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Theory of near-zero-wave-vector neutron scattering in Haldane-gap antiferromagnets
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One-dimensional integer-spin Heisenberg antiferromagnets have disordered ground states and a

gap to a triplet magnon near the antiferromagnetic wave vector, k x. Near zero wave vector the

lowest energy excitation is a pair of magnons. We calculate the neutron-scattenng cross section

near h = 0, using a Landau-Ginzburg model and alternatively exact S-matrix results for the O(3)
nonlinear o model. The cross section is proportional to k . As a function of energy, it shows

a rounded peak somewhat above the two-magnon threshold. The effects of anisotropy are also

considered.

I. INTRODUCTION

One-dimensional Heisenberg antiferromagnets, with
8amiltonian

8(k, to)

= —) f dte' ' "&'-"( 0[S(a, f) S(bo)[0) .,
a, b

H= J) S; S+i, J&0

have disordered ground states. (Here the S s are quan-
tum spin operators, of spin s.) As argued by Haldane, i

there is an excitation gap for integer spin. Field-theory
arguments predict that the gap is smallest at the antifer-
romagnetic wave vector, k = x. Here there is a triplet of
magnons, with energy-momentum relation

Here a and b are integers labeling points on the lattice;
I is the length of the system. %e set the temperature
to zero throughout; this is not a serious limitation since
experiments can be performed well below the gap ( 15
K in NENP). Since the ground state (0 & is a spin sin-

glet, Q S(a, t)[0 &= 0, 8(0, id) = 0. For small k the
correlation function is quadratic:

8(k, ~v)

E =—gb.z + vz(k —z.)z, (12) a —bz~ k —) dte' ' & 0[S(a,t) S(b, 0)[0 & .
a, b

where 6 is the magnon gap and v is the spin-wave ve-
locity (we adopt units in which the lattice spacing and
h equal 1). On the other hand, near zero wave vector
the lowest excitation is a pair of magnons (total wave
vector k 2z:—0). This spectrum has been partially
verified by numerical simulations on chains of length up
to 32. In particular, the gap at k = 0 appears to be
very close to twice the gap at k = n. However, the two-
particle nature of the excitations near 0 has not, to our
knowledge, been tested. Nearly all reported experimental
data on the dispersion relation from neutron scattering
in CsNiCls, Ni(CzHsN2)2NO2(C104) (NENP), and
RbNiC13 (Ref. 6) have been near k = s. One exception
is Ref. 4. In this paper, we report on detailed theoretical
calculations of the neutron-scattering cross section near
4=0.

We begin with a couple of general observations about
the form of this cross section. It is proportional to the
spin-correlation function:

(1.4)

We further note that assuming the two-magnon picture is
correct, we should expect 8(k, ~v) to vanish for ~ & 2b, .
Detailed calculations, presented below, show an asym-
metric rounded peak in 8(k, io) as a function of io, with
maximum somewhat above 2L.

The field-theory treatment, based on the large-s limit,
introduces two fields P and 1 representing the staggered
and uniform long-wavelength components of the spin op-
erators (S,):

S = s(—1)'g7(a)+ l(a)

P and I are assumed to vary slowly on the lattice scale.
(This is a fair approximation even for s = 1 where the
correlation length is about seven lattice spacings. ) The
staggered and uniform magnetization do not corrunute,
but rather obey
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[I'(z), P(y)] = ic' P b(z —y),
[I'(z), P (y)] = is'~ "I"b(z —y).

(1.6)
(1.7)

is a two-magnon operator. Expanding the Heisenberg
Hamiltonian in the continuum fields gives the nonlinear
0 model with Hamiltonian density

We make the basic semiclassical approximation (valid
for large s and/or long wavelengths) that the compo-
nents of P commute with each other. These commu-
tation relations can be realized by writing I = P x 11,
where II is the canonical momentum variable conjugate
to P, II oc c)$/Ot Si.nce the staggered magnetization
P is linear in magnon creation and annihilation opera;
tors, we see immediately that the uniform magnetization

