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High-precision, large-basis-set calculations, in the local-density approximation (LDA) (using the all-
electron, full-potential, linear combination of Gaussian orbitals, fitting-function technique), of the
cohesive properties and electronic states (bare Kohn-Sham energies) of the isolated 4B dilayer of graph-
ite are reported. They show that the dilayer interplanar spacing (c axis) differs little from the value for
ABABAB - - - crystalline graphite (0.7% expansion relative to one calculation, 2.5% contraction rela-
tive to another, 2% expansion relative to experiment). This result, which differs significantly from a pre-
liminary report of strong c-axis contraction, is related to the weak interplanar binding. The intraplanar
lattice spacing (a axis) is virtually identical with the crystalline value for both the graphite dilayer and
monolayer. The interplanar binding energy (obtained directly via optimization of the monolayer ground
state with the same techniques) is in excellent (perhaps fortuitous) agreement with the experimental
value for the crystal, in contrast with crystalline calculations, which are too large (in magnitude) by
40-100 % or more. The dilayer cohesive energy agrees well with the crystalline value from an all-
electron calculation. Both exceed the experimental value in magnitude by over 1 eV/atom, a problem al-
ready known to arise from inadequacies in the LDA treatment of the multiplet structure of the isolated
C atom. The dilayer uniaxial compressibility is much larger than calculated for the crystal, apparently
another manifestation of weak interplanar binding. Dilayer Kohn-Sham eigenvalues are largely con-
sistent with those calculated self-consistently for the crystal using the same LDA model. Both differ sub-
stantially from the non-self-consistent band structure commonly used to parametrize graphite optical
properties of interest in astrophysics. Calculated values of the dilayer work function are larger by about
0.6-0.7 eV than the crystalline experimental results. The dilayer density of states at the Fermi level is
predicted to be much smaller than for the crystal, while the occupied bandwidth is in reasonable agree-
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ment with crystalline experimental results.

I. INTRODUCTION

The weak interplanar binding of ABAB - - - stacked
graphite and concomitant anisotropy of its electronic
properties have long been of theoretical (not to mention
experimental) interest.'”!° Graphite monolayers, and to
a lesser extent, multilayers of both the same ABAB - - -
stacking”_15 and others,'®!” have also attracted atten-
tion. This interest arises from the relevance of such sys-
tems to understanding of graphite intercalation com-
pounds and because the one-electron energies of a graph-
ite n layer even with n =1 provide a reasonable picture of
much of the one-electron behavior in the crystal.

Graphite also has been of interest for many years as a
likely candidate for an anomalous absorption hump in
the interstellar medium found around 225 nm.'® More
recently, graphitic molecules (polycyclic aromatic hydro-
carbons) have been suggested as the primary mechanism
for strong infrared emissions (at 3.3, 3.4, 6.2, 7.7, 8.6, and
11.3 pum) in the interstellar medium.'!® In the astrophysi-
cal context, the graphitic objects are usually assumed to
be of monolayer thickness. Typically their optical prop-
erties are extracted from fitted one-electron energies' or
non-self-consistent ones calculated for the bulk crys-

45

tal.>~>112 If 2-layers are considered in the astrophysical
literature [and they rarely are, although Ref. 19(e) is an
exception], it is usually argued that the crystalline inter-
planar cohesive energy is so small that the temperature at
which the graphitic objects are formed would be sufficient
to cleave any 2-layer.

On both fundamental and calculational grounds it is
known, however, that n layers with n =1,2,3,... can
and do behave rather differently from their counterpart
crystals.?° 22 The possibility of such behavior is particu-
larly intriguing in the context of the strongly anisotropic
binding in graphite, since delamination from the
ABAB - -+ crystal to form the AB 2-layer in vacuo
might well be a large perturbation to a weak binding
mechanism.

