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Short-distance expansion for the spin-spin correlation function of uniaxial dipolar systems
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Motivated by recent work on the critical resistivity of gadolinium, a detailed study has been made of
the temperature dependence of the two-point vertex function in the large-momentum regime. The
operator-project expansion is used to calculate the temperature dependence in uniaxial systems at their
critical dimension. Explicit forms are presented for systems with short-range interactions and with dipo-
lar interactions.

I. INTRODUCTION

The two-point spin-spin correlation function is of fun-
damental importance in the description of phenomena
due to critical Auctuations in the vicinity of the Curie
temperature of magnetic phase transitions. Its Fourier
(lattice} transform determines the quasielastic scattering
cross section, in the Born approximation, for neutron or
conduction-electron scattering from the (localized) spin
systems. It has been argued that quasielastic short-
distance correlations (R &(g, where g is the correlation
length of spin fluctuations) dominate the spin-fluctuation
contribution to the electrical resistivity p(T) for T
sufficiently close to T, . The resulting theoretical descrip-
tion has provided a very useful framework for under-
standing resistive anomalies in a wide variety of materi-
als. ' Restricting our attention to ferromagnets, the
predictions that (a) dp(T)/dT )0 and (b) dp(T)ldT is
proportional to the heat capacity for T~T, have been
confirmed at least qualitatively. In the particular case of
nickel, a canonical example, even a reasonable determina-
tion of the heat-capacity exponent was obtained from
resistivity data. However, there is a convict between
theory and experiment in the case of gadolinium where
the slope of c-axis resistivity above T, is negative even

very close to T, . The predictions of a positive slope at
T, and the expansion form of the short-distance correla-
tion functions have been studied based on the assumption
that the interactions between spin are isotropic and of
short range.

However, it has been pointed out that long-range mag-
netic dipole interactions should become observable in an
experimentally accessible range near T, in the case of
Gd. These dipolar interactions cause a crossover as the
temperature is reduced in the paramagnetic region from
an isotropic Heisenberg Ruderman-Kittel-Kasuya- Yosida
(RKKY) regime to an isotropic dipolar regime with a
crossover temperature approximately 6.3 K above T, .
As the temperature is reduced further, there is a second
anisotropic crossover temperature approximately 0.5 K
above T, with the asymptotic critical behavior being of
Ising dipolar character as a consequence of uniaxial sym-
metry of the system. ' This anisotropy has been estab-
lished experimentally in a study of the magnetic suscepti-

bility, y. ' The c-axis susceptibility g, is a measure of
correlations of the order parameter, the c axis or z com-
ponent of the spin, S, and exhibits strong critical fluctua-
tions. On the other hand, the basal plane components of
the spin are secondary degrees of freedom and much
weaker temperature dependence near T, is observed in

yb. In the present work we focus attention on the order
parameter in the asymptotic Ising dipolar regime to ob-
tain an expansion which determines the temperature
dependence in the short-distance limit of its correlation
function, G "(q, T}.

In view of the fundamental importance of this type of
problem, the short-distance expansion for isotropic
short-range interaction systems has been studied exten-
sively by a variety of theoretical techniques (see the re-
view by Brezin" ). In this paper, we have chosen to base
our work on renormalized perturbation theory coupled
with the operator-product expansion of Wilson' (see also
Polyakov and Kadanoff' ' ). This method addresses
most directly the problem and also has some important
technical advantages. In particular, it allows a decou-
pling of the temperature and momentum dependence in
such a way that it is not necessary to make any a priori
assumptions about the temperature dependence at large
momentum (momentum arguments are, hereafter, denot-
ed by q).