I

1 I'aP'
gl +

2 g Ic)zr
(1.8)

where the spin-wave velocity is v = 2Js and the coupling
constant is g = 2/s. (The topological angle is zero for
integer spin. ) Thus the correlation function for k near 0
is given, in the continuum limit, by

S(k, ee) e e ded ee"d* 0 0 0 x
I (e, O 0 x (0, 0) 0) .

ap (- ap
"r

The constraints on the length of the spin vectors trans-
late into the nonlinear constraints on the o.-model fields:
P2 = 1, P I = 0. Although the nonlinear o model is highly
nontrivial, much is known about it in one dimension,
from the renormalization group, the large-n limit, and
the exact S matrix. The spectrum consists of a triplet
of massive magnons (with mass 6 oc e '); fluctuation
effects eliminate the constraint on the field P, allowing
it to have three degrees of freedom, instead of two. A
much simpler model which has qualitatively similar be-
havior (and essentially arises in the large-n limit) is the
Landau-Ginzburg model:

v bz
Z = -11'+-~ + P+Xy'.

2 2 i, 0z 2v
(1.10)

Here the constraint on the field P is relaxed and the mass
6 is put in by hand. The coupling A produces a repulsive
interaction between the bosons. (The field g has been
rescaled. ) A simple mean-field theory is now obtained if
we treat7 the model perturbatively in A. This has been
used to treat a number of other properties of Haldane-
gap antiferromagnets. In what follows, we first calculate
the correlation function in the free-boson approximation,
A = Q. We then give the exact result for the 0 model.
They are qualitatively similar.

dk
y(& t) (e-0K X + xKX t)

47( 4Jk
(2.2)

dk'dk";(K K ) x( )2«»
167l N F14)y»

(2.4)

Fourier transforming, we obtain the 33 element of the
correlation function in the form

Here the dot product K X represents the expres-
sion (~i, t —kz). The uniform magnetization density,
I = (1/v)P x BP/Bt contains four terms each with two-
magnon annihilation or creation operators. To calculate
the zero-temperature correlation function, we only need
the term with two creation operators, and its Hermitian
conjugate. The double-creation term is

dk'dk"
I,'(z, t) = i (~, .—~, )e'(K'+"") Xa"a'„t, .

16' V4JyI4Jy»

(2.3)

Note that the 3 component of the uniform magnetiza-
tion involves the 1 and 2 components of the staggered
magnetization. Thus we obtain

& Oil (z, t)Ia(0, 0)i0 &

II. FREE-BOSON APPROXIMATION

[ai, a&, ] = 40rvcuib(k —k'), (2 1)

whe~e ~i = gb, ~+ (vk)2. The mode expansion then
takes the form

We expand the staggered magnetization field P in
magnon annihilation operators ay. It is convenient to
denote the Lorentz-invariant contraction of two vectors
by a . b = apI5p —a~bi, and apply it to the space-time
and energy-momentum two vectors: X& —(Xo, Xi)—:
(t, z/v) and K„= (Ko, Ki) = (id, vk). (The appearance
of the dot product will always signify two vectors. ) We
adopt the relativistic normalization of the annihilation
operators:

eS' (K&) =
&

(iedye —(ukee) (20r)2 2

16% 4)ply)y«

xb (K —K' —K"). (2.5)

Here, b~(K) represents the Lorentz-invariant product,
b(Ko)b(Ki). Taking into account the Jacobian factor,
we obtain

~ss K (Ko —Ko)'
~K', K", —K,"K',

~

' (2.6)

where K' and K" now represent one of the two solutions
of the energy-momentum conservation equations. These
ale given by
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( ~/K K —4E2 )
gK. K

( vk+K. K —4b.2 )

Ko+= ~~+
v'K K

2,

2.

(2 7)

(2 8)

Substituting the above expressions for the wave vectors
and energies of the two magnons, we obtain

matrix requires certain assumptions, basically that the
spectrum is "minimal, " i.e., it consists only of the triplet
of massive bosons, with no bound states. The S matrix
has been found by these methods for the O(n) model for
all n and has been checked to O(1/n2) against the 1/n
expansion of the 0 model. This technique has been ex-
tended to calculate form factors. The spin-correlation
function can be expressed in terms of form factors by in-
serting a complete set of asymptotic states between the
two factors of I in Eq. (1.9):

& Oil'(X„)I'(0)i0 )= ) & Oil'(X„)in && nil'(0)i0 & .

