, then the density matrix for the final state
takes the form

pI=H2p (t)B~

=gH A(t)P, Im; &g; & m; IP, A (t)P

Therefore the probability of finding the system in the
state

I mI & at time t accompanied by two successive tran-
sitions in the directions k& and k2 is

& mIIpI ImI &
=g & mf I82A(t)8, Im; &

II. STATEMENT OF THE PROBLEM Xg, &m, I8, A"'(t)B, Imf & . (7)

where
I m; & are the magnetic states corresponding to spin

I; and g; are the statistical weight factors. The probabili-
ty of observing the nucleus in any state

I
1 & is

& l lp; I
l &

=gg; I & i lm; & I' (2)

The operator H, induces the transition accompanied
by radiation in the direction k, . With the first-order
treatment of interaction, the density matrix for the inter-
mediate state would be

p =yH, lm, . &g,. & m, IH, . (3)

The presence of extra nuclear perturbation (surround-
ing field) causes a change of phase to the intermediate
state of the nucleus. This is accounted for by a unitary
time-development operator A(t, t'). The operator A

satisfies the following Schrodinger equation in the in-

teraction representation:

A nucleus decays from the initial level i with spin I, to
the intermediate level with spin I with the emission of ra-
diation in the direction k, . If the nucleus is not known to
be in any definite quantum state we have to talk in terms
of a mixed state defined through the density matrix
operator

p, =+Im, &g, &m, I,

In the measurement process, we generally deal with
successive radiations emitted by the nucleus without
reference to any particular ImI &. Therefore the contri-
butions to all Imf &'s are present in the experiment. Thus
it is meaningful to talk about the total probability taking
into consideration of contributions from all ImI & s. This
probability refers to two radiations in the specified direc-
tions. It gives the notion of some kind of joint probabili-
ty distributions of emission of radiations in two specified
directions; the members of the ensemble being character-
ized by the direction of emissions. The joint probability
cannot be thought of as a product of independent proba-
bilities of two events (emissions of two radiations) because
the occurrence of the second must be associated with the
first and hence there exist some correlations between the
two events. Thus we can attach the notion of correlation
to the tota1 probability. Therefore the perturbed angular
correlation function is defined as

W( ,k, kt) =g m&IpfIfm I &.

mf

As there is no restriction over different
I m; & states we

can very well assume that they are equally populated
with the weight factor

g; =(2I, + 1)

Employing the completeness of Im & states we can ex-
press the correlation function W(k, , k2, t) in the more
usual form
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W(k„k2, t}= g (mf ~8zimb)(mbiA(t)im, )(m, i@,im;)(2I;+1} '(m;i8, im,
' )(m,'iA (t)gamb)(mbi82imf ) .

mf, m, ,

mb, ma

I I
mb, ma

The matrix element (m iB, im, . ) stands for (I,m, k„o,iH, iI, , m,. ); the polarization o, is given by the component of
the spin in the direction of propagation ki. The factor (2I, + 1) is a constant depending only on the magnitude of the
initial spin. It would not affect the correlation properties in any way. Therefore we redefine the correlation function
W(k„k2t, ) without this multiplying factor,

W(k„kz, t)= g (mfiA'2ims)(m, ih, im;)(m;iA', im,')(mi~82imf)(mt, iA(t)im, )(m,'iA (t)burnt', ) . (10)

I Im, mb

This is the underlying physical structure of angular correlation theory. In the angular correlation experiment one is
concerned about the direction of the emitted radiation. Therefore it is convenient to express the function explicitly in
terms of the characteristics of the emitting radiation. This has been done and we only quote the results.