For these reasons we undertook a study of the graphite
2-layer (and treated the 1-layer for comparison). The ini-
tial study?® found strong interplanar contraction, approx-
imately 19% as compared to the experimental value, with
greater contraction in comparison with calculated values.
Although this preliminary result was consistent with a
model calculation by DiVincenzo, Mele, and Holzwarth’
(and apparently went unquestioned), we found it difficult
to adduce a mechanism for such a large contraction.
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While beginning an investigation of possible buckling
reconstructions of the graphite 2-layer (2L hereafter) it
became apparent that, in spite of multiple indications to
the contrary, the calculation in Ref. 23 was not stable
with respect to some algorithmic limitations (primarily
multipole expansion techniques and numerical grid distri-
butions used to calculate primitive integrals) and basis-set
characteristics. In fact, the contraction predicted in Ref.
23 was spurious. When these limitations became mani-
fest subsequent to the report in Ref. 23 (which was done
in late 1987), they motivated a complete overhaul of the
code followed by a complete restudy.

Here we present results of a stable, high-precision cal-
culation. In the remaining sections we summarize
methodology, then present results for the total energy,
equilibrium lattice parameters, cohesive and interplanar
binding energies, uniaxial compressibilities and universal
scaling, and for electronic structure at the level of Kohn-
Sham eigenvalues and the associated density of states.

II. METHODOLOGY

Within the local-density approximation (LDA) to
density-functional theory (DFT), these calculations are
entirely first principles: they include all electrons, make
no shape approximations for the potential, and are fully
self-consistent. The Hedin-Lundgqvist (HL) form of LDA
was used throughout. We solve the Kohn-Sham (KS)
equations with the linear combination of Gaussian-type-
orbitals fitting-function (LCGTO-FF) technique** as em-
bodied in the FILMS program package.?’ It is important
to note that the present version of the code is substantial-
ly improved over that used in Ref. 23. Many of the im-
provements were aimed specifically at difficulties posed
by layered systems with highly anisotropic binding
and/or complicated unit cells.

The LCGTO-FF procedure uses three Hermite-
Gaussian basis sets. The first (“KS” basis) expands the
KS orbitals, the second (“Q” basis) the electron number
density, and the third (“XC” basis) the LDA exchange-
correlation kernels. As experience has grown it has be-
come apparent that an effective technique is to use identi-
cal Q and XC bases, denoted as the F basis hereafter.

To ensure a stable calculation it was necessary to use a
9s4p 1p, primitive basis contracted to 6s3p 1p, for the KS
set. This is substantially richer than the uncontracted
6s3p,p,3p, KS basis used in the preliminary study* and
the similar basis previously used by Samuelson and Ba-
tra.3 The present KS basis evolved, by testing and
refinement, from the 9s4p Hartree-Fock basis by van
Duijneveldt.?® Adaptation to the film environment re-
quired tightening of the outer two p functions. Selection
of the p, exponent was guided by experience and test cal-
culations. The contraction coefficients were chosen to be
the expansion coefficients for the HL LDA treatment of
the C atom. Basis exponents and contraction coefficients
are tabulated in Table I.

The F basis was chosen to be 8s2d2p,, again much
richer than that used in Ref. 23. This basis was con-
structed by frank empiricism, with particular reliance on
previous experience and careful testing to get a good fit
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TABLE I. Basis-set exponents and KS contraction coefficients.

KS KS F

exponent contraction coefficient exponent

s type s type
5182.950 0.0009400 700.00
778.756 0 0.0072010 140.00
178.0730 0.0361950 35.000
50.877 90 0.1293610 11.000
16.787 60 0.3160450 3.6000
6.143 620 1.000 0000 1.4000
2.403 980 1.0000000 0.6000
0.511900 1.000 0000 0.2200
0.156 590 1.0000000

P type d type
9.464 5200 0.0419040 0.5000
2.006 5800 0.2233730 0.2000
0.6500000 1.000 0000
0.2800000 1.0000000

P type p: type
0.1200 1.0000000 0.5000

0.2000

over a large range of distances from the nucleus. Unlike
the Q basis in Ref. 23, the F basis used here was not gen-
erated by Dunlap’s rule [see Ref. 25(b) for discussion and
additional citations] nor were offsite fitting functions
used. Since Ref. 23, we have found that offsite fitting
functions tend to preselect certain forms of bonding while
use of Dunlap’s guideline tends to force the charge densi-
ty to be too localized around each nuclear site.

