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Droplet model of plasma resonances in medium-size metal clusters
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We study photon absorption and scattering by medium-size N =8-20 sodium clusters, making use of
the interacting boson model to describe the coupling of plasma resonances to surface oscillations and de-
formations of a dropletlike structure. With reasonable assumptions on the nature of the plasma reso-
nances and their couplings, we obtain an excellent description of the experimental photoabsorption data.

I. INTRODUCTION

Recently, systematic studies of photoabsorption spec-
tra of metallic clusters have been performed. A very ex-
tensive study of sodium clusters within the size range
N =3—40 atoms has been presented. ' With the availabili-
ty of these studies, it begins to be possible to understand
the structural properties of metallic clusters. This prob-
lem is of particular importance in view of the fact that
clusters bridge the gap between small molecules and
infinite systems (crystals). With this article, we begin a
systematic investigation of photoabsorption spectra of
metallic clusters with the aim of covering the entire
range, from the free atom, %=1, to the crystal, N —+ 00.
Here, we concentrate our attention on medium-size sodi-
um clusters, %=8—20, whose spectra have been inter-
preted as collective excitations of the valence electrons
similar to the collective excitations of valence nucleons in
atomic nuclei. The multipeak structure observed in the
spectrum has been interpreted as evidence for a non-
sphericity of the electron cloud. However, a simple el-
lipsoidal shell model is not able to reproduce the ob-
served spectra for clusters containing N 13 atoms. '

This may be either due to further fragmentation caused
by the long-range nature of the Coulomb interaction,
which, differently from the nuclear case, can strongly
couple the surface-plasma resonance to individual elec-
tronic levels, or to the fact that for these medium-size
clusters the molecular structure still plays a role, causing
a fragmentation of the plasmon modes which follows the
discrete symmetry of the clusters. The coupling to other
electronic levels has been studied in the random-phase
approximation (RPA) in spherical clusters, ' predicting
in Na2o the occurrence of two closely spaced collective
excitations sharing about 70%%uo of the total oscillator
strength. Recent ab initio calculations of small clusters
(N=4) also show a multipeak fragmentation that cannot
be accounted for by a single surface plasmon.

With the aim of studying in detail metallic clusters of
any size and structure, we introduce in the following sec-
tion an algebraic model of plasma resonances similar to
those used previously to study nuclear and molecular
structure. In this model, the photoabsorption spectrum
is obtained by diagonalizing the Hamiltonian

8=8,+8,+P„. (1)

where 8s describes the structure of the cluster, P~ the
plasma resonance, and fs ~ the interaction between the
plasma resonance and the cluster structure. The first
term in (1) has been written as 8s since the quantal treat-
ment of the oscillations and rotations of the cluster is
done in terms of boson operators. Hence, the name in-
teracting boson models (IBM's) is given to this type of
model. Here we consider the simple case in which the
cluster is described not by a molecular structure, but by a
dropletlike structure with an ellipsoidal shape similar to
that of atomic nuclei, and show that the assumption of
the existence of tao dipole collective states is able to ex-
plain very accurately the observed peak structure in the
wavelength range 450—630 nm without the need to in-
voke nonaxially symmetric shapes. We note that we have
also attempted a description in terms of only one dipole
collective state and triaxial droplet shapes, but were un-
able to achieve a similar accurate description. The situa-
tion seems to be similar to the nuclear case, where triaxi-
ality rarely occurs, if at all.

Having fixed the parameters of the model on photoab-
sorption data, we also compute (and thus predict) the
cross sections for coherent elastic scattering of unpolar-
ized radiation.

