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Matching formalism for surface states and surface resonances
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A method for ending localized states and resonances at surfaces and at interfaces of periodic media,
like solids or superlattices, has been formulated. The logarithmic derivatives of matched solutions in the
case of localized states, and the local density of states in the case of resonances, are calculated using the
concept of a transfer matrix Th.e method is applied to studying the electronic surface states in
GaAs/Al„Ga& „As superlattices and the image-induced resonances of the (111)surface of silver.

I. INTRODUCTION II. THEORETICAL OUTLINE

Fast developing experimental investigations of metal
surface states, like crystal-derived states, image-induced
localized states, or image resonances, '

supply more and
more accurate information about these states for nearly
every metal surface. The two-dimensional surface states
appear as a direct consequence of the breakdown of the
three-dimensional translation symmetry in the z direction
normal to the surface. Their existence is not therefore
limited to the metal surfaces, but they can be looked for
in any truncated periodic medium as, for example, super-
lattices. The experimental interest is accompanied by
an intensive effort in finding methods of theoretical
description of the surface states. In contrast to simple
approaches, such as multiple-scattering and phase-
accumulation methods, ' ' the surface-Green-function
matching formalism, ' based on the concept of the
transfer matrix, has been recently put forward to study

problems involving one or more interfaces. ' The simple
methods never go beyond the one-dimensional models,
while the latter one is encumbered by some complexity,
especially when trying to describe resonances.

The aim of this paper is to propose a matching formal-
ism suitable for studying the localized states and reso-
nances at surfaces and interfaces. The method exploits
the concept of the transfer matrix' and is addressed to
solving problems of matching states when the physical
models of the matched media resolve themselves into sys-
tems of second-order differential equations. This hap-
pens, for example, when using the multiband pseudopo-
tential models to describe crystallinity of the surfaces of
solids, ' or when using the envelope-function approxirna-
tion for the multiband k.p model to represent the band
structure of semiconductor superlattices. '

In Sec. II the theoretical outline of the method is
presented. In Sec. III the theory is applied to study sur-
face states of GaAs/Al Ga, „As superlattices. In this
study the terminated Kronig-Penney model is used and
the results are compared with previous analytical calcula-
tions. Next, the method is used to find the image-
potential resonances of the Ag(111) surface. Concluding
remarks are given in Sec. IV.
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and the prime means differentiation with respect to z. In
general, the second derivative vector may be multiplied
by a nonunit matrix A, but without losing much generali-
ty we can start with the form given by Eqs. (1). Equation
(1), describing two different media separated by the
geometrical plane at z=zo, differs in the coefficient ma-
trices 8 and C, and thus in the "potential" W. For each
medium we define, following Mora, Perez-Alvarez, and
Somrners, ' the transfer matrix which carries any solu-
tion of Eqs. (1) from a given point zo (e.g., z=O) to a
point z inside the desired medium:

F(z) =M(z, O)F(0), i.e. ,

f(z) M„„M„D
f (z) MD„MoD

f(0)
f'(0)

Let us start with a system of N coupled ordinary linear
homogeneous second-order differential equations:

d2 df(z)+B(z) f(z)+ C(z) f(z) =0 . (1)
dz2

The system can be transformed into a system of 2N equa-
tions of the first order:

d
dz

F(z)+ W(z)F(z) =0,

where
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where M b are X-dimensional blocks of the transfer ma-
trix M(z, O).

In the present approach we are going to find the sur-
face localized states by matching logarithmic derivatives
(LD's) of the solutions of Eqs. (1) for both joined media,
imposing proper boundary conditions (BC's) on the left
and on the right of the surface in question. For the reso-
nances, i.e., for the states which belong to the continuum
energy region (to the band), the matching equations can
have acceptable solutions for all energies. Therefore they
are identified with the maxima of the local density of
states.