The upper critical dimension of the uniaxial dipolar
system is d, =3, it is thus possible to use the
renormalization-group method without introducing any

type of e expansion. At d =d„physical quantities are
expected to exhibit classical Landau theory power laws
but with nontrivial logarithmic correction. It has been
verified that a uniaxial dipolar ferromagnetic system in d
dimension behaves as the corresponding system with only
short-range interactions in d +1 dimensions within the
one-loop order approximation. ' ' Therefore, for initial
orientation, we study in Sec. II the short-distance expan-
sion at the upper critical dimension d, =4 for isotropic
short-range interaction systems. In Sec. III the
operator-product expansion for the uniaxial dipolar sys-
tem at d =d, =3 is applied to generate the appropriate
short-distance expansion. Finally, a summary of these re-
sults, their implications for quasielastic cross sections,
and a discussion concerning gadolinium are given in Sec.
IV.
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II. THE SPIN-SPIN CORRELATION
OF FOUR-DIMENSIONAL SHORT-RANGE

INTERACTION SYSTEMS

In the application of field theory to critical phenome-
na, the invariance under different renormalization param-
eters leads to the renormalization-group equations.
These partial differential equations lead to useful results
which lie beyond perturbation theory. "' The renormal-
ization at the critical point (t =0) is defined with an arbi-
trary nonzero momentum K introduced to provide a
reference point for nonsingular normalizations. The in-
dependence with respect to K of the bare theory provides
the renormalization-group equation of a vertex function
I' ' '(q;;q,';t, g, K), the one-particle-irreducible part of
the connected S-point correlation function having mo-
menta q; and with L composite operator P insertions
having momenta q', which is given by

+P(g) ——rt(g) —8(g) L + t
8 8 N 8

BK Bg 2 at
I (NL) P

&(g)= +O(g) .
M
2

The Wilson functions at d =4 are

p(g)=ag +O(g ), a = M+8

(2)

rt(g)=cg +0(g ), c = M+2
72

8(g) = bg +0 (g—), b = M+2
6

(4)

Here we keep the general expression of an M-spin com-
ponent system for the purpose of comparison with other
works. "' The differentiation of renormalized vertex
functions with respect to t generates renormalized vertex
functions with one more P composite operator insertion
(at zero momentum),

except for N=0 and L ~2, in which case a nonzero term
due to an additive renormalization appears. In the only
special case of present interest (N =0, L =2), this extra
term is a power series in the renormalized coupling con-
stant, g, and is given to the lowest order by

+p rt —8 —I' "(q, —q;0;t, g, K)
BK Bg

=8tI'2 ~'(q, —q;0, 0;t,g, K) . (8)

The operator-product expansion (see Appendix A) deter-
mines the leading behavior of I' ' ' as

I ' ' '(q, —q;0, 0;t,g, K)=C(q)I' ' '(0;t,g, K),

where the temperature independent C(q) is a Wilson
coefficient of the operator-product expansion. Substitut-
ing Eq. (9) in the renormalization-group equation of I'~ ~'

and using Eq. (1) for I' ', C(q) is seen to satisfy the par-
tial differential equation

T

K +P —rt+8 C(q) =0 .
BK Bg

(10)

The partial differential equations for C(q) and I' ' '(t)
can be solved and results used in Eq. (8), in principle. We
find it convenient to proceed in a slightly different way.
Note that, in the case of pure power laws for d &4, I' '"
and tI' ' ' have the same leading t dependence. Howev-
er, this is not so at d =4 and the logarithmic leading t
dependence of I' '" is stronger than that of tF' ' '.
Motivated by the arguments of Callan, ' we assume a
modified operator-product expansion directly for I' '" of
the form (see also Appendix A)

I' "(q, —q;0;t,g, K)=C(q)r' '(0;t,g, K)+F(q, t, g, K},

which defines F(q, t, g, K). Taking the t derivative of
F =I'2"—C (q) I'0'2' and then using the operator-
product expansion, I' is seen to be independent of t in the
large-q regime. Then substituting Eq. (11) in Eq. (8), and
using Eq. (10) and the renormalization-group equation
for I' ' ', we derive

+p —q r' '(q, q—;t,g, K)
B 8

BK Bg

=8tr""(q, q—;O;t,g, K) . (7)

In order to evaluate the temperature-dependent correc-
tion terms, we have to study the leading critical behavior
of I' '". Its renormalization-group equation is

Br' ' '(q;;q,';t g, K) r( N L+ I)( . O. t } (6) K +P —q —8 F(q, g, K)= —C(q)8(g) .
BK Bg

(12)

Our objective is to determine the leading dependence
on reduced temperature t = ( T —T, ) /T, of

