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Accurate evaluation of lattice constants using the multipoint-Pade-approximant technique
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The problem of accurate evaluation of lattice constants is overcome by having recourse to an extrapo-
lation scheme. The scheme is applied to a sequence of gradually improved approximate estimates of
such constants. The importance of the strategy used to generate the parent sequences, in the course of
assessing the viability of the scheme, is emphasized. The good performance of the multipoint Pade ap-
proximants is demonstrated. Remarks on the effect of specific geometrical features on the convergence
of the process, and hence the effective utilization of selective members of a given sequence in practical
cases, are also made. Test calculations are performed for cubic and hexagonal lattices, for which fairly
good-quality results are available.

I. INTRODUCTION

Investigation of various mechanical and thermal prop-
erties of solids at a molecular level, referring particularly
to their relative stabilities, polymorphism, etc. , is a very
general problem in condensed matter physics. ' Quan-
titative analysis, however, requires a reasonably accurate
value for the energy of the system. For a simple atomic
or molecular solid, the pairwise potential-energy function
P(r ) is usually given by a Lennard-Jones-type expression

„(r)=
n

where a and P are two empirical parameters. The zero-
temperature potential energy E(O, R) will then assume
the form

PS„
g 1l

(2)

where R is the nearest-neighbor distance. In Eq. (2), S
and S„are the so-called lattice constants; m and n are
taken as integers, generally with values ranging from 4 to
15. These are obtained from indirect experimental evi-
dence. If n is the number of jth neighbors at a distance
r from the reference atom or molecule concerned
(rj =pIR ), the lattice constant S is obtained froms

S = gn, /p,
j=1

(3)

We thus see that the problem of obtaining E(O, R) with
reasonable accuracy leads us directly to the intricacies as-
sociated with accurate estimates of S, involving an

infinite sum as 'a primary step. It is apparent from (3)
that this problem may be highly nontrivial in character
owing to convergence difficulties. While the assumption
of a finite lattice simplifies the calculations greatly, long-
range interactions are neglected. On the other hand, if

one proceeds to the infinite-lattice case, computational
diSculties with (3) usually arise; in particular, it becomes
difficult to speed up the very slow convergence in most
situations. Thus, even for a very simple lattice, it turns
out to be quite troublesome to obtain E(O,R ) with a good
degree of precision. That is why the estimation of S has
emerged as a significant aspect of the study of crystalline
solids for many decades. " For the sake of
simplification, one generally introduces first a finite-
lattice approximation and then proceeds to improve upon
it by assuming a uniform continuum thereafter. Such an
approach was developed in Ref. 6 and subsequently
modified by several authors; ' '" textbook discussions
also rely on these estimates. The reason is probably
that functional transformation procedures ' are not quite
as easy to implement in the general case, so there is no
other suitable alternative. Further, one hopes that these
quoted estimates would at least be appropriate for amor-
phous systems or liquids, which are essentially character-
ized by long-range disorder.

In view of the above remarks, our intention has been to
seek a direct method that is able to offer sufficiently accu-
rate values for S . To this end, we choose to treat the
problem as a problem of sequence acceleration. In the
present day, various efficient sequence-acceleration tech-
niques are also available, ' ' and have been employed
successfully in a variety of contexts. ' So, we think, it
will be worthwhile to explore whether such techniques
may profitably be invoked in the present discipline to es-
timate S with a good degree of precision. Indeed, in
this case, we have found one such modern technique, the
method of multipoint Pade approximants' (MPA),
which works very successfully. Thus, we here report
values for S that are more accurate than the standard
values quoted in the literature. We like to adopt a direct
numerical method also because it permits one to go on
evaluating S even for lattices with defects, unlike the
prevalent functional transformation schemes. Moreover,
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the present technique has a few additional merits. First,
the problem at hand serves as a testing ground for assess-
ing the suitability of the MPA, as we shall see in what fol-
lows. Keeping in mind the wide-ranging numerical stud-
ies on other extrapolation schemes like the Levin trans-
formation, c algorithm, etc., ' ' our calculations in favor
of the MPA deserve closer attention. Second, we realize
rather directly the importance that the strategy behind a
sequence generation has on the success of some
sequence-accelerating transform that will be applied sub-
sequently. This is an aspect that usually goes unnoticed.
Finally, one finds here also an occasion to explain the ad-
vantage of employing selectiue members of a given se-

quence in MPA. This selectivity owes its origin to
geometrical features of the system concerned. Some in-

sight may be gained into this unexplored area as well.