While searching for equilibrium lattice parameters, we
used 19 points in the irreducible wedge of the two-
dimensional Brillouin zone (BZ) for BZ integrals. Once
found, the stability of the predicted values was tested by
recalculation on a 37-point mesh. No meaningful shifts
occurred. All calculations were stabilized to an
iteration-to-iteration shift in total energy per atom of less
than 5 phartree; most actually achieved better than 1
phartree (1 hartree = 27.2116 eV).

III. LATTICE PARAMETERS, BINDING ENERGIES,
AND UNIAXIAL COMPRESSIBILITY

A. Lattice parameters

Studies of graphite conventionally use hcp unit-cell pa-
rameters and notation. Hence the basal lattice parameter
is a, the nearest-neighbor distance is ayy=a/V'3, the
cell height is ¢, and the 2-layer interplanar separation is
¢ /2. Throughout, lengths are given in atomic units a,.

Because of the anisotropic binding in graphite, we first
minimized the total energy with respect to ¢ with a fixed
at 4.65 a.u., essentially the monolayer equilibrium found
in Ref. 23 and virtually identical with the experimental
T=20°C crystalline value.?’” The a parameter was then
varied with c fixed at its minimum-energy value. The op-
timized a turned out to be so close to the original one (cf.
Table- II) that reoptimization of ¢ was unnecessary. The
1L was treated using the same basis sets (except of course
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TABLE II. Comparison of calculated values of graphite lat-
tice parameters in different structures, along with experimental
values. The entry “2L” refers to the interplanar model of
DiVincenzo, Mele, and Holzwarth (Ref. 7). The value of a used
in that calculation was not stated explicitly in the publication;
the parentheses indicate the value deduced from a footnote.

System and Reference a (agy) ¢ (ag) c/a
2L (present) 4.636 12.988 2.802
1L (present) 4.635
Crystal® 4.647 12.903 2.773
Crystal® 4.667 13.323 2.854
Crystal® 4.674 12.737 2.725
Crystal, Expt. (20°C)¢ 4.651 12.6782 2.726
2L 4.651 10.232 2.200
“L”t (4.69) 10.583 2.256
1L* 4.622
1Le 4.630
1Lk 4.690

¢ Reference 23.
f Reference 7.

& Reference 14.
b Reference 13.

2 Reference 9.
b Reference 8.
¢ Reference 10.
4 Reference 27.

for the p, fitting functions, which can contribute nothing
because of symmetry).

The results are shown in Table II, along with those
from other calculations on both bulk and 1L graphite and
experimental bulk values. (Because there is no crystalline
LCGTO-FF code analogous with FILMS, we have used
the best available crystalline calculations for compar-
ison.) The most obvious finding is that there is no large
reduction of the 2L interplanar separation relative to the
measured crystalline value (which is smaller than the
LDA calculated values). Relative to the only available
all-electron calculation of crystaline graphite lattice pa-
rameters,” the 2L interplanar separation is predicted to
be slightly expanded (0.7%), with the a parameter
perhaps very slightly contracted. However, this predic-
tion must be viewed somewhat cautiously, since compar-
ison with a pseudopotential calculation® of crystalline
graphite yields a predicted 2L c-value contraction of
about 2.5%.

Test calculations indicate that the strong contraction
found earlier”® resulted from the combined effects of
several deficiencies in the algorithms and control parame-
ters then in use. The most important were multipole mo-
ment expansion summations (which appeared to be per-
forming adequately but were not) and inadequacies in the
numerical integration grid (used in the XC fitting) then
employed. Those algorithmic deficiencies (both since
cured) were particularly serious for the case of small, lo-
calized Q and XC bases, precisely the situation in Ref. 23.
In the setting of the weak interplanar binding of graphite,
they drove the calculated 2L to an artificially small inter-
planar spacing and artificially large interplanar cohesion.
(Note that no other system we have studied to date with
these computational techniques has exhibited such patho-
logical behavior. After each major code refinement, sys-
tems studied previously have been rechecked.)
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A simple test of this diagnosis was to redo the calcula-
tion at both the former and present minimum energy c
values with the refined algorithms but with the basis sets
from Ref. 23. The result confirms the diagnosis. With
the refined code and the former basis sets, the energy
difference (—0.032 eV/atom) between the contracted ¢
value (the Ref. 23 equilibrium) and the present equilibri-
um c value is virtually identical with the difference found
in the present work with the richer basis set (—0.031
eV/atom).