8'(k„k~, t)= g Ak (1)AI, (2)Gk 'k '(t)[(2ki+1)(2k2+1)] 'i
Yk

' (8„$,)Yk'(82, $~), (11)
1' 2'

Nl, N2

where the perturbation factor is given by

ki I k2
Gk 'k '(t) g (

—1) ' '[(2k, +1)(2k2+1)]'
ma, mb

X (m$ iA(t) im, ) ( m,
'

~A (t)imp ) .

m,
' —m, N) mb —mb N2

(12}

We consider only the magnetic interaction between the nucleus and the surrounding perturbing field. Assuming the nu-
cleus to be a magnetic dipole having moment p and the surrounding field to be approximated by a magnetic field B, the
interaction Hamiltonian is 8= —p B. Then the time-development operator would be

l
A(t) =exp — 8t— (13)

As has been mentioned in the Introduction we have considered the family of the nuclei having faced different num-
bers of orientation of the perturbing field, each member being classified by a fixed number of orientations. For each
meinber the correlation function 8'(k„kz, t) is to be averaged over the joint probability distribution of strength,
to=ad, B/h and direction Q of the surrounding perturbing field. The averaged quantity should then be multiplied by the
probability of getting that particular member out of the family. Thus the total probability will be

(Gk 'k '(t)) =EIGk 'k
'

~n =0}P(n =0)+EIGk 'k '
in =1}P(n=1)+ +E[Gk 'k 'in }P(n)+ (14)

where P ( n ) is the probability of having n flips in time t and

E[Gk, 'k, 'in }
=

0&t
l 2 n

I, , }.. ., , ~(,Q, 0; „Q„t„.. . ; „,Q„,t„)d dQ gd, dQ, dt, ,
Xi N2

i=1

(15)
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N] N2
with IGI, k ]. . . indicating that the (lips have tak-

en place at times t „t2, . . . , t„where 0 ~ t, t2. . . ~ tn

t. The importance of selection of di6'erent time points
is clarified in the Introduction. Since the exact time
points at which the flips occur are not known, the proba-
bility distribution of choosing ordered time points is to be
invoked.

III. THE STATISTICS USED

n

P(Q i0; Q, lt, ; . . . ; Q„lt„)=gP(Q, lt, )
i=0

n+1

The variable cu is modeled as an Orstein-Ulhenbeck
process (OUP).

P ( coo i 0; co ) i t ),' . . .,
' co„ i t„

The joint distribution W is modeled as

W(coo Qo 0' co] Q& t]' . . . co Q t )

P(coo, QoiO; co„Q, it, ; . . . ;co„,Q„it„)

= gP;(co;; t; ico;,;t;, )Po(coo, 0),

where

P, (co, ;t, ico, , ;t, , )=[2no'(1 —e ' ' ' )j

where P is the conditional probability of strength and
direction of the surrounding field given the specific or-
dered time points t„t2, . . . , t„, and W(t„t2, . . . , t„) is
the probability of selecting "n" ordered time points.

W(t„tz, . . . , t„) is assumed to be some constant. This
constant can be obtained from the normalization of 8',
i.e.,

and

Xexp
(co; —e

P(E; —E-
] )

Po(coo, 0)=(2nc7 )
'~ exp( —coo/2cr ) .

(20)

(20a)

f f f W(t„t„.. . , t„)dt„dt„, . . dt, =1,.
0 0 0

which yields

cr is the variance of the distribution and y is the correla-
tion time of O-U-P.

The probability of having exactly "n" points in the
time interval t is assumed to be given by the Poisson dis-
tribution

The conditional probability P is assumed to be the
product of the conditional probabilities of strength and
the direction of the perturbing field assuming these ran-
dom variables are independent at any time.

p( )
(

" —at

pg I

where A, is the mean number of points per unit time.