II. THE METHOD

Let us consider the problem of calculation of S as fol-

lows. We start out counting the nearest-neighbor interac-
tions first and go on gradually improving the results by
taking contributions of the more-distant neighbors into
consideration. Thus, basically we always remain within a
finite-lattice approximation and obtain a set of increasing-

ly improved estimates of the quantity concerned. This
sequential approximation method possesses a conver-
gence rate characteristic of its own. But, the point is,
such a set may be suitably transformed to find a new set
with a much better rate of convergence, so that the
chosen last few values of this derived set do not change to
within a certain degree of desired accuracy that is greater
than that of the previous set.

The method of MPA proceeds in the following
manner. Suppose, we have a set of data, denoted by
S(1),S(2), . . . , S(n ), approximating some physical quan-
tity S. The exact value is S(0). If the set is monotonic, it
is found that often the MPA works quite efficiently. '

One assumes here that S(n ) can be written as a power
series in 1/n We thus .write

S(j ) Sl +$2/j+$3/j + (4)

Defining a difFerent variable w =1/j, Eq. (4) may also be
written as

S(w)=si+s2w+siw + (5)

=[r/t]S(w)+O(w"+' '), (6)

where P„(w ) is a polynomial of degree r, Q, ( w ) is one of

where S(j}:—S(w). Evidently, from a knowledge of S(j)
for j= 1 to j=n, one obtains the coefficients [sj ] up to
j=n Thus, (5) is in. principle known to 0(w" '}. Now,
one proceeds to construct Pade approximants' (PA) to
the power-series representation (5}. One hopes that such
approximants would offer better estimates of S(w} than
the straightforward parent series expansions, to a given
order. So, we write

P,(w)
S(w)= +O(w"+'+'), r+t =n —1

Q, (w)

j=1,2, . . . , (2k+1), w=l/j, (8)

which is true for all k =1,2, . . . . It is easy to see from
(7) that one obtains the [k+ 1/k ] PA by requiring that it
would reproduce all the (2k+2) values for members of
the basic sequence; similarly, (8} shows that the corre-
sponding PA fits exactly with the values for all the
(2k+ 1) members of the parent sequence. In fact,
coefficients of the PA involved in (6) are determined by
such requirements only. This is precisely why the
method is termed a multipoint PA or the method of n-

point PA. ' The limit point refers to the choice j= 00,
and a sequence of approximations for it is obtainable
from the above-mentioned approximants (7) and (8} for a
given set of data up to j=n. These approximants will be
denoted by T(j), j= 1,2, . . . , n —1. One also finds that
the approach of S(1),S(2), . . . , to the true limit point
S(0) is usually much slower in practice than the same of
the quantities [k + 1/k]S( w =0), k =0, 1,2, . . . , and
[k/k]S(w=0), k=1,2, . . . , to S(0). In other words,
convergence of a given sequence to some limit point is
genera11y accelerated by adopting the MPA.

In practice, however, the construction of the MPA ex-
pressions, the left-hand side of (7) and (8), is considerably
simplified if one goes on implementing the so-called
Thiele's reciprocal difference method. ' The essence of
this strategy is, the aforementioned PA may equally well

be represented by continued fractions. So, instead of go-
ing for the coefficients of PA, one may choose to evaluate
coefficients of the corresponding continued-fraction rep-
resentation, which are simpler. In view of a thorough
discussion on this point in Ref. 12, we refrain from mak-

ing any detailed description here on this technical aspect
of the problem. It may only be remarked here that MPA
is very conveniently supplemented by the Thiele scheme.