It is interesting that the well-known spurious lattice
contraction associated with the LDA (Refs. 28—-30) is not
obvious in this calculation. This is especially significant
because the LDA systematic underestimation is particu-
larly large for weakly bound molecular crystals such as
Ne (8.7% contraction),” Ar (3.7%),>> and Kr
(0.6-5.8 %).>3 As Table II shows, none of the graph-
ite LDA calculations follow this trend; all give ¢ axis dila-
tion. We have not been able to construct a convincing
explanation for this behavior.

Prior to our initial report,?® significant c-axis contrac-
tion for graphite in a slab geometry had been predicted
by Divincenzo, Mele, and Holzwarth (DMH).” They
found a 16.5% reduction in a c /a relative to the experi-
mental bulk value wusing an approximate density-
functional model constructed explicitly to study graphitic
interplanar binding. (We call this the interplanar model.)
DMH approximated the DFT kinetic energy as a
Thomas-Fermi term plus gradient correction, invoked
the Langreth-Mehl LDA,** and approximated the density
for crystalline graphite with a superposition of LDA den-
sities for graphite slabs. By considering both full LDA
calculations and simpler models with readily interpret-
able solutions, they attempted to show that these approx-
imations should be realistic for treating interplanar bind-
ing in graphite.

Jansen and Freeman®’ had criticized the interplanar
model as inadequate for the calculation of crystalline
graphite lattice constants. In view of the present
findings, it appears that the interplanar model also does
not treat the binding in a graphite film or slab adequately.
Our calculations suggest that the key deficiency in the
interplanar model is probably the assumption of super-
posed, unrelaxed charge densities.

B. Binding energies

The cohesive energies E, and interplanar binding ener-
gies E; are tabulated in Table III. (A tabulation of the
calculated total energies on grids in @ and c is obtainable
from authors S.B.T or J.C.B.) These were calculated by
use of the atomic local-spin-density total energy using the
HL exchange-correlation kernels and the film basis set:
—37.474 552 hartree. E, is not quoted directly by Jansen
and Freeman®’ but may be deduced straightforwardly
from energies in their paper when combined with its ex-
plicit citation of Weinert, Wimmer, and Freeman.'* Note
that Jansen and Freeman report a raw value of
E;=—0.14 eV/atom which they then adjust by 40% for
“systematic differences” between their film and crystal-
line full-potential linearized augmented plane wave
(FLAPW) programs. The adjusted result, also shown in
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TABLE III. Calculated graphite cohesive energies E. and interplanar binding energies E; (all in
eV/atom) in different structures, along with experimental values. The reference atomic energy for the
present calculations is —1019.742519 eV. See text regarding E, and E; for footnote a. As in Table II,

“2L” denotes the interplanar model; see text.

System and Reference

—E_ (eV/atom)

—E; (eV/atom)

2L (present) 8.60 0.03

1L (present) 8.57

Crystal® 8.83 0.14—0.08

Crystal® 7.70

Crystal® 0.06

Crystal, Expt.&®f 7.37;97.39° 0.021 (20°C)f
0.027 (0 K)f

2L8 7.30 0.15

«“L”h 0.11

1L 7.15

1L 8.69

1L 8.05—8.73

2 Reference 9.
b Reference 8.
¢ Reference 10.
4 Reference 35.
¢ Reference 36.

Table III, is —0.08 eV /atom.

Before proceeding to the 2L results, consider the
checks on both the quality of calculated energies and on
the validity of comparison to them which is provided by
comparison with the 1L results of Weinert, Wimmer, and
Freeman.'* The present large basis result, E,=—8.57
eV/atom, compares nicely with their large-basis FLAPW
value, —8.69 eV/atom. A slightly less favorable match
holds for our small-basis result (i.e., the Ref. 23 1L result)
and theirs, —7.15 and —7.41 eV/atom, respectively. (In
passing, we note that apparently the difference between
Zunger’s13 1L E,. and both ours and those of Weinert,
Wimmer, and Freeman'* is a consequence of the extend-
ed Hueckel approximation used by Zunger.)