[6 (q, T)] '~I' '(q, q,t}—
for 0 & t /q « 1. Brezin et al. obtained the leading
power-law corrections for d &4 by solving the appropri-
ate renormalization-group equations. " We extend their
arguments to discuss the corresponding leading correc-
tion terms at the critical dimension d, =4. From Eqs. (1)
and (6) the two-point vertex function (N =2, L =0)
satisfies

The differential equations for I ' '(t), C(q), and F(q)
can be solved by the method of characteristic equations.
This will be illustrated in detail for I' ~'(t). Introducing
an arbitrary parameter A, , its renormalization-group
equation becomes

—28 r""(;o,o;t(x),g(z), K(A, ))

=B(g(A,)), (13)

where the characteristic equations are
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~ Bsc(A, ) (~)
BA,

= —Or (A, ),at(x)

with the initial conditions

s(A, =1)=a., g(A. =1)=g,
(14} and

t(A, =1)=r .

The solution of Eq. (13}is

g (&) g ~ (p pj
I

I ' ' '(;0,0;t,g, k)=exp 2—J dg—' I' '(; 0, 0t(k), g(A, ),~(A, ))—J,B(g')exp —2 J dg"—

(15)

with the solutions of the characteristic equations given by

t (A, ) =exp —J —dg' t (A, = 1)
g(A) g

' b/a

(16)

where S~ is the geometrical factor 2n /[(2n ) I (d/2)].
In fact, we have included the geometric factor in the cou-
pling constant g. This result has been given by Brezin
et al. "

In a similar way, with appropriate initial conditions in
the perturbative limit, we obtain solutions for C(q) and
F(q):

and

g(A, )=
1 —ag ink,

K(A, ) =K}(, . (18)

C(q)= [1—ag ln(q/a)]
M+2 g

3M Sg
(20)

We choose A, by t (A. )/(vA, ) =1 so thatI' ' '(;0,0;t(A. )/(aA, ),g(A, ), 1) becomes a regular func-
tion of r in the perturbative limit of small g(}(,). Then
I' ' ' at small t is

l.~"~= S„g-'[[1—ag ln(r'"/~)]'-"" —1]
3M

M —4

F(q, g, a)= 1 — [1—ag 1n(q/s)]
M+2

+ [1—ag ln(q/s)] ~'M+2
(21)

(19) Using these results in Eq. (11}yields
L

'
1
—2a/b

I' "(q, —q;0;t, g, a)= [1—ag ln(q/s) j
' '

1 — ln(t/s )
M+2 b/a —i ag

(22)

+ 1 — [1—ag ln(q/s)] ~'+ .M+2 —b/a
M —4

Substituting this solution into the equation of I'-' and using the method of characteristic equations, we find

I'"(q, —q;t, g, ~) =exp —J dg' I'"(q, —q;t, g (A, ),sA, )

0 I I—j dg', I' '"(q, —q;t, g', ~A') exp —J . dg"
p(g') ' ' ' '

g p
(23)

Since the two-point vertex function I' ' has a finite limit as t~0, the first term on the right-hand side of Eq. (23) is
evaluated correctly by using Eq. (6) and solving the difFerential equation for I ~ ' at t =0. Finally, the behavior of I' ' at
large q is given by

1—2b /a

I' '=q + [1—ag ln(q/z) j" ' 't 1 — ln(t/x. )
M+2 b/a —1 a8
M —4 2

+ 1—M+2
[1—ag ln(q/~) j ~'t +—b/a

M —4
(24)
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where temperature-independent corrections to the lead-

ing q term has been ignored.
For physical relevance, the M =1 case corresponds to

the uniaxial system at its upper critical dimension. The
logarithmic singular t dependence is directly related to
the criticality of the specific heat just as for d (4 short-
range interaction systems. Moreover, it is seen from Eq.
(24) that dG*'(q, T) /d T )0 at large q for T +T,—at d =4.

III. THE SPIN-SPIN CORRELATION
FUNCTION OF THREE-DIMENSIONAL

UNIAXIAL DIPOLAR SYSTEMS

The discussion in the previous section provides useful
orientation for the study of d =3 uniaxial systems with
not only isotropic short-range exchange but also dipolar
interactions since both systems are at their respective
upper critical dimension. In fact, some results of Larkin
and Khmel'nitskii' for the d=3 dipolar system and
d =4 short-range interaction system have been shown to
be equivalent within the one-loop order calculation. '

Brezin and Zinn-Justin, ' however, showed that there are
differences between the two systems in results of two-loop
order calculation. In this section, we pursue the same ar-
guments, as in Sec. II for three-dimensional (3D) uniaxial
dipolar systems within a one-loop approximation for the
leading t dependence.