(The factor of 3 arises from summing over the three
components of 1~.) Several features of this expression
are obvious. For fixed ~ it vanishes quadratically as
k ~ 0, as expected from general principles. For fixed
nonzero k, it vanishes for u less than the threshold value,

utah(k) = Qv k + 4b. , and rises as the square root of
~ —uqh. It goes through a rounded maximum at:

It follows from Lorentz invariance that

& Oil'(X„)in &= e'K x & Oil'(0)in & .

Thus we obtain the correlation function

(3 1)

(3 2)

„—= +6hz + vzk~ (2.10)
8"(K„)= ) i & Oil'(0)in) i

(2z.) b (K —K).

of height (k/h)z/2+3 and then decreases as 1/uz at large
frequencies. Note that for small k, ~~h 24 and ~m „
~6~ = 2.6~.

III. NONLINEAR cr MODEL

By imposing requirements such as unitarity and cross-
ing symmetry, an exact S matrix has been proposed for
the O(3) nonlinear cr model. The construction of this g

I

(3.3)

The lowest-energy intermediate state in & is the two-
magnon state. This follows since the vacuum state i0 )
is a singlet, so & Oil i0 &= 0 and the one-magnon state
is odd under the discrete symmetry 4 —k —p, whereas I
is even. The next-lowest-energy intermediate state is the
four-magnon state. Thus in the range 462 & K . K (
1662, only the two-magnon state contributes:

dk'dk"S"(K~) = f ~ ~
& 0)l (0))1, k'; 2, k" && I, k'; 2, k")P(0)iD & (2m) k (K' y K" —K) (3 4)

(for K K & 166,z). [One-particle states are defined

to have the normalization ik &= a»i0 & such that the
resolution of the identity in the one-particle subspace of
the Fock space is I = J'dkik && ki/(4z'a»v). ] Thus,
in this frequency range, we only need the form factor:
& Oils(0)!1,k';2, k" &. Noting that I is the 0 component
of the Lorentz two vector J„=(P x 8„$)/vg, and that
the form factor is odd under exchanging k' and k", we
see that

integral in Eq. (3.4), leaving

dk'dk"~"(K~) = IG(g)I', (~»- —~» )'(2~)'
167K Ay14)y~l

x 6 (K' + K" —K). (3.6)

The integral is the same one encountered in the free-
boson approximation Eq. (2.5), leaving

& Oil (0)i1, k'; 2, k" )= i(~» —~» )G(8), (3.5) 3kz K K —46z
~(K~) = IG(g)l'

where G depends only on the Lorentz-invariant quantity
K' . K" = 2K . K —6 . This is conveniently expressed
in terms of rapidities, K'„= K(cosh 8', sinh 8'), K'„'

4(cosh 0",sinh0"), K' K" = 6 cosh(0), where 8 =
g' —0". The function G(0) may be pulled out of the

(for 4b. & K.K & 166, ). (3.7)

The exact form factor of Karowski and Weisz for the
O(n) 0 model gives

G„(0) = exp ! 2
dz (e I~" ) —1) sin [z(iz —0)/2z'] )
z (e* + 1) sinh(z) )

(3 8)
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FIG. 1. S(a, k) for k = 2.6b, /v from the free-boson and
nonlinear o models. FIG. 3. S (u, k) for mass ratio b /4+ = 0.05 for several

values of k from the free-boson model.

