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Dynamical lattice models for binary alloys under irradiation:
Mean-field solutions and Monte Carlo simulations

E. Salomons, * P. Bellon, F. Soisson, and G. Martin
CEREM DTM-SRM-P, CEN Saclay, Nl Ã Gif sur Fv-ette CEDEX, France
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Ordering in binary bcc alloys under irradiation is studied using dynamical nearest-neighbor lattice
models. Steady-state mean-field solutions (point and pair approximation) and Monte Carlo simulations
are presented. Both for a model with a direct-exchange transport mechanism and for a model with a va-

cancy transport mechanism, it is found that the A 2-B2 ordering transition becomes first order beyond a
tricritical point (i.e., at high radiation flux). The eftect of replacement collision sequences, induced by
high-energy radiation, is also investigated.

I. INTRODUCTION

Order-disorder phenomena in binary alloys are expect-
ed to be affected by energetic-particle irradiation. This
can be understood from the fact that energetic particles
collide with atoms in the alloy, and displace them from
their equilibrium positions. As a consequence, atomic
transport (and hence disorder) increases under radiation:
vacancy migration is enhanced, and moreover high-
energy radiation produces replacement collision se-
quences, i.e., displacements of rows of atoms. '

To study the statistical mechanics of binary alloys one
can use the equivalent of the Ising model: A and B atoms
occupying the sites of a rigid lattice, with pair interac-
tions between atoms at nearest-neighbor sites. The usual
method of solving this model starts from the Ising Hamil-
tonian, and yields the free energy and other thermo-
dynamic quantities through a mean-field approximation.
An alternative route starts from the dynamics of the
atoms (e.g., one can assume that atoms perform thermal-
ly activated exchanges between nearest-neighbor sites),
and yields thermodynamic properties as steady-state solu-
tions of mean-field rate equations. Instead of solving
mean-field rate equations, one can also perform Monte
Carlo simulations of the dynamics of the system.

The advantage of a description in terms of the dynam-
ics is that radiation-induced atomic displacements can be
implemented in the model (it is not clear how these can
be implemented in a Hamiltonian description, except in
simple cases ). Thus, the nonequilibrium statistical
mechanics of binary alloys under radiation can be studied
by dynamical lattice models with radiation-induced
transport in addition to thermal transport. In this paper
we discuss solutions of such models for the B2 (P-brass)
structure, obtained by mean-field approximations and
Monte Carlo simulation. A complete model for high-
energy irradiation includes: thermally activated atomic
jumps (via a vacancy mechanism and/or an interstitial
mechanism), radiation-induced direct exchanges of two
or more atoms, and also radiation-induced atom-vacancy
exchanges due to secondary projectiles. Here we ignore
interstitials and we restrict ourselves to models with a

single transport mechanism, either a direct-exchange or a
vacancy mechanism. The model with a vacancy mecha-
nism is expected to be a realistic representation of an al-
loy under subthreshold radiation, i.e., radiation with an
energy too low to induce direct displacements of atoms.
The model with a direct-exchange mechanism has been
studied previously in the point approximation by Bellon
and Martin and through simulations by Haider. Other
studies of Ising models with competing dynamics have
been reported in Refs. 8 —13.

In Sec. II we study a model for a binary alloy without
vacancies, with a direct-exchange mechanism for both
thermal and radiation-induced transport. In Sec. III we
extend this to the case where replacement collision se-
quences occur. In Sec. IV we study a model for a binary
alloy with vacancies (i.e., a ternary system), with a vacan-
cy mechanism for both thermal and radiation-induced
transport.

II. RADIATION-INDUCED DIRECT
NEAREST-NEIGHBOR EXCHANGES

A. Model system

The system consists of a bcc lattice with —,'X u sites and

2N P sites. Each site is occupied by either an A atom or
a B atom. Nearest-neighbor pair interactions are denoted
by Vzz, Vzz and Vzz, and the ordering energy is defined

as co = V»+ V» —2 V». The total energy of the model
system is given by a sum over nearest-neighbor pairs:

E"'= g V," (i,j = A, B)

(e.g., if site i is occupied by an A atom, and site j by a B
atom, then Vi = V„~). We use the notation of Muto and
Takagi' (the symbol A indicates an A atom at an ct

site):
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R ,'N—=c(1+S)—,'N: total number of A atoms,

Rp ,'N—=[1 c—(1—S)]—,'N: total number of 8& atoms,

W ,'N—=[1—c(1+S)]—,'N: total number of 8 atoms,

W& ,'N—=c(1—S)—,'N: total number of A& atoms,

(2)

where c is the average concentration of A atoms in the lattice (average number of A atoms per site), and S is the long-
range order parameter. Further:

Q„„—,'N=Q —,'N: total number of A -A& pairs,

Q„z ,'N=(—zR —Q)—,'N: total number of A 8& pa-irs,

Q~„2N=(zWp —Q)—,'N: total number of 8 -A& pairs,

Q~~ ,'N = [z—(W —W&)+ Q ]—,'N: total number of 8 8& pai-rs,

(3)

where z is the coordination number of the lattice (z=8
for bcc), and the symbol A -8& indicates a nearest-
neighbor pair of an A and a B& atom. Note that these
relations satisfy Q„&+Q„s=zR, Qz„+Quiz =z W,
QAA +QAB +QBA +QBg =z, as required.