III. RESULTS AND DISCUSSION

We have already mentioned that, in the present context
of lattice-constant evaluation, work has chiefly been done
on cubic and hexagonal lattices. For examp1e, works in
Refs. 8 and 11 have concentrated on simple-cubic (sc),
face-centered-cubic (fcc), body-centered-cubic (bcc), and
hexagonal-close-packed (hcp) lattices; Ref. 9 has paid at-
tention to bcc, sc, and diamond lattices; in Ref. 10, fcc
and hcp lattices have again been considered. In fact,

degree t. In MPA, two particular choices of the PA are
considered: (i) r=t+1, t=k, when n =2k+2 and (ii)
r =t =k for n =2k+1. This means, in the first case one
has an euen number of input data to fit while in the
second case, where diagonal PA are employed, an odd
number of S(j) is taken as input. The approximants are
so constructed that in choice (i), we find

[k+1/k]S(w) =S(j),
j=1,2, . . . , (2k+2), w =1/j, (7)

holds for all k=0, 1,2, . . . . Similarly, in choice (ii) we
obtain

[k/k]S(w)=S(j),
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these are the very popular structures for which various
approaches have emerged and values are quoted in the
literature. One also finds for these cases a collection
of data ' ' for n and pi, referred to in Eq. (3), for com-

puting S in a stepwise manner.
To choose the most straightforward way, we first

proceed through Eq. (3} for computing S . Let us then
define the sequence S (1),S (2), . . . , where the
members satisfy

J
S (j)= g nk/pk

k=1
(9)

Now, one may readily check that the rate of convergence
of this type of sequence is exceedingly poor. Sample re-
sults for the fcc lattice case (m =4) are displayed in Table
I, for convenience. It is quite apparent that one has to
proceed a long way in order to achieve convergence to
any reasonable degree. An immediate suggestion could
be the adoption of some sequence acceleration scheme on
[S (j}j. Surprisingly, however, one finds that even the
method of MPA, for example, does not turn out to be
quite profitable here. Table I also demonstrates this un-
desirable feature. To follow the table, it may be useful to
note that, from a knowledge of the parent sequence up to
j=n, one can construct the transformed sequence [ T(j)j
up to j=n —1. The poor and irregular performance of
the MPA-accelerated transformed sequence is rather evi-
dent, though rather unexpected. This may be due either
to the ineSciency of the method chosen for the transfor-
mation or to the lack of a sufficient systematization of the
basic sequence t S (j}j, defined by (9), that is necessary
for a successful implementation of any sequence-
accelerating extrapolation scheme to obtain the limit
point S (0)=S . But, we have mentioned earlier (see
also below) that the MPA is a very powerful tool. ' So,
one is inclined to think that the above toay of generating
the parent sequence along a radial distance is not helpful
in so far as extrapolation to the limit is concerned. How-

TABLE I. Behavior of the parent radial sequence, generated
by Eq. (9) for the fcc lattice constant at m =4 and its MPA
transform.

1

2
3
4
5

10

20

40

s(j)
12.0
13.5
16.2
16.9
17.9

19.86

21.53

22.59

T(j —1)

15.0
6.6

18.9
30.2

22.0

39.25

26.46

50

55
56
57
58
59
60

22.91

23.04
23.05
23.08
23.120
23.123
23.140

24.29

24.33
24.35
24.51
24.34
24.55
24.36

ever, we shall soon see that if such a sequence is con-
structed by choosing a three-dimensional network, the
MPA acceleration scheme performs well. This behavior
is not surprising, though. In the course of studying
Madelung constants of ionic crystals, it has also been
pointed out' that convergence of the electrostatic-
potential calculations depends crucially on how one
proceeds to obtain the sequence. In this respect, the em-
phasis on the natural (three-dimensional) development of
the crystal lattice has already been laid. Here, we find a
similar situation.

With the above remarks in mind, we now generate the
sequences in the following manner:

J
sc: S (j}=g

i =1 M, N, P= —i

J
bcc: S (j) g 3

i=1

(M'+N'+P')-m" (10a)

M, N, P= —i

(10b)

[(2M+ 1)2+(2N+ 1)2+(2P+ 1)2]
—m/2+(i/3/2)m/2 g (M2+N2+P2) —m/2

M, N, P= —i

J
fcc: S (j}=g

i =1 M, N, P= —i

3(2M +N +P )
—2(1—m/2)(M +N +P ) (10c)

(X2+ y&+ Z2) m/2—hcp: S (j)= g
i =1 M, N, P= —i

X=M/2, Y=(i/3/2)[(1 —( —1)r)/6+N], Z=V(2/3)P, X+ Y—Z =2k, k =0,+I,+2, . . . . (10d)

It will be seen that these parent sequences are accelerated
quite readily by the method of MPA. Thus, the impor-
tance of the strategy behind a sequence generation be-
comes very apparent in the course of estimating the limit

I

points.
Table II shows the results of applying the MPA ac-

celeration scheme. Estimates of S (m =4,5, 6) for sc,
bcc, and fcc lattices are presented here. The convergence
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TABLE II. Comparative convergence behavior of the parent and MPA-transformed sequences for same cubic lattice constants.
Available values (Ref. 3) are quoted within parentheses.