The overbinding of the 1L with respect to the experi-
mental crystalline value®>3® which Weinert et al. found,
and we have confirmed, was traced by them to well-
known problems with the LDA’s oversimplification of
the atomic multiplet structure. This shortcoming is
clearly irrelevant to comparisons between calculated solid
and film energies. Indeed, the close agreement of the
large basis FLAPW calculation of Ref. 14 with our large
basis LCGTO-FF calculation is strong support for the
validity of comparison of our film results with the
FLAPW solid results of Ref. 9.

A central quantity in characterizing graphite cohesion
is the interplanar binding energy per atom E;. In our
case the value comes directly from E;=E,,; —E_ -
There are no interprogram compatibility adjustments to
be made, since the same program, basis, etc., are used in
both cases. The present calculated E; is —0.03 eV/atom
as compared with the experimental value for the crystal
of —0.021 eV/atom.”” In itself this is in dramatically
better agreement with the experimental value than either
the unadjusted result from Jansen and Freeman® or the
value from the interplanar model.” More importantly,

f Reference 37.
& Reference 23.
h Reference 7.

i Reference 14.
i Reference 13.

Ref. 37 notes that the E; measurement is at room temper-
ature and suggests a value of E;=—0.027 eV for T=0
K, indistinguishable within limits of precision from our
calculated value. Some caution with regard to the close
agreement with experiment of our static lattice result
may be in order, however, in view of the well-known
strong temperature dependence of graphite lattice dy-
namics.®

Batra et al.'” obtained E;=—0.05 eV, in seemingly
fair agreement with the measured results. However, their
calculation is for experimental crystalline lattice parame-
ters, not optimized LDA ones, and they report a large
sensitivity of the pseudopotential total energy (0.19 Ry)
to the size of the plane-wave basis. It is not completely
clear, therefore, to what extent the apparent agreement is
meaningful. Both the FLAPW calculation (unadjusted)’
and the interplanar model’ give E;’s which are larger in
magnitude (factor of 5 to 7) than the measured value.
The INDO calculation'!® of E; is larger in magnitude by
almost a factor of 3 and a venerable approximate
quantum-mechanical calculation® by almost a factor of
4. The wide range of calculated E; values is indicative of
the extreme sensitivity of the predicted interplanar bind-
ing energy to computational details and theoretical as-
sumptions.

C. Uniaxial compressibility and universal scaling

The c-axis uniaxial compressibility for four atoms per
cell is determined by the equilibrium value of the energy
second derivative as
2 -1
EL‘

3d?

k,=(Ay/2d )

min

with A4, the basal plane area in the unit cell and d;, the
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value of d=c/2 at the -calculated equilibrium
configuration. For the hcp space group, the elastic con-
stant cs; is just*

—7 -1
ey =k, .

Fitting the nine calculated energies E(c) at fixed a to a
functional form based on the so-called universal equation
of state (see discussion below; ¢ is the calculated equilib-
rium value of ¢)

E(c)=C,[1+C,(c—cy)]lexp[ —C,(c —cy)]+C;

yields (3’E, /8d?)| ,;,,=0.016 eV/a} for the 2-layer while
a nine-point cubic fit gives 0.0182 eV/a3. Calculated and
measured*! ~* values of k. are given in Table IV. For
the 2L the value given is the average of the results im-
plied by the two fitted second-derivative values. The 2L
is roughly 2.5 times more compressible than the experi-
mental crystal, with a larger distinction versus the calcu-
lated crystalline data®® and still larger with respect to the
interplanar model.” There is also a systematic discrepan-
cy between LDA crystalline calculations on the one hand
and all available experimental compressibility data on the
other. The one available T=0 K value of k. is 35%
larger than the average of the LDA calculated values.
The average of the room-temperature experimental data
is 59% larger.