(21)

P(coo, QoiO; co„Q,it„.. . ;co„,Q„ it„ )

=P(cooiO; co, lt„. . . ; co„it„,

XP(Q i0; Q, it, ;. . . ;Q„it„) . (17}

The conditional probability for directions IQ, ) are as-
sumed to be

IV. DETERMINATION OF THE
ATTENUATION COEFFICIENT

The (n+1)th term of (Gk 'k '(t)) in Eq. (14) corre-
1 2

sponding to n flips is

e '1"f dt„ ,f dt„&. . . f dt&X(O, t&, t&, . . . , t„),
0 0 0

with

n+1
n n

f f I G„'„'I. . . +P,(,, t, i;,;t, , )d; P (;0)d
] 2 ]' 2' ' ' n i=0

where I Gk 'a
'

]«, is given by Eq. (15). The

specification in the subscript refers to the calculation of
the matrix elements of the time evolution operator in

N]N2
Gk k . that is,

I 2

Hamiltonian remains unchanged, remembering at every
point t -, as the field axis flips the interaction Hamiltonian

~ ~ ~ ~ M ~

changes. The interaction Hamiltonian H is

(22)
H = —glPNI, .B= —AcoI, . (23)

where each individual A(t; —t, , ) should be calculated
separately and during the time (t, —t, , ) the interaction

where gI is the Lande g factor, p„ is the Bohr magneton,
co refers to the strength of the perturbing field and it is a
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random variable, and I,. refers to the projection of I
along B.

The magnetic states
~
m ) for which the matrix element

is to be evaluated refer to our fixed coordinate system.
But I, or H is diagonal in the system where the z' axis is
parallel to field axis B. Hence one has to incorporate
different complete substates corresponding to different
orientations of B, which will be eigenstates of I,. at
different times. This would naturally bring various
Wigner coefficients depending on the Eulerian angles be-
tween space fixed axis and field axis. Integration over the
angles can be easily performed using the properties of
Wigner D functions. The tricks involved in the above
procedure are by now quite standard. We would there-
fore omit these steps. For n =0, i.e., when during time t
there has been no flip, X(0) turns out to be

'2I I k —r(p-p')~, r
X(0)= g, & e 'Po(~o;0)d~o .

p p

(24)

k

X(0)=
pj~p) =0 Pi

2I k (p p )202r2/2

—
P1 N

(25)

Similarly we can calculate X(O, t, ) for the case when
one flip occurs during time t(n = 1) and it becomes

[p ]'s refer to magnetic quantum numbers associated with
the states in the frame containing the field axis as one of
its axes. After substitution of Po(coo, 0) from Eq. (20a),
X(0}turns out to be

I I k
X(O, t, )=

P1 P1 $1
P1~p 1 ~

I

I I
exp

P2 —
P2 $2

2

[[(p,—p,')(t t, )+—(p, —p', )t, e ']'

+(1—e "')(pi —p'i )'t i ] (26)

Continuing the procedure for n =2, X(0, t&, t2) turns out to be

k I k II I
X(O, t„t,)= g

P1 P1 $1
pf&p] s

I
P2~P2 i

t
P3~P3

P2 P2 $2 P3 P3 3

2

Xexp — ([(p3 —p3)(t t, )+e— ' '
[(p2 —p2)(t2 t, )+(p, —p—', )t, e ']J

+(1—e ' ' )[(p, —p,')(t, —t, )+(p, —p', )t, e ']'

+(1—e ')(p, —p', )'t f ) (27)

what we are attempting is to get a closed expression for X(0, t &, t2, . . . , t„}.Inspired by the systematics found in the ex-
pression we can say that

X(0,t, ,t„.. . , t„)=
+1 I I k
II p' —p; s;

—(0 /2)A,
e (28}

(i =1,2, . . .r+1)

where

1

A„=A„+, ,+g [1—e ' ' ' ]A,2

and 2;;, satisfies a difference equation

A. . .=(p; p)(t, —t, , )+e ' ' ' —' A;

(29)

with to=0 Ao 1=0 t 1=0 t +i=t. Defining

i —l i —2-y(r. —r. )~, —1=1+1
and

(p; —p )(t; —t; I)=R;,

(30} the difference equation can be expressed in a simpler form
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A0, —
y O

Solu
'

tion of this equat'
~ ~

a ion is sim le.
o dtio o rri s

(3l)

y;+1= Ai i 1
=e

q q q
—

1(pq p')(&——r — )

(32)

y, =A1A2. . . A i —1

p=1 A1A . . . A2 ' ' ' p

Substituting the values of A; and Ro; and R;, y;+1 simplifies to

0.4—

~ 3

C4

Q

g orm.