I

in Monte Carlo simulations, we choose E,
= (z —1)(V„„+Vzs )+2 V„s, so that the argument of the
exponential function is always negative (or zero}, and the
energy barrier for a thermally activated exchange is al-
ways positive (or zero).

B. Dynamics

We assume that the dynamics of the system is
governed by nearest-neighbor A -B exchanges.

1. System in equilibrium

In a system in equilibrium at temperature T, A -B ex-
changes are thermally activated. A microscopic
configuration of the system is denoted by X. For the
probability per unit time that the system makes a transi-
tion to configuration X', we use the function

2. System under radiation

In a system under radiation, we assume that both
thermally activated exchanges and ballistic exchanges
occur. This means, that we model the effect of a radia-
tion Aux as forced exchanges of nearest-neighbor atoms,
independent of the temperature and the atomic
configuration. The transition probability per unit time
now becomes

W(A;8 ~8;A )

E tot Etot

W(X —+X')=v exp kT
(4) =v r + ( 1 r)exp—

where v is a constant frequency, E„"'is the total energy in
configuration X, and the "saddle-point" energy E,'" is a
constant, independent of the states X and X'. The func-
tion W(X—+X') satisfies detailed balance

W(X~X')P,q(X) = W(X' +X)P,q(X'), —

where P,q(X) is the probability density in configuration
space. Since we are dealing only with nearest-neighbor
interactions, we can write expression (4) for a single A-8
exchange as

where r is a measure of the radiation flux (0~ r ~ 1). The
physical meaning of this expression is that a transition is
a ballistic exchange with probability r and a thermal-
exchange attempt with probability (1—r ). The ballistic-
exchange frequency is I b

=vr and the thermal-exchange
attempt frequency is I, =v(1 r). In—the following, we
choose the unit of time as ~= 1/v, i.e., we set v= 1.

C. Mean-field solutions

W( A, 8~8,. A ) =v exp.

E, —gV;; —g VJ

kT

(6)

In this section the model described above is solved in
the Bragg-Williams approximation (or point approxima-
tion) and in the pair approximation.

where i ' and j' denote nearest-neighbor sites of site i and
site j, respectively, and E, is a constant. As site i and site

j are nearest-neighbors of each other, the i-j interaction
is counted double in (6), but since only A Bexchanges-
are considered, this yields a constant term —2 V„z.
As we want to use the transition probability (6)

1. Bragg-8'illiams approximation

In the Bragg-Williams approximation a microscopic
configuration of the system described in Sec. IIA is
specified by a single parameter: the long-range order pa-
rameter S [see Eq. (2}]. We define I'

& and I & as the
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average exchange frequencies of A -B& and B - A & pairs,
respectively. In the Bragg-Williams approximation one
can write the following rate equation for the total number
R —,'N of A atoms:

d(R ,'N)—
I RR+I 8'W

dt

or

R Rp I p

r.~

1 —c+S+cS I p

S+cS (10)

The steady-state solution of this equation is
To evaluate I

& /I & we make the following approxima-
tion in Eq. (7):

g V;; + g V&& =z[W&V&z+R&VzB+ W~ VBB+R~V&B]=z[ cS—m+cV&z+(1 —c)VBB+VzB]

for an A B& exc-hange, (1 la)

Q V;;+ g V =z[WBV„B+RiiVBB+W~V„B+R,V„„]=z[cSco+cV„„+(1c)VB—B+ V„B]

for a B A& exc-hange . (lib)

zcSN
exp +y

I p

I
exp

zcSco
kT

(12)

In these expressions it has not been used that site i and
site j are nearest-neighbors, since pair correlations are
ignored in the Bragg-Williams approximation. This leads
to

For y =0 this equation is equivalent with the solution ob-
tained by free-energy extremization. ' For y=0 one ob-
tains an order-disorder transition temperature of
kT, /co=zc(1 —c).

It is interesting to relate the parameter y to the num-
ber of ballistic exchanges per time unit. In Sec. II B 2 it
was shown that the thermal-exchange attempt frequency
is I,=v(1 —r ) and the ballistic-exchange frequency is
I b

=vr. It follows that

with
Iby= expr,

E —E
kT

(15)

r
y = exp

1 —r
E, —Eo

kT
(13) i.e., the parameter y is proportional to the number of

ballistic exchanges per time unit.