R =Ro 1+ g a2„Y2„(8,tp)
P

(2)

it can be quantized by means of quadrupole bosons (d bo-
sons), having angular momentum and parity L =2+. In
addition to the five independent quadrupole degrees of
freedom, characterized by the creation operators
dz(p= —2, —1,0, +1,+2), a monopole degree of free-
dom (s boson) with L =0+ is also introduced to take
into account the finite size of the system and its volume
conservation. With s and d bosons, this leads to conser-

II. MODEL

In this paper we take a particular choice of 8s in (1),
namely that corresponding to the quantization of vibra-
tions and rotations of a classical shape (interacting boson
model). If the shape is ellipsoidal with radius
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h'd =(d d )

is the number operator of d bosons, and

Q„=(d Xs+stXd)„''+y(d Xd)„'

(4)

(p= —2, —1,0, +1,+2) (5)
I

vation of the total number of bosons, N~. In addition,
the introduction of both s and d bosons allows one to
treat easily both spherical and deformed clusters, and it is
thus crucial for the situation analyzed in this paper.
Conversely, the introduction of only d bosons, as in Ref.
9, can easily address the problem of spherical clusters.

The dipole collective states, higher in energy than the
quadrupole surface modes, are quantized in terms of p
bosons, with angular momentum and parity L =1
The coupling of these to the quadrupole modes —that is,
d and s bosons —splits the dipole excitation. The split-
ting of the plasmon mode turns out, then, to be identical
to the splitting of the so-called giant dipole resonance in
nuclei. The IBM treatment of this problem by Maino
et al. ' is extensively reviewed in Ref. 11. However, a
modification of this treatment is necessary, since, as men-
tioned above, RPA and ab initio molecular calculations
point to the occurrence of plasmon modes of several
types. Here we consider the case of (plasmon) p bosons of
two types and droplet ellipsoidal shapes with axial sym-
metry. In this case, each type is split into two main com-
ponents due to the coupling to the deformation of the
droplet. The situation is somewhat similar to that en-
countered in the giant resonances of light atomic nuclei
where the two plasmon modes are the two different iso-
spin components of the giant resonance. ' In other words,
the two plasmon types are built from configurations with
different symmetry properties under particle permuta-
tions. The choice of two plasmon types appears to de-
scribe the available data in the wavelength range
450—630 nm quite accurately. Generalization to the case
of a number of p bosons greater than two and to their
splitting in the presence of triaxial shapes is straightfor-
ward within the framework of the IBM.

In this work, we use the following boson Hamiltonian

8~ =Eo+sdh'd+kQ Q, (3)

where Eo is a c number, such that the ground state has
zero energy, and the operators hd and Q are defined in
terms of creation and annihilation operators of d bosons,
d„(p= —2, . . . , +2) and d„=(—1)"d „, respectively,
as well as s bosons, s and s =s. More precisely,

is the s-d quadrupole operator. It is important to note
that as the parameters c.d, k, and g change the Hamil-
tonian (3) describes spherical, deformed with axial sym-
metry, and, so called y-unstable shapes, as extensively
discussed in Chap. 3 of Ref. 7. The notation in Eqs. (4)
and (5) is the standard notation for scalar products (.)

and tensor products ( X ), i.e.,

(dtXd)„''= g (2,p„2,p2I2, p)d„d„
» }"2

2

t ~ p
= g k,' I Q (p,

t Xp, )' '], (8)

i.e., a quadrupole-quadrupole interaction between the
low-lying modes and the dipole modes. The coupling
strength k could, in principle, depend on i, but we take
it, for simplicity, to be independent of dipole type. In or-
der to compute photoabsorption cross sections, we also
need to know the transition operator. This operator is an
electric dipole operator, E1, and can be written as

2

Tz= g q;(p;+p;)z (A. = —1,0, +1) .

Again, the constant, q, , could depend on i, but we take it
to be independent, q, and such that 1'satisfies an assigned
fraction, n, of the energy-weighted sum rule, '

(10)

Here, 1„stands for the nth dipole state, at energy E„,ob-
tained from the diagonalization of Eq. (1), and the re-
duced matrix element of f' is defined through the
Wigner-Eckart theorem as in Ref. 7. On the right-hand
side, N is the number of valence electrons and m, the
electron mass.