We define renormalized quantities, such as the reduced
temperature t, in the same way as for purely short-range
interaction systems. Therefore, correlation functions of
composite operators in the uniaxial dipolar system are
derived by differentiating certain vertex functions with
respect to the reduced temperature so that Eq. (6) still
holds. We use a simplified Gaussian propagator in a
graphical perturbation expansion

r""(q,t) =C(q)r""(t),
r""(q,t) =c(q)r""(t)+F(q) .

(27)

(28)

Using the Wilson coefficients given by Brezin and
Zinn-Justin' and the method of characteristic equations,
we solve the differential equations for C(q}, F(q), and
other required vertex functions. For simplicity, final re-
sults will be given only for some limiting cases. For
(aq, )~ &&qb,

C(q) = [1—ag ln(qb/K)] ~'M+2 ag
mS

(29)

F(q) = 1 — [1—ag ln(qb/K)]
M+2

+ [1—ag ln(qb /K)] (30)

and

Here g is defined to be the dimensionless coupling con-
stant including a numerical constant due to the angular
integration s

gg ] =2/7 ~ /[(2~) r((d —1)/2}]

and also a factor of m/a. The operator-product expan-
sion arguments can be applied to this system as well. The
general structure of Feynman diagrams of vertex func-
tions are the same as those in short-range interaction sys-
tems. Hence, the graphical structures of C(q) and F(q)
are just as those of short-range interaction systems of the
previous section (see Appendix B). Analysis of these dia-
grams, within the leading one-loop approximation,
verifies that leading behavior is given by

Go(q)= t+qb+a
gb

(25)

where a is the renormalized dipolar coupling constant
and qb and q, are basal plane and z-axis components of
the momentum q. Hence, renormalization-group equa-
tions are given by the usual arguments. In particular,

~l
(P 2) 3M ~~d —1

M —4 a

1 — ln(t /K)
2

1 —2b/a

(31)

+P + a8 8 + 8
BK Bg 2 Ba

—2 —8 I' "=Otr' ' . (26)
where a =(M +8)/12 and b =(M +2)/12 in this case. '

Finally, the two-point vertex function with correction
terms is

qzI (qb, q„t,g, a, K) =qb+a + t [1—ag ln(qb/K)]
qb2 M —4

X[1—agin(tlK )]' ~'+ 1 — t[1—ag ln(qblK)] ~'+
M —4

(32)

Explicit forms for other regions of q can also be found, e.g., (aq, ) ))qb. 1 ' ' is given in this region by

2

(qb, q„'t,g, a, K)=qb+a z + t [1—ag ln(aq, /K )]
(2) 2 2 ~z M+2

gb

X[1—agin(t/K )]' " '+ 1 — t[1—agin(aq, /K )] '+. . .
M —4 (33)
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where temperature-independent corrections to the lead-
ing q term are again neglected. Therefore, for the physi-
cally relevant uniaxial dipolar system (M =1), it is seen
that the logarithmic singular t dependence of two-point
correlation function is related to the criticality of the
specific heat and its t-dependent slope is positive at large

q for T~ T, .

IV. SUMMARY AND DISCUSSION

The primary objective of this work has been the deter-
mination of the temperature dependence in the short-
distance regime (qg»1) of the equal time correlation
function of the order parameter (S'), G*'(q, T), for a
three-dimensional uniaxial dipolar ferrornagnet in the
limit as T~T,+. Since the upper critical dimension of
this system is d, =3, the corresponding (simpler) problem
of a short-range interaction system at its upper critical di-
mension d, =4 was considered for purposes of orienta-
tion. The calculations were carried out using renormal-
ized perturbation theory and the operator-product expan-
sion. Renormalization-group equations were solved
within a consistent one-loop approximation. Making use
of the fact that the physical correlation function is
[1 ' '(q, t) ]

' apart from a positive temperature-
independent constant, we conclude from Secs. II and III
that (a) dG (q, T)/dT &0 and (b) dG"(q, T)/dT is pro-
portional to the singular part of the specific heat ( ~inta' )

as t ~0 in the paramagnetic state. These results are simi-
lar to those for systems with only short-range interac-
tions below their upper critical dimensions.