1 —c+S+cS
1 —c —S+cS

zcSco
exp +ykT

zcSco
exp — +y

(14)

where Eo=z[cV„„+(1—c)VBB+V„B]. A combination
of Eqs. (10) and (12) gives the following equation for the
long-range order parameter:

2. Pair approximation

In the pair approximation a microscopic configuration
is specified by two parameters: S and Q [Eqs. (2) and (3)].
Let us consider an A -B& exchange. Both the A atom
and the B atom have (z —1) unspecified neighbors. The
statistical probability that the A atom is surrounded by
an A;B, &; cluster and the B atom by an A B,
cluster is given by

p ii(i j)= Q~~

zR
QAB

zR

z —1 —i
z —1 J

Q AB QBB

zR& zR&

'z —1 —j z —1
(16)

where the notation

PB (i,j)= QB~

zW

l

QBB
z8'

z —1 —i z —1

nl

k!(n —k )!

for the binominal coeKcients has been used. For a
rounded by an A,-B. . . cluster and the A atom by

J
QBA

(17)

B -A& exchange the statistical probability that the B atom is sur-
an A .B, &

cluster is

z —1 —j z —1
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The average exchange frequencies (or rather, the average exchange probabilities per unit time) can be written as weight-
ed averages of the transition probability per unit time in Eq. (7) (with v= 1):

z —1z—1

I B= g g P B(i,j) r+(1 r—)exp
i=Oj=O

z —1z —1

I B
= g g P& (i,j ) r+(1 r)ex—p

i=Oj=O

E, E—B(ij)
kT

E, E&—(ij)
kT

(18a)

(18b)

with E &(i j)=2VAB+iVAA+(z —1 i—+j) VAB+(z —1 —j)VBB and E& (ij ) =E &(j,i). One can write the following
rate equations:

d(R ~ ,'N )— QAB QBA
ap pa

z —1z —1

r+(1 —r ) g g P &(i,j )exp
i=Oj=O

Q z —1z—1

+ r + (1 r) g —g P& (i,j )exp
i=O j=O

d(g —,'N) g„z—1z—1

g (j i )P &—(i,j ) r+(1 —r)exp
d~ z

E, E&—(i j )

kT

E, EB,(i—,j )

kT

E, E&(i—j)
kT

(19a)

QBA z —1z —1

+ g g (i j)P& (i,j—) r+(1 r)exp-
i =0 j=O

E, EB (i,j)—
kT

QAA +(1 r) g g (j —i)P B(i—,j)exp
s Og 0

QAB

zRp

QBA QBA QAA+ r(z —1) — +(1 r) g —g (i —j)P& (i,j)exp
z zW zWp

E, EB(ij—)

kT

(19b)

Steady-state values of S and Q are given by the
set of equations d (R 2N) ldt =

21 Nc—(dS ldt —) =—0 and

,'N(dgldt)=—0. We note that the double sums in Eqs.
(18) and (19) are easily performed analytically, using the
mathematical relations

AA BB) ( AB BA)

+( AA BB AB BA l( AA+PBB)( AB+ BA )

The critical temperature for r =0 is given by

z —1 z —l
(x+y)' '= gx'y'

i=O

z —1

(z —1)x(x +y )' = g ix 'y'
i=0

z —1

(20)

(21)

kT, = 1/ln
4z c(1—c)

(z —2) —z (1—2c)
(23)

D. Monte Carlo simulations

For r =0, the kinetic approach of the pair approximation
given in this section is similar to the treatment of Fultz. '

Simple algebra shows that the steady-state equations (19)
for r=0 are equivalent with the equations obtained by
free-energy extremization in the pair approximation. "

QABQBA Cd=exp
QAA QBB

(22a)

z
QAB

QBA

R RH

W 8'p

z —1

(22b)

To prove this equivalence it is convenient to write
Eqs. (19) and (22) in terms of the variables
P; =Q;. exp( V,"IkT) with i j =. A, B, and show that Eqs.
(19) imply the following equation:

Monte Carlo simulations of the model described in
Secs. II A and II B were performed on a system of
8X8X8 bcc unit cells (containing 1024 lattice sites) with
periodic boundary conditions. We used a concentration
of c =0.5, and V» = V~~ =2V». The transition proba-
bility defined by Eq. (7) was employed. The algorithm
consists of a repetition of the following steps: (i) choose
randomly a lattice site, (ii) choose randomly one of the
eight neighboring sites, and (iii) swap the atoms at the
two selected sites if they are not of the same type and if a
random number between zero and one is smaller than the
transition probability (7) (with v= 1). "Time" is mea-
sured in Monte Carlo steps (MCS) per atom: 1 MCS per
atom corresponds to one exchange attempt per atom.
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For temperatures kT/co~0. 7, a simulation of a steady
state consisted of 10000MCS per atom (2000 MCS per
atom for equilibration not included). For temperatures
kT/co(0. 7, a simulation consisted of 25000 MCS per
atom (5000 MCS per atom not included).