Absorption and coherent elastic scattering of unpolar-
ized radiation by a cluster can be calculated from the po-
larizability:

Returning to Eq. (1), we take

2

Hp= ps 6'

i=1

where 6' is the number operator for p bosons of type i,
and c is the plasmon frequency of boson i, in the ab-

I

sence of coupling to the surface modes. The coupling
Hamiltonian is

XI n II II i I ~ .(I,
L

where co is the incident photon frequency and I „ the
width of the 1„state. The absorption cross section is
given by the optical theorem

o„(co)=(8m.l3)(cole) IPOI

III. RESULTS

(13)

o',b, (co }=4m.(cole ) Im(Po )

and the coherent elastic scattering is

(12)
By making use of the model of Sec. II one can compute

the photoabsorption cross section for sodium clusters
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TABLE I. Interacting-boson-model parameters for N=8 —20 sodium clusters. EWSR is the energy
weighted sum rule, see Eq. (10).

N~
cd (eV)
k (eV)

x
(eV)Pl

Sl (% EWSR)
c~ (eV)

P2

S2 (%%uo EWSR)
k' (eV)

Na8

2
0.01

—0.05
—1.000

2.10

3
2.52

67
+0.05

Na io

4
0.01

—0.05
—0.400

2.10

25
2.70

50
+0.05

Na 12

9
0.01

—0.05
—0.400

2.25

40
2.85

30
+0.05

Cluster
Na l4

9
0.01

—0.05
—0.300

2.25

40
2.85

28
+0.05

Na, 6

10
0.01

—0.05
—0.300

2.25

28
2.58

30
+0.05

Na l8

4
0.01

—0.05
+0.500

2.45

47
2.90

30
+0.05

Na2o

2
0.01

—0.05
+ 1.000

2.45

43
2.90

25
+0.05

with N=8 —20. The fragmentation of dipole strength is
determined by the following three quantities. (i) the clus-
ter structure (Ez, k, y); in nuclei, this is obtained from a
knowledge of the low-lying spectrum; in sodium clusters
the low-lying spectrum has not been measured; we there-
fore assume the simplest possible structure for the clus-
ters, namely that it is spherical at the "magic numbers"
N =8 and 20, and deformed in between. We keep the pa-
rameters sd and k in Pz, constant, and vary y as in the
analogous situation in nuclei. We note that negative
values of g correspond to prolate ellipsoids, while posi-
tive values of y correspond to oblate ellipsoids. In addi-
tion to the structure parameters (sd, k, g}, we need to
know also the total boson number, Nz. In nuclei this
number is related to the number of nucleon pairs in the
valence shell. Surprisingly, it appears that also here the
number N~ as determined from a fit to experiment is re-
lated to the number of electron pairs in the valence shell.
(ii) The next quantity that enters in the calculation of the
photoabsorption spectrum is the plasmon energy, c.

Within small variations ( 10%%uo} these energies should be
identical in all clusters in a shell (N =8 —20). (iii) Finally,
the last quantity is the strength of the coupling, k'.

In this first, empirical, study we have kept cd, k, and k'
constant for all clusters, and allowed only y and Nz to
vary, and, within certain margins, the plasmon proper-
ties. Our results are shown in Table I. With the parame-
ters of Table I, we have calculated the fragmentation of
the dipole strength, as shown, for example, in Fig. 1.
This fragmented spectrum, often called the "stick spec-
trum" is then spread over the underlying, more complex
configurations by assigning to each fragment, 1„,a width
I „. The width I „ is given by I „:—I (E„),with

The energies of the fragments, E„, and the dipole ma-
trix elements, (l„~~f'~~0&+), have been obtained by nu-
merical diagonalization of the IBM Hamiltonian (1), us-
ing the GR —GRT chain of codes. ' The calculated photo-
absorption cross sections per electron, cr,b, /N, are com-
pared with the experimental data in Figs. 2 and 3. In
Fig. 4 we show the predicted scattering cross sections per
electron, crsc/N, versus the incident photon wavelength
A, for some clusters. From Figs. 2 and 3, one can see that
one can achieve an excellent description of all sodium
clusters in the range N=8-20 within the framework of
the present model. In other words, the splitting of the
surface-plasma resonance due to the coupling with other
electronic states (or to the underlying molecular struc-
ture), together with the splitting of these states due to the
axial deformation of the cluster, is able to explain the
available data. There does not seem to be any need to in-
voke triaxial deformations. [Note that triaxiality in nu-
clei seems to come from the fact that one has protons and