Let us consider the problem of solutions and boundary
conditions for two difFerent kinds of media: (i) periodic,
like solids or superlattices, and (ii) nonperiodic, like im-

age barriers or outside step-well potentials. For the
periodic media, according to Born-von Karman BC's the
knowledge of 8' limited to one period d is suScient to
determine an arbitrary solution of Eqs. (1). The transfer
matrix which carries a solution by a single period is
denoted M(d), i.e., M(d)=M(z+d, z). Diagonalization
of M(d), performed for all required energy values 6, al-
lows us to solve the dispersion relation 6 versus k. '7 The
eigenvalues A, of M can be expressed as e' with
k =q+i~ where q and ~ are real. If ~=0 then the eigen-
values correspond to solutions f(z) which satisfy the
Bloch periodicity condition

From Eq. (3) we have

f(z) =(M„„+M„DL'+') f(0),
and following condition (6) we may express L '+ ' as

(8a)

where M„D( —) and M„„(—) correspond to the transfer
matrix calculated from z=O to —00 (in practice to a
suSciently large value z „). Let us note that the I.D of
f is exactly equivalent to the logarithmic derivative of the
projection G=G(0, 0) of the Green function G(z, O) for
this medium, defined in the surface-Green-function
matching formalism (cf. Ref. 14), and expressed, similarly
as in Eq. (8a), in terms of the transfer matrix. For the
periodic medium (let us say the right-hand side of the
surface) condition (6) does not define the LD uniquely at
z=0. This is because f approaches zero nonmonotoni-
cally when z approaches infinity. As a consequence, L '+ '

is unstable with respect to changes of z„.This instability
is a direct consequence of the periodic structure of
M(z, O). In order to find the logarithmic derivative of
f(z) at z =0, we can take advantage of the fact that the
required solution satisfies the condition (5), i.e.,

f(d)=kf(0) for A, =e

Thus from Eqs. (7), (3), and (5) we have

f(z+d)=e'~ f(z) . (4) L = —M„i,'[M„„(d)—A, ] . (9)

Let us note that for a given energy 8 more than one ei-
genvalue of M may become equal to e'~" for different
values of q. This corresponds to several overlapping
bands. The real values of k define thus the regions of al-
lowed energies. Outside these regions there are no eigen-
values with a =0. The eigenvalues for which q =0 corre-
spond to exponentially decaying solutions (purely imagi-
nary k =i v):

f(z+d) =e " f(z) . (5)

For nonperiodic media, properties of the acceptable solu-
tion on the surface are determined by imposing appropri-
ate BC's far from the surface, e.g., for z approaching
infinity.

Let us consider now in detail the method of matching
for localized surface states and for surface resonances.

A. LocaIized surface states

The localized surface states appear on the background
of the forbidden energy regions (in the gaps) of a ter-
minated periodic inedium (i.e., joined with a nonperiodic
one). For the nonperiodic side of the surface (let us say
the left-hand one) we require that the solution corre-
sponding to the localized state satisfy the condition

f(z):0 .
co

(6)

Let us define the logarithmic derivative L' ' of f at z =0
as

f'(0)=L'+'f(0) .

Now, requiring continuity of f and f' through the sur-
face or interface, we have

(L'+' L)f(0)=0—,
which implies that the localized states appear when

det(L'+' —L ) =0 .

(10)

B. Surface resonances

Let us now consider the case of the surface state energy
@, belonging to the continuum. The local density of

This can be used also to study interface-localized states of
two periodic media using Eq. (9) to determine the LD on
both sides of the interface plane. If for a given energy 8
more than one eigenvalue A, of M is real, we construct Eq.
(11) for each A, . Equations (10) and (7) determine f(0)
and f'(0), respectively. Thus, with the given initial con-
ditions, the wave function f(z) may be obtained by direct
integration of Eqs. (1) from z =0 to any point z. In the
numerical code designed for practical applications, one
can adopt the same integration procedure as the one used
to determine M.

We shall notice here that in the case of %=1 the
Green function G(z, O) of the periodic medium, like f(z),
obeys condition (4) or (5). Thus Eq. (9) defines also
uniquely the logarithmic derivative of the projection of
the corresponding Green function. There is nothing
peculiar in the fact that it depends on k (through A, ). This
is always the case when we deal with one second-order
differential equation, having one-to-one correspondence
of 8 and k.
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6 '=L —L" . (13)

The main problem is now to find the LD's for both
joined media. For the nonperiodic medium (the left one),
the derivatives can be determined from the requirement
that Q(z, zo) remains regular when z —+ —~. This is
equivalent to our condition (6) for f, and gives L' =L'+'
[cf. Eqs. (Sa}].