Jansen and Freeman® have provided some analysis of
the calculation versus experiment disparity. For our pur-
poses the interrelationship between interplanar binding
and k., may be clarified with calculation of the interpla-
nar scale length L; (in the harmonic approximation®*®’)
which appears in the universal equation of state (so
named because of its remarkably wide range of applicabil-

ity), 445
1/2
2|E,| / ] .

The factor of 2 in the numerator is to match the
definition of Lg, the surface-surface scale length adopted
by Rose, Smith, and Ferrante.** For the 2L we find
L;=1.87a, as contrasted with the values we calculate
from the crystalline k_’s, 1.30a, and 1.27a,, from Refs. 8
and 9, respectively. The 2L L, is reasonably in the range

d’E,
dd?

L=

min

TABLE IV. Uniaxial compressibility, k., in units of 10~
cm?/dyne.

System and Reference k.
2L (present) 7.78
“L? 0.97
Crystal® 1.85
Crystal® 1.77
Crystal, Expt. (20°C)%*F 2.97,%4 2.74,° 2.70

Crystal, Expt. (0 K)& 2.44

¢ Reference 41.
f Reference 42.
& Reference 43.

2 Reference 7.
® Reference 8.
¢ Reference 9.
4 Reference 38.
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of the L values of Ref. 44 for bcc metals but on the high
side for hcp metals, while the crystalline results extracted
from k_’s are in line with the hcp metal results tabulated
in Ref. 44. The difference in binding (both magnitude
and curvature) between the 2L and the bulk crystal is
very evident.

As would be expected, the intraplanar second deriva-
tive (3%E, /da?)|,,, is much stiffer than the interplanar
one. For the 1L intraplanar derivative we obtain (from a
quadratic fit) a value of 6.497 eV/a}, while for the 2L the
value is 6.631 eV/a}. The corresponding scale length®*'®’

3 E 1/2
IE. l/ da :
is 1.149a, and 1.139a, for the 1L and 2L, respectively.
In the crystal, the only readily corresponding combina-
tion of elastic constants is (¢;; +¢;,). From the value of
Jansen and Freeman® for this sum we estimate a crystal-
line graphite L, =1.25a,. Thus, both the 1L and 2L are
behaving in uniaxial compression essentially as the crys-
tal does, as would be expected both from the agreement
between calculated values of the a parameter and on gen-
eral grounds of the intraplanar binding mechanisms.
Since both the 1L and 2L are metallic, we may com-
pare L, with the empirical bulk scale lengths L, for met-
als.** One finds that these values for 1L and 2L graphite
fall in line nicely with those for the bcc alkali metals, but
not for any others. A possible explanation for this behav-
ior is provided by looking at chemical bonding in graph-
ite. From that perspective, the 1L strongly resembles a
giant polycyclic aromatic system in which all the C atoms
are sp? hybridized. Of the four valence C electrons per
atom, three are involved primarily in localized o bonds,
while the fourth is donated to a delocalized 7 bond which
is the dominant metallic feature. The result is one metal-
lic electron per atom, just as in the alkali metals. Since
the 2L can be thought of as two weakly perturbed 1L’s
from this perspective, the same sort of result would be ex-
pected.

L,=

min

IV. KOHN-SHAM ENERGY BANDS
AND DENSITIES OF STATES

With the usual caveats about LDA eigenvalues as spec-
troscopic energies, we show the Kohn-Sham energy
bands and densities of states (DOS) for the 1L’s and 2L’s
in Fig. 1 and 2, respectively. The symmetry labeling con-
vention for the two-dimensional Brillouin zone is from
Terzibaschian and Enderlein.*® For comparison, that
convention labels as A and = the points which Tatar and
Rabii® label conversely (2 and A, respectively). Both
conventions differ from those used by Zunger'’ who la-
bels as P,Q what we label as K, M respectively.