O
O
CQ

N )4

CQ

G

I

OO-
C0

I (E)=0.11E, (14)

where I (E} and E are both measured in eV. The in-
crease of the spreading width with energy, takes into ac-
count, both here and in the corresponding nuclear case,
the increase of the underlying density of states with E,
since, according to statistical theory,

O
O

2.0
I

2.5
I

3.0 3.5
I (E)=2mp(E)(u(E))', (15) E (eV)

where p(E ) is the density of states at energy E and
( u(E) ) the average matrix element.

FIG. 1. Fragmentation of the dipole strength
B(E1,0, 1 ) = / (1„(ff'][0,+ ) [ in Na, ~.



4434 F. IACHELLO, E. LIPPARINI, AND A. VENTURA 45

neutrons. The protons tend to produce an oblate defor-
mation, while the neutrons tend to produce a prolate de-
formation (or vice versa). This is due to the neutron ex-
cess that puts protons and neutrons in different shells.
The combination of these different deformations leads to
triaxial shapes. In clusters we have only one type of par-
ticles. Hence, it is unlikely that we will obtain, from a
microscopic calculation, triaxial shapes. ]

We also comment briefiy on the relation between the
results obtained here and those reported in Ref. 2. Using
the methods discussed in Chap. 3 of Ref. 7, it is possible
to associate with each cluster a distortion parameter 5.
Tlhis is done by 6rst evaluating the energy surface,

(16)

where P, y are the Bohr variables describing the ellipsoid
(2), and then finding the equilibrium deformation, P„by
minimizing E(NB,P, y ) with respect to P and y. For axi-
ally symmetric ellipsoids, y=0 (prolate) or 60' (oblate).
With the Hamiltonian (3), the equilibrium deformation P,
is approximately given by'

—,
'

[ —( —', )' +(7g +4)' ], g ~0, prolate

—,'[+(—', )' y+( —',y +4)' ], y&0, oblate .

(a) Na 8 (b) Na 10

N Qog
N
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z

b
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FIG. 2. Com r'pa ison between experimental (Ref. 1) and calcul t d t t l h b
with a number of atoms ranging from %=8 to 14. The dashed curves re resent the c

a e o a p otoa sorption cross sections in sodiumdium microclusters
e curves represent t e contnbutions of the two plasmon modes. The
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TABLE II. &. &~equivalent distortion parameters of N —No a, — a20 clusters.

ga

gb
0.043
0

10

0.074
0.44

12

0.167

14

0.163
—0.50

16

0.181

18

—0.076
—0.24

20

—0.043
0

'Present calculation.
From Ref. 2.

cNaP„pr ol ate

—cN~P„oblate (18)

The distortirtion parameter, 5, is related to N~ and ~ by, by where the constant c is a scale factor. This scale fac
e y requirmg that for a given value of

tin of
z and, the IBM Hamiltonian produces th e same split-

'
g of a plasmon mode of unperturbed ener co a

classical ellipsoid, i.e.,
r ur e energy N~ as a

(a) Na (6 Na )8

cuo+

b

'o+

R

b
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z
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O
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l
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FIG. 3. Sam. Same as in Fig. 1, with N = 16, 18,20.
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can see that the two low-lying spectra are very different,
despite the fact that one can make the absorption spec-
trum in the range 450—630 nm agree with data in both
cases. A measurement of the low-lying electronic spectra
is thus a key to a full understanding of metallic clusters.

Finally, we note that the fact we have obtained a good
description of the available data in terms of a system of
interacting bosons suggests an interpretation of the bo-
sons as correlated electron pairs' (Cooper pairs). If this
is the case, the adjustable parameters used here for repro-

ducing the data can be derived from a fully microscopic
calculation, similar to that performed for atomic nuclei.
Also, in this case, the large-particle limit, N~ 00, can be
easily studied since it corresponds to the large-N limit of
the interacting boson model.
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