Lattice S(2j+1)
m=4

T(2j) S(2j+1) T(2j) S(2j+1)
m=6

1

2
3
5
7

10
15

13.6
14.6
15.1
15.6
15.9
16.0
16.2

16.6
16.532
16.532 31
16.532 31596
16.532 31596
16.532 31596
16.532 31596

(16.532 3)

10.0
10.2
10.3
10.34
10.36
10.37
10.373

10.6
10.376
10.377 53
10.377 524 83
10.377 524 83
10.377 524 83
10.377 524 83

(10.377 5)

8.3
8.39
8.40
8.400
8.401
8.401 7
8.401 8

8.5
8.40
8.401 926
8.401 923 9
8.401 923 97
8.401 923 98
8.401 923 97

(8.401 92)

bcc 1

2
3
5
7

10
15

19.3
20.5
21.1
21.6
21.9
22.1

22.3

22.6
22.64
22.638 7
22.638 721 64
22.638 721 64
22.638 721 64
22.638 721 64

(22.638 72)

14.4
14.6
14.7
14.73
14.74
14.75
14.754

15.0
14.76
14.758 5
14.758 509 36
14.758 509 37
14.758 509 37
14.758 509 37

(14.758 5)

12.2
12.24
12.25
12.252
12.253
12.253 5
12.253 6

12.3
12.25
12.253 7
12.253 667 85
12.253 667 86
12.253 667 87
12.253 667 87

(12.253 3)

fcc 1

2
3
5

7
10
15

21.1

22.6
23.3
24.0
24.4
24.6
24.9

25.4
25.33
25.338 3
25.338 304 3
25.338 304 31
25.338 304 31
25.338 304 31

(25.338 30)

16.5
16.8
16.9
16.92
16.94
16.95
16.961

17.3
16.96
16.967 51
16.967 518 7
16.967 51846
16.967 51845
16.967 518 46

(16.967 5)

14.4
14.43
14.445
14.451
14.453
14.453 6
14.453 8

14.6
14.44
14.453 9
14.453 921
14.453 921 05
14.453 921 04
14.453 921 04

(14.453 92)

of the parent sequences IS(j ) I, constructed through (10),
for various values of m are displayed to allow us to devel-
op a feel for the eSciency of the transformation. The
transformed sequences I T(j )I are also tabulated. One
may appreciate the advantage of the present endeavor
quite readily by noting that, whereas the parent se-

quences do not show any stability up to the first or
second decimal place even after j=30, the transformed
sequences converge very rapidly with the aid of the first
10-15 terms of the parent sequence only, and here stabil-
ity up to eight decimal places is assured. %hile in Table
II we show explicitly the nature of convergence for m =4

TABLE III. Irregular and slow convergence of MPA-accelerated sequences for straightforward ap-
plication on the hcp lattice case.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

0

30
31

S(j)
10.5
16.5
19.0
20.4
21.3
21.9
22.3
22.7
23.0
23.2
23.4
23.5
23.7
23.8
23.9

24.60
24.63

m=4
T(j —1)

22.5
24.8
26.0
25.31
25.40
25.338
25.356
25.341
25.345 7
25.341 5
25.342 3
25.341 5
25.340 8
25.341 6

25.339 2
25.338 9

S(j)
10.4
14.7
15.8
16.2
16.5
16.6
16.7
16.76
16.80
16.83
16.85
16.87
16.89
16.90
16.91

16.9S2
16.953

T(j —1)

19.0
17.6
17.3
18.4
16.97
16.93
16.962
16.962
16.962
16.966
16.955
16.967 6
16.972 9
16.968 0

16.968 45
16.968 43

S(j)
10.3
13.6
14.1
14.3
14.37
14.40
14.42
14.431
14.438
14.442
14.445
14.447 5
14.449 0
14.4502
14.451 0

14.454 39
14.4S444

m=6
T(j —1)

17.0
14.8
14.S
14.2
14.42
14.43
14.23
14.451
14.458
14.454
14.456
14.4544
14.455 1

14.454 7

14.454 899
14.4S4 896
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to m =6, final converged results are displayed for other
m values in Table V. Obviously, for larger m values, con-
vergence is achieved more readily. Comparing with the
standard literature values, quoted within parentheses in
the tables concerned, we note also that the estimates re-
ported here are better.