The 2L interplanar binding is so weak that, on the
scale of Fig. 2, the splitting of the occupied 1L o bands
into pairs cannot be distinguished. This is the reason
both for the apparent degeneracy of certain 2L bands in
Fig. 2 and, as well, for what appear to be symmetry-
forbidden crossings. Although those crossings do not
occur, it is not possible to indicate the splittings on the



45 INTERPLANAR BINDING AND LATTICE RELAXATIONIN A ...

Graphite 1-Layer

10.0 10.0
8 T T 1 L T - ’
3 1 ‘/ 3
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2|7
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...... >
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-20.0 | -20.0
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DOS (states/eV atom)

FIG. 1. Bare Kohn-Sham energy bands (eV) and density of states (states/eV atom) for the graphite 1L. Both are referred to Ef as
zero of energy. Solid (dashed) curve: even (odd), i.e., o(7) symmetry with respect to reflection in the system plane.

scale of the figure. Otherwise, comparison of Figs. 1 and
2, particularly with Ref. 6 (which was also a self-
consistent calculation using the HL LDA model) shows
no major quantitative nor qualitative differences. There
are significant differences with other calculations on both
1L and crystalline graphite. Most of those occur because
the other calculations either used another LDA model,

were not self-consistent, or both. Note that we can re-
port actual Fermi energies because our calculations have
a well-defined vacuum zero of energy, whereas self-
consistent calculations on periodically bounded crystals
do not.

Table V gives a summary of key one-electron parame-
ters (calculated and measured*’ ~>?) for both n-layer and

Graphite 2-Layer

10.0 10.0

50 + 5.0

00 | > 0.0
S 5ot r 505
: :
8 3
e .00 r -100 2
i wi

50 | -/y -15.0

=200 -20.0

.25.0 1 1 L 1 " ! N -25.0

200 1.50 1.00 0.50 r A M zZ K z r
DOS (states/eV atom)

FIG. 2. Bare Kohn-Sham energy bands (eV) and density of states (states/eV atom) for the graphite 2L. Both are referred to Ef as
zero of energy. Double-thickness curves represent two bands which cannot be resolved on the scale of the figure.
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crystalline graphite. The 2L work function is notably
higher than the experimental value for the crystal. Al-
though we would expect as much as perhaps 0.1-eV
elevation from the finite basis used here, the actual shift
of 0.6-0.7 eV seems too large to be an artifact. It may be
that this difference is a static quantum size effect [see Ref.
25(b) for discussion and citations] but with only 1L and
2L data we are reluctant to speculate on the matter.

The density of states at the Fermi level N(E) is much
smaller for both thin films, a factor of 5 to 6, than what
we consider to be the most believable crystalline value,
0.0012 state/eV atom.’ Since the magnitude of N(E) is
determined primarily by weak hybridization at the K
point of the BZ, this result is qualitatively unsurprising,
but the size of the difference is larger than expected. In
fact, within numerical precision we cannot rule out the
possibility that the graphite 2L is a true semimetal. If so,
it might be a candidate for bypassing the obstacles? to
experimental observation of a quantum size effect in the
work function of n layers. Note that both E and N(Ey)
reported here differ from those reported in the initial cal-
culation.”? Both changes are a direct result of eliminat-
ing the artificial lattice contraption found there.

Some interpretation of results cited in Table V may
also be in order. In the cases of Willis, Fitton, and
Painter,” and Vriko, Liegener, and Ladik,’> we deduced
some or all of the data for Table V from figures. Regard-
ing N(Ey) for Zunger’s calculation,' it is clear from a
figure that he finds nonzero N(E), but we cannot make a
reliable numerical estimate. The basic Vracko, Liegener,
and Ladik’? calculation is in the Hartree-Fock approxi-
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mation, which rigorously must have N(E) identically
zero.”?

Both the differences between LDA models and the
shifts between self-consistency and non-self-consistency
are sufficiently large that the effective tight-binding pa-
rameters often used in astrophysics to calculate the opti-
cal properties of interstellar grains can be and often are
significantly modified. Because of the reduced band
broadening found here in comparison with Ref. 23 (a
consequence of the spurious lattice contraction found
there), the calculated values for the tight-binding parame-
ters of the 2L also change. With the same definitions and
assumed relationship between ¥, and ¥, as described in
Ref. 23, we find yo=—2.5+0.2 eV, y;=—0.1 eV, and
¥,=~0.01 eV. The values in common use seem to be from
Tatar and Rabii:® —2.92, —0.27, and +0.022 eV, re-
spectively. Though the present y, is shifted (with respect
to Ref. 23) toward the commonly used value, the
differences between the two parameter sets are still quite
substantial. The source of the difference is primarily the
m-band splitting that determines (y,+7y,). While that
splitting is not large for the crystal, it is much smaller for
the 2L.