For the periodic medium we consider only the case
when for a given energy 8 only one complex and normal-
ized A. appears. For example, this is always the case when
N=1. As mentioned previously, the logarithmic deriva-
tive L' is in such a case equivalent to the LD of f, i.e.,

L"= —M„D(d)[Mq„(d) —
A, ] . (14)

Now, the inversion of 9 defined by Eqs. (13), (14), and (6),
allows us following Eqs. (12) to determine the LDOS 0.

on the surface. Let us note that even if 8'and M are real,
the 0 ' is complex due to the complex A, =e'~, leading to
nonzero density of states. This approach is applicable
not only in the case of N=1. We can calculate L" using
Eqs. (14) for all the cases when for a given energy 8 only
one A, =e'e appears [i.e., only one acceptable solution of
Eqs. (1) exist for this energy]. It happens, for instance,
when there are no overlapping bands, which occurs often
for 8 near the edges of the allowed energy regions.

The problem appears when more than one complex
and normalized A. simultaneously exist. This makes im-
possible the use of Eq. (14) to determine LD L". This
problem deserves further investigation.

states (LDOS) on the surface separating two media at
Z =Zo 1S

o.(zo, 6 }=—Tr ImG(zo, zo;8),1

7r

where G(z, z';8) is the surface (composite) Green func-
tion of Eqs. (1). According to the Green-function match-
ing analysis, ' ' the inversion of the surface projection
G =6(zo, zo) of the Green function is related to the left-
and right-hand side logarithmic derivatives L & and L & of
the Green functions of two component media, respective-
ly, as

Our initial equation (1) is the Schrodinger equation with
the U potential barrier outside of the superlattice and
with the KP periodic potential representing the compos-
ite layers conduction-band edges. In this case the
transfer matrices M( —) and M(d) =M(a+&)
=M(a)M(b) can be, for energy 8 & U, put forward in the
analytical forms

(e"~+e "~) —(e "&—e "~)
K

M( —)=—1
K(e "~—e "~} (e"~+e "~) (15)

where g=z „and @=[2(U—6)]', which gives
L'+'=a in the limit of g —+ —&x. The matrix M(a} reads

M(a)=
cos( ka ) —sin( ka )

1

k
—k sin(ka} cos(ka) (16)

where k=(2m&h)'~ . For 8) V„M(b) takes the same
form as M(a) with k = [2m2(8 —V„)]',and for 8 & V„
M(b) takes the same form as M( —) with g=b and
a=[2mz(8 —V„)]'~. The diagonalization of M(d) al-
lows us, according to Eqs. (4) and (5), to determine elec-
tronic structure, i.e., the minibands and minigaps of the
conduction band of the compositional SL. Solving Eq.
(11) for energies 8 in the gaps, with the matrices M(a)
and M(b) inserted into Eq. (9), we get the energies of the
surface localized states. The results, for different compo-
sition x, are given in Fig. 1. They are the same as those

0.6

tinuity V, the band-gap difference AE„„at I minima of
the composite layers, the effective masses m „m2 and the
thickness of the layers have been taken from their work:
U=4. 07 eV, V =0.66E „, m, =0.067 Pl2=P7l ]

+0.083x, GaAs and Al Ga, As thickness are, respec-

tively, a =60 A, b = 15 A, and

1.247x, x (0.45

1.247x+1. 147(x —0.45), x )0.45 .

III. APPLICATIONS

In this section the superlattice surface states (SSS's) of
GaAslAI„Ga, „As, and the image-potential resonances
(IR's) of Ag(111) are calculated as the illustration of the
method presented. The results for SSS's are compared
with the previous calculations based on the same model
potential. The results for IR's are compared with experi-
ment.
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A. GaAs/Al„Ga& „As superlattice surface states

A terminated Kronig-Penney (KP) model has been
used to study the superlattice (SL) GaAs/Al„Ga, „As
surface states. In order to compare the present calcula-
tions with those by Stqslicka, Kucharczyk, and Glasser,
all the parameters of the model potential, i.e., the
vacuum-well potential U, the conduction-band discon-

0.0
0.0 0.2 0.4 0.6

composition x
0.8 1.0

FIG. 1. Energy spectrum of GaAs/A1„Ga, „As SL surface
vs composition x. Dashed curves represent the energy of sur-

face states, hatched areas represent the energy minibands.
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by Stqsslicka, Kucharczyk, and Glasser. The existence
of the surface resonances has also been checked using for-
mula (12), but no peaks in o versus 0 have been noticed.
This is in agreement with a recent observation' that res-
onance states do not appear in models with a step barrier
terminating a semi-infinite crystal.