It is of more interest to notice that the case with the
hcp lattice is radically different. Table III summarizes
our findings when applying a similar strategy, the MPA,
as considered in Table II. Here, one discovers a poor
performance of the MPA. Results are good only to the
extent that stability up to the second or third decimal
place has been achieved. If compared with the corre-
sponding performance for sc, bcc, or fcc lattices, we
must doubt that probably something more subtle
somehow becomes important. Indeed this is so. A
geometrical consideration reveals that, in this hcp case,
alternate S(j ) are to be paid more attention since they
refer to similar enuironmental sects and thus are likely
to afford a tolerable degree of systematization that is
necessary for a smooth convergence of MPA, or for that
matter any such transformation scheme. This is also ap-
parent from (10d) if we care to look at the variable I;
which shows that the contribution has an alternating
character.

Having understood the basic problem, we thought that
it would be worthwhile to consider the even and odd
members of the parent sequence separately in the hcp
case, for some chosen value of m, and then to apply the
transformation. The adequacy of such a choice of alter-
nate members, i.e., a selective choice from among a given
set, is evident a posteriori. Table IV demonstrates the sui-
tability of our choice in a very transparent manner. The
parent members are already shown in Table III; so here
only the transformed sequences are displayed. What we
obtain from a consideration of only the odd members,
viz. , S(1),S(3), . . . , etc. , are listed as T(o,j ) and results
of applying the MPA on the even ones, viz. ,
S(2),S(4), . . . , etc. , are denoted by T(e,j ). It is remark-
able that both these transformed sequences converge to

the same final result, and quite quickly too. In case of
any difference in final estimates, results should naturally
be averaged, but such a situation does not arise here. A
comparison with the results (Table III) of applying the
strategy fatly, ignoring the prescription for generation of
the parent sequence, clearly reveals the importance of
selectively choosing the parent members.

One may be curious to determine whether or not a
selective choice from among a given set IS(j )I,
j=1, . . . , n, would affect a transformation adversely.
This is because a reduction of information is involved,
and consequently the transformation scheme might not
shape itself properly to the rhythm of the sequence, lead-
ing finally to a poor showing. Usually, it is so. Thus, the
extent of correctness of data presented in Table IV is infe-
rior to those given in Table II, for some chosen upper
limit of j value. In Table IV, we note that stability up to
eight decimal places is achieved by considering 14—16
terms of the parent even or odd sequences, which actually
amounts to considering 30—31 original terms. The situa-
tion with Table II is better. Admittedly, however, in the
present case, there is a tradeoff; whenever successive
terms of a sequence do not systematically incorporate or
neglect certain contributions, a selective choice becomes
mandatory, even at the cost of a reduction of informa-
tion. This is precisely why Table IV exhibits a much irn-

proved performance relative to what we observe in Table
III. In a widely different context, the evaluation of criti-
cal parameters from series expansions, a situation of
somewhat similar nature prevails. Thus, in the course of
studying the high-temperature-susceptibility series of
mixed-spin Ising models on the bcc lattice, it has been
found' that the critical temperature may be determined
either by considering the even-order terms or the odd-
order ones; of course, the results are virtually the same,
as expected. However, selectivity is generally not advan-
tageous in extrapolation problems. For example, if we
choose to proceed for the MPA T(j ) sequences by taking
either the even or the odd terms in sc, bcc, or fcc cases,
one would find a slauer convergence than what have been

TABLE IV. Fast convergence of MFA-accelerated sequences obtained separately from the odd and even members of the parent
sequences for the hcp lattice. Known results (Ref. 3) are given within parentheses.