A111+g [A At l l A 2A;;, ] . (33)

Our ob'ectivj 've is to calculate the clo
f A

' fk
h E.(9) en in t e followin f

ysQ

0.1—

From Eq. (30) it is clear that
—2y(t. —t.

I 1 1 A 2
i, i —

1

[(
I

p;+, —p, ~, )(t, +, t, )]—
0.0 2.0 3.0

)P

.0 5.0 6.0 7.0

+2(P;+1—
P,'+1)(t, +1 t )e-

l l, l 1

Therefore A„ in E . (33
' ' '

oq. ) is simplified to

(34)

FIG. 1. Attenenuation factors are 1po g ( )

) of 0 ti -U1h b 16

the 0
en eck noise

r ~ I. Pi +I Pi+1)( i r+1ri )]
A„—g4+2+e

q=1 I =0
(36)

+2Y (+ Y p+, —p+ )(t+, t)e ' ' 'A—
i, i —1

Em 1p oying the value of A-

(35)

1, A„ takes the final form

where

(
I

q Pq+1 Pq+1 )(tq+1 —
tq ) . —

Thu s the attenuation coefficien
pression

coe cient takes the closed form ex-

(Gki, (&)) =e
I

P; P;

(1=1,2, . . . , n+1)

Pi

I k

p S
drn f drn —1 f 'dr, e

—(o /2)A
(37)

It is interestinting to observe that the
fact that the

a t e angular inte rat
l ka en overa u~~form dis butioistn ut o, es oo e conse uence

~ ecomes
u e partial sum over thver t e —j symbol

k 1

)n+1 fo II f II 1 pt1exp
0 2

n (38)
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where A„ is a function of I N,. J and [ t, I.
Calculated attenuation factors obtained by numerical

methods for different (co/A. ) and y values are shown
graphically in Fig. 1. The case of Gaussian white noise
has been obtained for a large y value. We took approxi-
mately y = 10.

V. CONCLUDING REMARKS

Various approximations that have entered into the for-
mulation of the theory of the perturbed angular correla-
tion at different levels are clearly shown in this paper.
This work will allow further improvement of the theory
in a more systematic way. We have considered magnetic
interactions of the nucleus with its surrounding. The
electric interactions are also another important aspect to
consider. The nucleus is assumed to be a dipole in this
work. Considering it as a distributed charge, we obtain a
picture of several order multipoles emerging and the cor-
responding higher-order tensorial interaction with
different derivatives of the surrounding field should also
be included in the theory. In these situations, one has to
invoke modeling of various coupling strengths by suitable
stochastic processes. In this work, we have accounted for
correlations in the strength of the dipole-field interaction.
As argued in the preceding text, no real process is devoid
of correlations. In this respect, it is worthwhile to con-

sider further correlation in the angular distribution. For
simplicity we have assumed that the distribution of the
strength and directions of the field are independent at all
instants. In a real situation, it need not be so. One may
incorporate a further correlation between them. Our
consideration of correlations in the strength of the field
has clearly demonstrated a dependence of the attenuation
coefficient on the finite correlation time. The inclusion of
the auto-correlation function invokes an experimental
time scale of interest. In order to observe the memory
effect, the experimental time scale must be less than the
autocorrelation time. Experimental verification of the
derived results which requires a very sensitive time-
resolving instrument, is to be encouraged. However, if
the fluctuating field possesses a very small autocorrela-
tion time, the effect of which cannot be detected by the
resolution time of the instrument, the result should agree
instead with a model making no consideration of auto-
correlation time (the Scherer-Blume and the Bosch-Spehl
model). This fact has clearly been shown in the figure
with y =10.
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