The same argument applies to the occupied band-
widths, also tabulated in Table V. For the crystal those
determined by Jansen and Freeman’ are slightly nar-
rowed in comparison with those calculated by
Holzwarth, Louie, and Rabii® but no more so than is con-
sistent with the difference in lattice parameters in the two
cases (calculated versus experimental, respectively).
Comparison with the Ref. 9 results shows the 2L ¢ band

TABLE V. Key parameters for LDA energy bands from various calculations and corresponding ex-
perimental values. In order, — E is the work function, N(Ef) is the DOS at Er, and the W’s are occu-
pied bandwidths. HL is the Hedin-Lundqvist LDA; X« is the X-a parametrized LDA; EH denotes ex-
tended Hiickel; sc denotes self-consistent; nsc denotes non-self-consistent. Approximate values for foot-

notes d and g are estimated from figures.

System and —Ep (eV) N(Eg) W, (V) W, (V) W (€V)
Reference (st/eV atom)
2L (HL, sc) 5.23 0.0002 16.2 8.4 20.0
present
1L (HL, sc) 4.81 0.0003 16.0 79 20.1
present
Crystal (HL, sc)? 17.3 9.1 20.8
Crystal (HL, sc)® 15.0 8.7 19.6
Crystal (Xa, nsc)® 8.0 0.0012 14.8 8.0 19.5
Crystal (Xa, nsc)? ~0.02 =16 ~ ~20.7
1L (EH, sc)* >0 17.0 5.6 21.2
1L (Xa, nsc)f 8.84 0.0 14.3 7.4 19.3
1L (HF, sc)® 0.0 ~24 14.2 =34
Crystal, Expt.h! 47417 4.6 16.0! 8.1 20.8%

# Reference 6.
® Reference 9.
¢ Reference 5.
d Reference 2.
¢ Reference 13.
f Reference 12.

& Reference 52.
h Reference 47.
i Reference 48.
i Reference 49.
k Reference 50.
! Reference 51.
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to be broadened and the 2L 7 band narrowed with
respect to the crystal. The 1L calculation by Vracko,
Liegener, and Ladik®* exhibits the excessive occupied
bandwidth characteristic of the HF approximation.
Their quasiparticle treatment of the one-electron spec-
trum based on the HF reference state narrows the occu-
pied 7-band width from 14.2 eV to 8.8 eV, 0.9 eV larger
than the value we predict from bare KS eigenvalues.
They did not report the quasiparticle o bands.

Finally, we find the 1L unoccupied states at I" several
volts above the position reported by Posternak et al.'®
The difference may be traceable to the p basis used here.
As our focus is on the ground state, the present basis is
somewhat limited for the representation of virtual orbit-
als when compared to a FLAPW basis.

V. SUMMARY

The in-plane lattice parameter of the graphite 2L is
essentially identical with the crystalline value (calculated
or measured). The interplanar separation is expanded
very slightly with respect to the value from an all-
electron calculation but modestly contracted with respect
to a contemporary pseudopotential result. All are ex-
panded with respect to experimental crystalline values.
The dramatic c-axis contraction predicted earlier’?
turns out to be spurious. The calculated 2L interplanar
binding energy is in remarkably good agreement with
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measured crystalline values, whereas virtually all prior
calculations differ greatly from experiment as well as
among one another. The graphite 2L differs from crystal-
line graphite primarily in its much larger work function
and much smaller density of states at E; indeed, it may
be a semimetal.

Although not as dramatic as the earlier predictions,
these results still support the view that ultrathin graphite
has rather different computed properties from those for
crystals. Such differences could be important for the
treatment of astrophysically important thin graphitic ob-
jects. Finally, calculation of the properties of a system
with highly anisotropic binding, such as graphite, is an
extremely demanding test of algorithms and associated
matters of computational art.
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