T(o,j —1)
m=4

T(e,j —1) T(o,j —1)
m=5

T(e,j —1) T(o,j —1)
m=6

T(e,j —1)

2
3
4
5
6
7
8
9

10
11
12
13
14
15

27.4
25.3
25.37
25.34
25.339
25.339 1

25.339 084
25.339079
25.339081
25.339082 4
25.339082 31
25.339 082 34
25.339 082 33
25.339082 34

24.2
25.38
25.338
25.339 8
25.339 3
25.33904
25.339086
25.339083
25.339082
25.339 082 3
25 ~ 339082 33
25.339082 30
25.339 082 34
25.339 082 34

21.2
17.4
16.98
16.96
16.967
16.968 5

16.968 42
16.968 435
16.968 437
16.968 436 4
16.968 436 33
16.968 436 35
16.968 436 35
16.968 436 35

17.8
17.2
16.9
16.969 9
16.968 3
16.968 42
16.968 45
16.968 436 8
16.968 436 2
16.968 436 35
16.968 436 35
16.968 436 35
16.968 436 35
16.968 436 35

18.0
14.6
14.4
14.44
14.456
14.454 9
14.454 87
14.454 89
14.454 897 7
14.454 897 2
14.454 897 27
14.454 897 29
14.454 897 27
14.454 897 28

(14.454

15.0
14.5
14.43
14.45
14.454 4
14.454 9
14.454 9
14.454 895
14.454 897 1

14.454 897 3
14.454 897 27
14.454 897 28
14.454 897 28
14.454 897 28

89)
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TABLE V. Accurate estimates of S (m =7—15) by the MPA-acceleration of parent sequences. Data within parentheses refer to
standard literature values (Ref. 3).

7
8
9

10
11
12
13
14
15

sc

7.467 057 78 (7.467 0)
6.945 807 93 (6.945 80)
6.628 859 20 (6.628 8)
6.426 119 10 (6.426 1)
6.292 294 50 (6.292 29)
6.202 14905 (6.202 1)
6.140 599 58 (6.140)
6.098 184 13 (6.098 18)
6.068 764 30 (6.068 76)

bcc

11.054 243 48
10.355 19791
9.894 589 66
9.564 400 62
9.313262 54
9.114 183 27
8.951 807 32
8.816770 23
8.702 984 56

(11.054 24)
(10.355)
(9.894 5)
(9.564)

(9.31326)
(9.114 18)
(8.951 80)
(8.816 7)
(8.702 98)

fcc

13.359 387 70 (13.359 39)
12.801 937 23 (12.801 94)
12.492 546 70 (12.492 55)
12.311245 67 (12.31125)
12.200920 35 (12.2009)
12.131 88020 (12.131 88)
12.087 726 32 (12.087 72)
12.058 991 94 (12.058 99)
12.040 024 06 (12.040 02)

hcp

13.360 346 78 (13.360 35)
12.802 821 85 (12.802 82)
12.493 321 73 (12.493 32)
12.31189623 (12.31190)
12.201 447 10
12.132 293 77 (12.13229)
12.088 042 55
12.059 228 26 (12.059 23)
12.040 197 14

recorded in Table II. This we have checked. The reason
for this is the halving of information.

Results of S for other m values of the hcp lattice, ob-
tained by adopting a similar scheme, are finally placed in
Table V along with the estimates for cubic lattices. Com-
paring with the accepted estimates, we note that a re-
markable improvement has been achieved through the
method of MPA. For example, now we have estimates of
S4, S5, Sii, Si3, and S&& for the hcp lattice. For the sc
and bcc lattices, the previous estimates were, in cases,
correct only up to three or four decimal places. But here,
the MPA acceleration strategy permits one to evaluate all
the lattice constants correct up to eight decimal places.
These refined estimates, we hope, may be useful as good-
quality standard benchmark values with which to com-
pare the need for and reliability of any other scheme. "

IV. CONCLUSION

To summarize, our purpose has primarily been to ob-
tain accurate estimates of lattice constants S for various
lattices. We have demonstrated how adoption of the
MPA successfully accomplishes this purpose. This obser-

vation, in turn, provides a context in which the MPA can
be effectively applied. In the course of our exploration,
the problem of whether the use of a judiciously selected
subsequence would be worthwhile has also surfaced. As
we have seen, this problem is related to specific geometri-
cal arrangements, and is important only for the hcp lat-
tice case. The merit of bypassing the straightforward ap-
plication of any sequence acceleration scheme to a given
sequence, and the need of a closer look at the strategy of
generating a sequence —with due consideration given for
a systematic counting of environmental effects —have
also been emphasized in this paper. This is an additional
instructive feature of the present work. We hope future
work along similar lines may shed more light on such an
interesting aspect as sequence acceleration whereby prop-
erties of the infinite lattice may be obtained from the
properties of the finite-lattice by extrapolation.
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