We now consider the implications of these results for
the "anomalous" c-axis resistivity of Gd. The slope of
the contribution to the c-axis resistivity due to electrons
scattering from spin fluctuations can be isolated from the
total resistivity and is found experimentally to be nega-
tive in the paramagnetic state at least down to a reduced
temperature of t =10 . Although the uniaxial dipolar
character of spin fluctuations does have a profound e6'ect
on G"(q, T), the results of this work show that the ob-
served c-axis resistivity cannot be explained solely in
terms of critical fluctuations of the (primary) order pa-
rameter, assuming that the conventional theory of quasi-
elastic transport properties near magnetic critical points
is indeed correct.

We suggest that the resolution of this anomalous be-
havior requires a consideration of the secondary degrees
of freedom, S =(S",S~), which also enter the resistivity
via the total electron-scattering cross section. Of course,
all spin degrees of freedom enter the scattering cross sec-
tion irrespectively of the particular crystallographic
direction along which the resistivity is measured. Even
though the temperature dependence of

G"(q, T)+G~(q, T)=G (q, T)
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APPENDIX A: GRAPHICAL EXPRESSION
FOR THE OPERATOR-PRODUCT
EXPANSION COEFFICIENT C (0)

AND F(q, t, g, ~)

For systems with short-range interactions, we consider
a model with the standard bare Hamiltonian:

—%=fdq(ro+q )y(q)y( —q)

+ f dqidq&dq3~q(qi)q(q2)q(q3)

(Al)

where y is an M-component field. The corresponding re-
normalized theory is generated by a standard pro-
cedure. '

Following Wilson's operator-product expansion argu-
ments, the renormalized vertex function I' ' ' with ex-
ceptional momenta is expanded

1 ' ' '(q, —q;0, 0;t,g, x)

=C(q)I' ' '(0, 0,0;t,g, ~)[1+O(t/q )] . (A2)

The renormalized vertex functions, to two loops, are

M +2
3

+ +'g' D - +'g'(D +D )

D+ t(D I D)—4 6 g 5 sp 6

Finally, we should emphasize that although the pri-
mary motivation for this work was given by the unusual
electronic transport properties of Gd, the implications of
our results are not limited to that specific case. As men-
tioned in the Introduction, the spin-spin correlation func-
tion also enters the scattering cross section for neutrons.
Using appropriate energy analysis, polarized neutrons
and isotopically enriched samples as required, Gzz(q, T)
is directly observable, in principle, over a wide range of q
in the qg»1 regime for T sufficiently close to T, . The
study by neutron scattering of Gzz(q, T) in the large-
wave-number regime would provide an important experi-
mental test of the detailed renormalization-group predic-
tions given in this work. This experimental study would
be of interest not only for Gd but also for other uniaxial
dipolar ferromagnets, including LiTbF4.

is relatively weak, it still may be strong enough to com-
pete with the weak (large qg) temperature dependence of
G "(q, T). The calculations are rather complex due to ex-
plicit anisotropy factors in the renormalization-group
equations (see, for example, Amit and Goldschmidt and
Goldschmidt ' ') and results will be given subsequently.

and

r""=mD — (D —I a )1 2 g 4 sP 1

M(M +2)
(

{A3)

{A4)
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(A5)

It is straightforward to verify that, to this order, the
Wilson coefficient C(q), which appears in (3S), has the
same structure as the four-point function with exception-

I

D, =fddk 6(k, t)'I(q+k, t)

where the D,- are the Feynman integrals represented by
the diagrams of Fig. 1. These diagrams will be evaluated
for d =4—e and the limit of a~0 will be taken in fina
expression. I, is defined as I(q =~, t =0) where

I(q, t)= f ddk 6(k, t)6(k+q, t) .

al momenta

r' '(q, q—,o,o;t,g, z}
M+2 M+2

g — g [I(q, t) I, —] (A6)

up to corrections of order (t/q ) ln(t/q ). This follows
from inspection of the graphical structure of the vertex
functions and noting that