To locate an order-disorder transition we proceed as
follows. A starting value of the temperature T and the
parameter y (or r) is chosen, and a simulation is per-
formed to obtain the value of the order-parameter S
[through the relation S=~R —W&~/(2c)]. The final
configuration of atoms is then used for a next simulation
with slightly higher (or lower) value of either T or y. Re-
peating this several times, the system can "go through"
the transition, with order-parameter S changing from a
value close to one to a value close to zero. Owing to
finite-size effects, the transition at the higher tempera-
tures is observed as a smooth s-shaped curve in an S-T or
S-y plot. In these cases we located the transition at the
point of inflexion.

0.8

0.6

0.4

0.2

0.8 1.2

k T/(0

1.6

FIG. 2. Long-range order parameter S as a function of tem-
perature kT/co for zero irradiation, as determined by Monte
Carlo simulation.

E. Phase diagram

1. T-c phase-diagram at y =0

2. T yphase diagr-am-at c =0.5 ( V» = V» =2V»)

In the Bragg-Williams approximation or the pair ap-
proximation, the T-y phase diagram at fixed concentra-
tion c =0.5 can be determined as follows. In the Bragg-
Williams approximation one can solve the equation
d(R ,'N)ldt= ,'Nc—(dSIdt)=0—by iteration with

S„+,=S„+(dSIdt )5t, where 5t is a parameter. In the

1.5

disordered
(

kT

0.5

0.2 0.4 0.6 0.8

FIG. l. Equilibrium phase diagram (zero radiation) in the
Bragg-Williams (dashed curve) and the pair approximation
(solid curve).

For zero radiation (r =0 or @=0) the mean-field ap-
proximations described in Sec. IIC yield analytical ex-
pressions for the transition temperature as a function of
composition. The phase diagram predicted by the
Bragg-Williams approximation and the pair approxima-
tion is shown in Fig. 1. From a Monte Carlo simulation
at r =0 we estimate kT, /to=1. 6 at c =0.5 (the critical
point was identified with the inflexion point in the S-T
curve, see Fig. 2).

pair approximation one can solve the two equations

,'Nc(dSld—t)=0 and —,'N(dQ/dt)=0 by iteration with

S„+,=S„+(dS Idt )5t and Q„+&

=Q„+(dQ Idt)5t.
Below a tricritical temperature T„, the transition be-

comes first order, as observed by the occurrence of hys-
teresis loops (see Fig. 3). To obtain the lower branch of
the hysteresis loops in Fig. 3(a) (Bragg-Williams approxi-
mation) and Fig. 3(b) (pair approximation), we used
SO=10 as starting value for an iteration. If instead
S=O is used, the system will remain at S=O, since this
corresponds to an (unstable) stationary state. Figure 3(c)
shows a hysteresis loop obtained by Monte Carlo simula-
tion at temperature kT/to=0. 25. With increasing tem-
perature, the width of Monte Carlo loops is found to de-
crease, but it is dificult to locate sharply a tricritical tem-
perature above which the hysteresis vanishes (since slow
kinetics at low temperature also causes a small hysteresis
at a second-order transition).

It should be emphasized that there is a fundamental
difference between a mean-field hysteresis loop and a
Monte Carlo hysteresis loop. Going through a mean-field
loop corresponds to a system that remains in the same
(ordered or disordered) phase as long as this phase is
stable or metastable. This means that in the y interval
covered by a mean-field loop two stationary states exist,
which are locally stable in configuration space. In con-
trast, in a Monte Carlo simulation the system can escape
from a metastable state before this state becomes unsta-
ble, by overcoming the barrier required to reach the sta-
tionary stable state (i.e., the state with lower generalized
free energy; the concept of generalized free energy is dis-
cussed by Bellon and Martin ). This implies that the y
interval covered by a Monte Carlo loop is smaller than
the interval of bistability.

In Fig. 4 the T-y phase diagram is shown. The region
of bistability (indicated as two diverging curves) is
significantly smaller in the pair approximation than in
the Bragg-Williams approximation. Monte Carlo results
are represented by dots, and hysteresis at low tempera-
ture is indicated by two separate dots. The solution in
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TABLE I. Estimated values of the tricritical temperature,
below which hysteresis is observed [the Bragg-Williams value

T«/T, =2/(3+ &3)=0.4226 is exact (Ref 6).].