Note that at n ~ oo we obtain the free-boson result,
G(8) = 1. Evaluating the integral for n = 3, gives (3.12)

(3.9)

where r(z) is Euler's gamma function. Thus

rr4 1+ (8/n)2 t'tanh8/2&
64 I + (8/2z')~ 4 8/2 ) (3.10)

(3.11)

Integrating over z, gives the 3 component of the total
spin operator:

At small 8 this behaves as: )G(8)( 1.52(1 —0.098 ).
At large 8, )G(8)) s /48 . From the definition of 8 we
see that K.K = 4b, z cosh (8/2), so 8 ~ 0 at the thresh-
old: K K —4A ~ 6 8 and 0 —+ oo at large energy:
K K b, e . The free-boson and nonlinear-o-model
results are qualitatively similar. The eR'ect of the inter-
action between the bosons is to narrow the peak and to
raise the height at the maximum. (The free-boson and
nonlinear-o-model predictions are compared in Fig. 1.)
Note that the normalization of the form factor is univer-
sal since, by crossing symmetry and translation invari-
ance,

Since the single-magnon states may be decomposed into
eigenstates of STs, with eigenvalues +I, we obtain

( 1, kil (X„)i2, k & =( 1, kiST i2, k & /L
= i & i, k~1, k & /I. = t~~, . (3.i3)

Hence, G(is') = 1. Thus the overall scale of the correla-
tion function is predicted by the cr model. The correlation
function is plotted versus ur for various values of k in Fig.
2.

IV. EFFECTS OF ANISOTROPY

The most well-studied highly one-dimensional spin-1
antiferromagnet, NENP, contains significant anisotropy,
assumed to be largely of crystal-field origin. This can be
included in the nonlinear 0 model by adding additional
terms to the Hamiltonian density of the form

~'/f = &(&')'+ 1(&')'. (4.1)

In the Landau-Ginzburg model, we simply allow for three
different mass terms:

u'5 8

v k/a=4. 1

&'&" 10
6, /6 =I/5

'U k/b, =2

v k/~=2. 4- vk/&=0

Vk/b =1.1

0 1 2 3 I 5 6 7
a) /a

2- 'Uk/&=1

0
0 2 3 4

FIG. 2. S(w, k) far several values of k from the nonlinear
o mode1.

FIG. 4. S (~, k) far mass ratio b, /E~ ———for several
values of k from the free-boson model.
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2 Q2
(4.2)

Neutron-scattering experiments (near k = s) on NENP
indicate that Ay 13 K, A~ 15 K, and A3 30 K.

Since the 3 component of the uniform magnetization
operator involves the one and two magnons, we expect
that S~ will show a relatively small anisotropy while 8
and 8 will show a large one. Note that with anisotropy,

I

the ground state is no longer a zero eigenstate of the to-
tal spin operator so that 8(u, k) need no longer vanish at
k ~ 0. It can readily be seen that for small anisotropy,
S([o, 0) is of quadratic order in the crystal-field term in
the Hamiltonian (i.e., of quadratic order in the mass dif-
ference). The two-particle threshold in Sss now occurs
at ~ = Ly + L2, etc.

We may readily repeat the free-boson calculation of
S with anisotropy. Defining 6y = b, i 6 b,2, we find

(4.3)

As expected, 8 (~, k) no longer vanishes at k ~ 0,
but is rather of O(62). 8~(u, k) is now singular at
the threshold due to the diverging density of states. For
small anisotropy, there is a narrow peak near threshold
and then a broader one at larger [o. The first peak is
difficult to observe except at very small [o and k. For
larger anisotropy S (u, k) is a monotonically decreasing
function of u. Sss(u, k) is shown in Fig. 3 for a small
anistropy: b. /4+ ——0.05 and 8 i(~, k) in Fig. 4 for
a larger one: 4 /b. + ——0.33, corresponding roughly to
the situation in NENP. [b. —:(b, i + 6s)/2. I Anisotropy
actually makes the k 0 two-magnon peaks easier to
observe since it makes them narrower and nonvanishing
at k —+0.

Exact results are not available for the nonlinear a
model with anistropy added, but based on our experi-
ence with the isotropic case, we might expect the results
to be qualitatively similar to the free-boson approxima-
tion.

Neutron-scattering experiments on CsNiCls (Ref. 4)
seem to indicate a broader peak near k 0 than near
k x, as predicted by the present theory. Experiments
on NENP would probably be much more conclusive in
this regard since they can be done at temperatures well

below the gap, three-dimensional effects are smaller, and
the significant anisotropy makes the signal easier to see,
as mentioned above.
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