=S&C&fd~k [6(k,t)] (q+k) ' +-
(q+k) 4

' —e/2

2Fi( —),e/2, —3;[1+4t/(q+k) ] ')

=S C ( ( /2) fd tk[6(k, t)]'[(k+q)
2 'I ((3—e)/2)

Sd Cd I (3/2)I (1 e/2)—
r((3—e)/2)2

t
—i —E/2( 2)—E/2 d 1+O

(1+k )
2

=DiI(q, t =0),
D, =f f ddk ddk'[6(k, t)]'[6(k', t)]'6(k+k'+q, t)

fd"k G(k, t)~ I(k+—q, t)
2 Bt

=SdCd fd k[G(k, t)] [(q+k) ] ' '/ O(e)

=O(D2t/q ),
where Cd is defined to be

r(d /2)r(e/2)
2r(2)

From Eq. (11), the operator product expansion of 1 ' '" is

2

r""(q, q;0;t, g, K)=—C(q)r""(;0,0;t,g, ~}+F'(q f g K) .
The graphical expansion of I' '" to two loops is

(A7)

(A8)

(A9)

r(2 ))
1

M+2
(D I )+ M+2 z(D I )+ M+2

7 sp 6 g 8 4sp 6 g (D9 I, D7)—
(A 10)

(A 1 1)

+ (M+2)(M+8) 2I (D I )
(M+2) 2

( )
6

where I4 p is the integral D8 at the symmetry point. The corresponding expression of I' ' ' is

r( '= — (D I ) — —I (D I )+ — (D I ) — — t(D I D ) . —
7 sp 6 g sp 7 sp 12 g 9 sp 6

g' 10 sp 1.
A detailed examination of these graphs is required. In particular,

D, = fd'k[G(k, t)]'I(q+k, t)
( —~/'2)

=fd k[G(k, t)] SdCd(q+k) ' +-
(q+k)2 4 pF)(2, e/2, 2', [1+4tl(q+k) ] ')

2 'r((3/2 —e)/2) (q+k)

r(3/2)r(1 —e/2)r(e)2 ' , 4t" I (3/2 —e/2)I (2+@/2)1 (e/2) q

XF,(e/2&e&E&2+a/2& q /t, (1+4t/q ) ')—. (A12)
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Here F&(a,b&, b2, c;x,y) is a double hypergeometric Appel function of argument x = q
—/t and y =(1+4t/q )

The series expansion of this function does not converge for t/q &&1. Therefore, it is necessary to apply an appropriate
transformation:

r(c)r(b, —a) 1 1-yF(ab„bz, c;xy)= (1 x—) 'F, ac b—, b2—, b2, 1+a b—
, ,I c —aI b& '1—x'1 —x

I'(c)1 (a +b~ c)— , , b,

r(a)r(b, )

XF, c a,—b„c b,—b2, —c —a b2—+1;,(1—y)
1 —y

X

I (c}I'(a b, )—I'(c —a b2) —
b,+ (1—x)I (a}I(c —a)1'(c b—, bz)—

2
1+q

t
I (3/2)1'(1 —e/2)I (e)2 ', 4t

I'(3/2 —e/2)I (2+@/2)I (e/2) q

X G2 b „b2,a b„c——a b2', — , (y —1)
1

(A13}

where G2 is another type of double hypergeometric function. At small t/q, the series expansion of these transformed
functions (F, s and G2) show good convergence. Finally, we have the leading contributions of the diagram Ds:

' —e/2

I'(2+a/2)I (e/2) I'(2+@/2)I (2—e)1 ( e/2—) q
I'(2}I (e) I'(2)1'(2—3e/2)I (e/2) t

—e/2

+O(et/q )

=I(q, t)[I(0,t) I,~XO—((q/tt) ')] . (A14)

The above result shows that the diagram Ds is represented with the product of diagrams in 1 ' ' ' and C(q). Therefore,
we are able to conclude

F(q, t,g, tt}=1+0(g } . (A15)

D4

D7

Dio

Dg

Ds

o8

DI

Dg

APPENDIX B: THE OPERATOR-PRODUCT EXPANSION
COEk'k'ICIENT C(q) AND F(q, t,g, x)

IN THE UNIAXIAL DIPOLAR SYSTEM

Xq( —q —q —q } (Bl)