100

Bragg-Williams approximation
Pair approximation
Monte Carlo simulation

0.4226
0.33

0.23+0.03

10

0.8

0.6

0.1
1

0.4

0.2

0

-0.2
10 20 30 40

Williams a r
FI . 4. Dynamical phase diagram at c=0 5

'
h B, in t e ragg-

i iams approximation (dashed curves), in the pair approxima-
tion (solid curves), and from Monte Carlo simulations (dots).
Here T, is the order-disorder temperature for y =0.

the pair approximation is in excellent agreement with the
Monte Carlo results. Apparently, the pair approximation
works rather well for the bcc structure ' Estimated
values of the tricritical temperature are given in Table I.

0.8

0.6

0.4

0.2

-0.2

(b) F. Finite-size and finite-time efFects in simulations

In a Monte Carlo simulation of an order-disorder tran-
sition in a system of a few thousand atoms, finite-size
effects occur. Figure 5 demonstrates the effect of system
size on the first-order transition at low temperature. The
hysteresis loop for a system of 15 X 15 X 15 unit cells (con-
taining 6750 atoms) is shifted to lower values of y with
respect to the loop for a system of 8X8X8 unit cells
(containing 1024 atoms).

Figure 5 also demonstrates the effect on a Monte Carlo
ysteresis loop of the time spent at a single (S,y) point of

the curve. Increasing this time from 25 000 MCS

0.8

(c)
0.8

0.6

0.4

0.2

0
0

I

50 100 150

FIG. 3 ~. 3. (a) Hysteresis loop at kT/co=0. 4 (Bragg-W 11

approximation). (b) Hysteresis loop at kT/ =0.4 (co= . (pair ap-
proximation). (c) Hysteresis loop at kT/co=0. 25 (Monte Carlo
simu ation).

0.6

0.4

0.2

0
0 20 40

~

l

I

60 80 100

7

FIG. 5. M. Monte Carlo hysteresis loops at kT/co=0. 25. Solid
curves: system of 8X8X8 unit cells, using 5000+25000 MCS
[see Fig. 3(c)]. Broken curves: 15 X 15 X 15 unit cells and
5000+25000 MCS. Dashed curves: 8X8X8 unit cells and
15 000+ 75 000 MCS.
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(+5000 MCS for equilibration) to 75 000 MCS (+15000
MCS for equilibration), narrows the loop significantly.

III. RADIATION-INDUCED
REPLACEMENT COLLISION SEQUENCES

The effect of radiation on the state of order of a binary
alloy depends on the type of alloy, but also on the nature
of the radiation. There is experimental evidence, that
energetic electrons produce ballistic displacements of a
few atoms, whereas fast neutrons and heavy ions can pro-
duce so-called replacement collision sequences (RCS) of
many atoms, leading to the occurrence of cascades in the
alloy. Replacement collision sequences are studied in this
section, by modifying the model presented in the previous
section.

A. Model

We consider replacement collision sequences in the
[111]direction (with alternating a and P sites), and we as-
sume that all sequences are of the same length 2b (b is a
positive integer). For simplicity, the atom knocked from
the final site is reinserted at the vacancy created at the
first site of the sequence, to avoid the formation of vacan-
cies and interstitials. Thus an RCS is considered as a cy-
clic permutation of 2b atoms on a straight line (in Sec.
III E we study closed loops).

We wi11 investigate the effect of the sequence length 2b
on the T-y phase diagram.

The dynamics of the system is no longer given by Eq.
(7), but is modified as follows. Each atom has a probabili-
ty per unit time of 1-r to attempt a thermal exchange
with one of its neighbors, and a probability per unit time
of r to be the starting point of an RCS of length 2b.
Thermal exchanges have a transition probability per unit
time given by Eq. (6) (with v= 1).

B. Mean-field solutions

1. Bragg- Williams approximation

In this section it is demonstrated that the Bragg-
Williams equation (14) for the long-range order parame-
ter S is independent of the sequence length 2b, if one ap-
propriately generalizes the definition (13}of the parame-
ter y. This implies that the T-y phase diagram for b =1
is the same as for b & 1, in the Bragg-Williams approxi-
mation.

Equation (14) was derived from the rate equation (8)
for the total number R —,'N of A atoms in the lattice.
The average effect of a single RCS of length 2b on the
number R —,N is easily evaluated, in the Bragg-Williams
approximation:

b(R ,'N)=b(W BR )=b—(W 8'B RRB), (24)—

since each A& atom in an RCS raises the number R —,'1V

by one, and each A atom lowers the number R —,'N by
one. The second step in Eq. (24) follows directly from the
definitions (2). Using Eq. (24) in Eq. (8) leads to Eq. (14)
with the following generalized definition of the parameter
y:

y =b exp
1 —r

E, —Eo
kT

(25)

which reduces to Eq. (13) for b =1. Since the number of
ballistically displaced pairs of atoms per time unit is
I b=br and the thermal-exchange attempt frequency is

1,=(1—r ), Eq. (25}can be written as

Ib
y = exp (26)r,

This equation is identical with Eq. (15}. The number of
ballistically displaced atoms per time unit can be specified
either by the two parameters b and r or by the single pa-
rameter y.

E, —Eo

2. Pair approximation

In this section we show how the two rate equations
(19a) and (19b), corresponding to the pair approximation,
have to be modified for the case where replacement col-
lision sequences occur. The derivation is restricted to
b » 1, i.e., long replacement sequences. Hence, one can
assume that an arbitrary RCS contains bR A atoms
and bWI3 A& atoms. It follows immediately that the only
modification of Eq. (19a} is the inclusion of a factor b in
the two terms proportional to r [using Eq. (24) and the
identity QB„—Q„B=z( II B

—R )].
To evaluate the modification of Eq. (19b), we will

determine the average effect of an RCS on the number

Q—,'N of A-A bonds. The effect of displacing (along the
RCS) an A atom to a neighboring P site, is that

(z —2)
zR

A-A bonds are broken upon leaving the a site, and

QAA QAA QAB QAB
z —2

zR zWB zR zR&

A-A bonds are created upon arrival at the P site. The
factor z-2 instead of z accounts for the fact that no bonds
within the RCS are created or broken by cyclic permuta-
tion, except at the first and the last sites. Since the RCS
is assumed to be long, the error introduced at the fist and
the last sites can be neglected. Analogous expressions
hold for the displacement of an A& atom. This leads to
the following expression for the average effect of a single
RCS on the number Q —,'N of A-A bonds:

&( Q—,'N ) = (z —2)bR
Q~~ Q~~K~ QB~ QB~

z8'& z W&zR z W&z W
Q&A QAAQAA QABQAB + (z —2)bWB'
zR zR zWB zR zRB

QAB QAB
(z —2 b

z zRB

QAA QBA QBA
(z —2)b

z 8'p
(27}
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Thus, thee only modification of E . 19
&( —2)I(

to r.
z —1) in the two terms proportional
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100

0.1

FIG. 9. Phase diagram by Monte Carlo simulation, for b =1
(solid circles) and b = 5 (open circles).

sitions for b =1 and b=5, at temperatures kT/co=0. 3
and kT/co=0. 25. Although kinetics might play a minor
role here, the hysteresis width at b = 5 is significantly re-
duced, in agreement with the disappearance of hysteresis
in the pair approximation for b ) ) 1. Figure 9 compares
the Monte Carlo phase diagrams for b = 1 and b =5. In
addition to the reduced hysteresis (which is consistent
with the stochastic treatment of Ref. 6), one observes a
shift of the transition toward lower values of the parame-
ter y or the temperature T. This is in qualitative agree-
ment with the shift of the transition in pair approxima-
tion (Fig. 6).

K. Replacement collision loops

In radiation-induced cascades one may find replace-
ment sequences in the form of closed loops instead of
straight lines. "' We performed some simulations of
rectangular replacement loops with [111]sides, for b =5
(rectangles with sides of length 3 and 4 nearest-neighbor
distances) and for b = 10 (rectangles with sides of length 6
and 8 nearest-neighbor distances), at temperatures
kT/co=0. 5, 0.4, and 0.25. The orientation of a rectangle
was chosen at random. The results turned out to be in-
distinguishable from the results for straight replacement
sequences. This means that the y-T phase diagram for
rectangular loops with b =5 and b =10 is the same as for
straight replacement sequences with b =5 (Fig. 9).

R =Rp=c(1+S),
W = Wp=c(1 —S),
X =XI=1—2c;

gAA
=gBB =g gAB =ZR —g g i

QBA =zWp —
Q Q2 QAx=QxB =Q»

QXA QBX Q2 QXX ZX Ql Q2

(29)

The concentration c is fixed by the value of the vacancy
concentration c, through the relation 2c+c„=1. This
value ranges from typically 10 in thermal equilibrium,
to nearly 10 under high radiation flux. Fortunately,
steady-state solutions of rate equations (these are de-
scribed below) turn out to have a negligible dependence
on the value of c, in the range 10 —10 . Therefore,
we chose a fixed value of c =10 . We verified that the
y-T phase diagrams for c„=10 and c, =10 are indis-

tinguishable on the scale of interest here.

B. Dynamics

We assume that the dynamics takes place through
atom-vacancy exchanges. Thus, both thermal and forced
atom-vacancy exchanges occur.

For the transition probability per unit time we use the
function (see Sec. II B)

E,' QV„'—
W( A, XJ ~X;AJ ) =v r +(1—r )exp

(30)

Vacancies are denoted by the symbol X, and are assumed
to be noninteracting, i.e., VAX = VBX = VXX =0 (however,
vacancies interact indirectly through interaction between
A and B atoms).