The diagrams required for the graphical expansions of
vertex functions in the uniaxial dipolar case have the
same structure as those required for the short-range in-
teraction case; however, the propagator is that discussed
by Brezin and Zinn-Justin. ' For example, the bubble in-
tegral I (q, t) of Appendix A is replaced by

As noted in the Introduction, previous work has indi-
cated that the critical properties of gadolinium
sufficiently close to T, (i.e., within approximately 0.5 K)
are those of a uniaxial (M= 1) dipolar system. As de-
scribed by Brezin and Zinn-Justin, the appropriate bare
Hamiltonian for such a system is

2
—&=fdq(ro+q )+an qr(q)p( —q)

q

+ tt f dq~dq, dq3q (q~)q (q2)q(q3)

FIG. 1. Diagrams for the contribution of the vertex functions
referred to in the text. (See Appendix A.) Solid lines represent
the Gaussian propagator G(k, t)=1/[t+k +a (k,'/k )] and
dashed lines represent the propagator G(k, t)G(k, t =0). (a=O
for the short-range interaction case and aXO for the dipolar
case. )

I(qb, q„t)=fd"kG(kb+qb, k, +q„ t)G(kb, k„t) .

(B2)

The integration over k, can be done by contour integra-
tion
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J,= dk,
1

(& +k )[8 +(k + ) ]

n( 2 +8)
AB [q, +(A +8)2]

(B3)

where 2 = [(t +kb )kb /a ]'~ and

& =[[t+(kb+qb) ](kb+qb) /a2]'~2 .

In this discussion, we set d =3—e and take the e~O lim-
it at the end. As t ~0, I(qb, q„t) is approximately

kb + (qb /2)
2a (aq, /2) +[k&~+(qb/2) ]

=Sz, 1 (e/2)1 (1—e/2)(aq, )
2a

2
qb

4aq,

q' I

+Sd — r( —6/2)r(1+6/2)(aq. )
'"

42a 4aq,

2
'2

qb

4aq,

—e/4

sin [m.—tan (4aq, /qb )]
2

1/2 —6/4

sin [n —tan (4aq, /qb ) ]
d —1

(B4)

For special cases, I (qb, q„t) becomes (i} qb »aq„
' —e/22

I= r(1 —e/2)r(e/2) qb

4a 4

special case qb &&aq„ for simplicity,

Ds 0- fd k[G(kb, k„t)] [(qb+kb) /2]

Similar arguments applied to D2 yield

(B10)

(ii) qb «aq„
—e/2

Ds=O(D2t/(qb) ) . (Bl 1)

7T aq,I= r(1 —e/4)r(e/4)
8a 2

(B6)

Dz=D7I(qb, q„0) . (B7)

The other integrals may be evaluated in a similar
manner (Fujiki ). In particular, the integrals D2 and D3
appearing in Appendix A are now replaced by

D2= fd"k [G(kb, k„t)] I(qb+kb, q, +k„ t) .

It is seen that the integration over k is dominated by the
small-k behavior at t=O. Therefore, q+k can be re-
placed by q and we conclude

The integral Ds of Appendix A is replaced by

Ds= f d~k [G(kb, k„,t))~I(qb+kb, q, +k„ t) . (B12)

Ds =D7I(qb, q„t) . (B13}

We conclude that the operator-product expansion forI' ' ' and I' '" follows that described in Appendix A.
In particular,

Following the consideration of D8 in the short-range in-
teraction case, and noting that the integral is still dom-
inated by small k for t =0, the leading contribution be-
comes

On the other hand, the integral D~ is

Ds =f d k [G(kb, k„t)] I2(qb+kb, q, +k„ t), (B8)

C (q) =Sz,— [g —g [I(qb, q„0} I, ]]-a M+2 2

+O(g ) (B14)
where

Iz(qb, q„t)=fd~k[G(kb, k„t)]2G(qb+kb, q, +k„ t) .
and

F(q, t,g, a)=1+0(g2) . (B15)
(B9)

This is evaluated by contour integration. Finally, for the
The final explicit forms for C(q) and I'(q) in cases of
physical interest are given in the text.

'Present address: Department of Physics, Trent University,
Peterborough, Ontario, Canada K9J 7B8.
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