There are 15 variables in the pair approximation: six
point variables (the sublattice occupancies R, W, X,
R p, Wp, Xp) and nine pair variables (the pair probabili-

QAA QAB QAx QBA QBB ~ QBX QXA QXB QXX).
The number of independent variables is smaller than 15.
For simplicity we restrict ourselves to the symmetric
case: c~ =cz=—c and V»=V&~=2V„~. This reduces
the number of independent variables to four. ' These
four variables, S, Q, Qi, and Qz, are defined through

IV. SUBTHRESHOLD RADIATION

In this section a realistic treatment of subthreshold ir-
radiation is given. Subthreshold radiation has an energy
too low to induce direct displacements of atoms, and
therefore enhances atomic transport only through a va-
cancy mechanism.

A. Model

We consider a binary bcc 3 /B alloy with a small con-
centration of vacancies, which is in fact a ternary system.

for an A, -X exchange. Here E,' is a constant. A similar
expression holds for a B-X exchange. Again, we choose
the unit of time as w= 1/v, i.e., we set v= 1.

C. Mean-field solutions

In Sec. II it was demonstrated that the pair approxima-
tion works rather well for a lattice model with two types
of competing dynamics. Therefore, we rely on the pair
approximation in this section. For completeness we also
give the solution in the point approximation.
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1. Bragg- $Villiams approximation

In the Bragg-Williams approximation a microscopic
configuration of the system is specified by a single param-
eter: the long-range order parameter S [see Eq. (28)].
One can write the following rate equation for the total
number of A atoms at the a sublattice:

with

1+S
1 —S

zcSQp
exp +y2kT

zcSQ)
exp — +y2kT

(33)

d(R ,'N )—

t
— = —I "pR Xp+I"p 8'pX~, (31)

y= exp
1 —r

E,' —Eo
kT

(34)

I ~& =r+(1—r)exp
E' —E'

kT
zcSco

p (32a)

I'& =r+(1—r)exp
Eo —E,' zcSco

kT 2kT
(32b}

with Eo=zc(V„„+V„B}. Steady-state solutions of Eq.
(31) are given by

where I "p~ and I &+ are the A —Xp and Ap —X ex-

change frequencies, respectively. These frequencies (or
rather, average exchange probabilities per unit time) are
obtained by applying the Bragg-Williams approximation
in Eq. (30) (using VA„= VBB and v= 1):

For r=y=0, Eq. (33) is identical with Eq. (14) for the
Bragg-Williams steady-state solution for a direct trans-
port mechanism. This implies that the critical tempera-
ture for r =y =0 and c„((1is kT, /co=2.

2. Pair approximation

In the pair approximation a microscopic configuration
is specified by four parameters [see Eqs. (28) and (29)].
I.et us consider and A —Xp exchange. Both the A atom
and the vacancy X have (z-1) unspecified neighbors. The
statistical probability that the A atom is surrounded by
an A,.BjX, &; cluster and the vacancy X by an
A BnX, &

„cluster, is given by

P "B (i j,m, n ) = QAA

zR zR zR
QAB QAX

'z —1 —i —j z —1 QAx

zXp

'm 'n
QBX QXX

zXp zXp

z —1 —m —n z —1

m, n
(35)

where the notation

k

i!j!(k —i —j)!
for a multinomial has been used. For an. X —A p exchange, the statistical probability that the A atom is surrounded by

an A,.B X, , ; cluster and the vacancy Xby an A BnX, , „cluster, is given by

P&~ (i j,m, n)= QAA

z8'p
QBA

j
QxA

z Wp ZR'p

'z —1 —i —j z —1
'm ;n

QXA QXB QXX

ZX zX zX

z —1 —m —n z —1

m, n
(36)

d(R ~ ,'N)—= gg gg [QXAP& (i j,m, n) QAxP B (ij,m—, n)] r+(1 r)exp-
i j m n

iV~~+J V~a —E:
kT

Analogous expressions hold for P B(i,j,rn, n ) and PB (i,j,m, n) One can wr. ite the following four rate equations:

(37a)

= g g g g (m i )[QxAP—& (i j,m, n)+QAXP~& (ij,m, n )] r+(1—r)exp
i j m n

iV„„+JV&z—E,'

kT

(37b)

&V~~+JV~s —&:
kT

s j m n

d(QAx-,'» = g g g g [QxAPB (i,j,m, n ) QAxP "p (E,j,—m, n)] r+'(1 r)exp—
+ g gg g [iQxBPB (ij,m, n) —mQBXP &(ij,m, n)] r+(1 r)exp-

i j m n

i V~~+jV~~ —E,'

kT

(37c)
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d(Q~x ,'N—) = g ggg [Qx&P& (i j,m, n) —QsxP &(ij m, n)] r +(1 —r)exp
i j m n

& V~a+JVaa —E:
kT

+ g g g g [jQx&P& (i j,m, n )
—nQ„&P "& (i j,m, n )] r+(1 r—)exp

i j m n

t V~q+J Vq~ —Es

kT

(37d)

Summations in Eqs. (37) over i, j, m, and n run from 0 to
z-1, and are subject to the conditions i+j &z —1 and
m +n ~ z —1. They are easily performed analytically, us-
ing the mathematical relations

k k
(x+y+z)"= g g x'y~z"

l,Ji =0 j=O

k k

kx(x+y+z)" '= g g ix'yjz"
i =0 j=O

(38)

r
exp

with summations subject to the condition i +J k.
Steady-state values of S, Q, Q „and Qz are obtained by

solving the set of equations d (R ,' N ) /dt =—0,
d(Q&z ,'N)/dt =—0, d(Q„x ,'N)!dt =—0, and d(Qsx —,'N)/
dt =0. For r =0 and c„&&1 it is straightforward to show
that these equations imply the equilibrium equations (22),
obtained by free-energy extremization in the pair approx-
imation. For r =0 the kinetic approach of the pair ap-
proximation given in this section is similar to the treat-
ment of Fultz. ' Instead of the parameter r we will use
the parameter y„defined as

I

is shown in Fig. 10, together with the phase diagram of
Sec. II for a direct transport mechanism. For a vacancy
mechanism, the transition becomes first order beyond a
tricritical point at ( T„/T, =

—,', y„=2) (this is derived in

the way indicated in Ref. 6).
To obtain the phase diagram in the pair approxima-

tion, the four steady-state equations (37) have to be
solved. We used four-dimensional Newton-Raphson
iteration (since the iterative method of Sec. II E 2 gave no
convergence). Below a tricritical temperature of
T„/T, =0.26, the transition becomes first order, as
demonstrated by the discontinuity in the long-range or-
der parameter for T/T, =0.23 in Fig. 11 (the critical
temperature at r=y„=O is kT, /co=1. 737 for vacancy
concentration c =10; cf. kT, /co=1. 738 for c„=O).
The discontinuous curve in Fig. 11 was obtained upon in-
creasing the parameter y . The lower branch of the hys-
teresis loop could not be determined by Newton-Raphson
iteration, due to the fact that S=O is a solution of Eqs.
(37) for all values of y, . In Fig. 12 the phase diagram in
the pair approximation is presented, together with the
phase diagram of Sec. II for a direct transport mecha-
nism. The broken curve for the vacancy mechanism
represents the upper branch of the first-order hysteresis
loop.

D. Phase diagram V. CONCLUSIONS

The Bragg-Williams phase diagram, as obtained by
solving Eq. (31) using the iterative method of Sec. II E 2,

10

Ordering in binary bcc alloys under radiation has been
studied by mean-field solutions and Monte Carlo simula-
tions of dynamical lattice models. The simulations,

0.8

0.6

0.4

0.2

0.1

-0.2

1.37x1 0 1.38x1 0 1.39x1 0

FIG. 10. Phase diagram in Bragg-Williams approximation,
for vacancy mechanism (broken curve) and direct-exchange
mechanism (solid curve).

FIG. 11. First-order transition for vacancy mechanism in

pair approximation, at temperature kT!co=0.4.
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which yield in principle exact numerical results, demon-
strate that the pair approximation works well for these
models with competing dynamics.

A realistic treatment of subthreshold irradiation, with
thermal and forced atom-vacancy exchanges, has been
presented for an 250850 alloy. The y -T phase diagram
has been determined. The 82 ordering transition be-
comes first order beyond a tricritical point. It is interest-
ing to note, that the ferromagnetic Ising models with

competing dynamics studied in Refs. 8 and 9 also have a
phase transition that changes from second order to first
order.

A simplified treatment of high-energy irradiation has
been presented, using a model with a direct-exchange
mechanism: thermal exchanges of two atoms and forced
exchanges of two or more atoms. In the pair approxima-
tion, for forced exchanges of two atoms we found again a
tricritical point, for forced exchanges of more than two
atoms the transition is shifted towards lower tempera-
tures, and for forced exchanges of many (say, ten) atoms
the transition remains always second order. Monte Carlo
simulations confirm the tricritical point for forced ex-
changes of two atoms and also the shift of the transition
for exchanges of more than two atoms.

Finally, we repeat that a complete model for high-

energy irradiation includes: thermally activated atomic
jumps (via a vacancy mechanism and/or an interstitial

10 10

10
—10

10

10
(82)

—10

10 10 '

FIG. 12. Phase diagram in pair approximation for vacancy
mechanism (upper curve) and direct-exchange mechanism
(lower curve). Dashed curves indicate first-order transition.

mechanism), forced direct exchanges of two or more
atoms, and also forced atom-vacancy exchanges due to
secondary projectiles with subthreshold energy. It is an
open question, whether such a complete model yields
significantly different results than the results presented in
this paper.
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