Also the calculated wave functions and probability
densities of the surface states have exactly the same
profiles as those presented by Sefslicka, Kucharczyk, and
Glasser. This is not shown here in order to avoid redun-
dant repetition of the same results. It is important to
note that applicability of the matching formalism
presented here is not limited to simple one-band models,
but can be easily applied within elaborated models
represented by an arbitrary number of differential equa-
tions.
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B. Image-induced surface resonances of Ag(111)

V(z) = V~+ 2 V», cos(g, z ), (17)

where V» &
is taken to be one half the gap at the I point

of the two-dimensional Brillouin zone (BZ) of the (111)
surface. The surface image-barrier potential has been as-
sumed as

V(z)= Vo— 1

4(z —z, }
(18)

The position z, of the classical image plane is taken to
0

have a value z; =2.0 A, similar to the values used in pre-
vious calculations. ' The vacuum level Vo we take equal
to (A' /4m )(2n /a), positioning it exactly in the middle
of the gap at the (001} surface. ' With these parameters
the vacuum level falls about 1 eU above the conduction-
band edge at I of the (111}surface.

The local density of the surface states has been calcu-

Many experimental and theoretical papers on the
image-potential induced states at metal surfaces have
been recently published. ' ' ' The majority of
theoretical contributions is based on the phase-
accumulation and multiple-scattering methods. A more
sophisticated approach has recently been proposed by
Jaskolski, Velasco, and Garcia-Moliner. ' In the same
paper a brief review of the subject is given. But so far the
main effort has been focused on studying image localized
surface states occurring in the forbidden energy gaps.
There is, however, experimental evidence' ' for the ex-
istence of the image surface resonances, e.g., image states
situated on the continuum background of the conduction
band. The main difficulty of theoretical description of
surface resonances is due to their energetic degeneracy
with the bulk band Bloch states.

The matching formalism presented in this paper may
also be used to study image-induced resonances. The res-
onances are identified with the peaks of LDOS 0. at the
surface. We apply the formalism to describe the image
resonances of Ag(111). We limit our consideration to a
two-band pseudopotential model built on the reciprocal-
lattice vectors g responsible for opening the gap on the
surface in question. The z-dependent bulk pseudopoten-
tial reads

FIG. 2. Surface density of states cr in the conduction band
below the vacuum level for Ag(111). Arrows indicate two peaks
identi6ed with n = 1 and n =2 image-induced resonances.

lated using the recipe described in the theoretical outline.
The transfer matrices M( —) and M(d) have been calcu-
lated integrating Eq. (2) in the canonical basis at z=0.
The Adams-Moulton algorithm has been used to per-
form the numerical integration. To diagonalize M(d) the
standard EISPAcz (Ref. 21) subroutines have been used in
both cases (IR and SSS). The results are presented in Fig.
2. The energy scale begins with zero of the bulk pseudo-
potential (17). The density of states vanishes for energies
below the 8.77 eV band edge. Two peaks at energies just
above the band edge represent n =1 (9.35 eV} and n =2
(9.78 eV) image resonances. Referring to the vacuum lev-
el (9.89 eV) their energies are 0.54 and 0.11 eV, respec-
tively. The first one agrees quite well with that observed
by Altmann (see Ref. 1) as 0.6 eV. The asymptotic form
of the image potential is responsible for an infinite series
of the Rydberg states converging to the vacuum level.
Very seldom can more than two of them be obtained in
either experimental or in theoretical investigations. We
should mention here a very recent work by Radny. ' The
Green-function factorization theorem is applied there to
a particular model, and used to investigate resonances at
Al(001) and Al(111) surfaces. Similarly as in our ap-
proach the resonances are identified with the peaks of the
LDOS.

IV. CONCLUSIONS

A simple matching formalism to investigate electronic
states of surfaces and interfaces of periodic media has
been presented. To illustrate its usefulness the method
has been applied to calculate semiconductor superlattice
localized surface states and image resonances of metal.
In the forbidden energy regions the logarithmic deriva-
tives of the solutions of difFerential equations (1), for both
sides of the interface, have to be matched in order to find
the localized state. In the allowed regions (the bands),
the expected resonances are identified as peaks of LDOS,
again determined with the help of the logarithmic deriva-
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tives. Imposing suitable BC's on the solutions at the left-
and at the right-hand side of the surface, a11 the required
objects are expressed in terms of the transfer matrices.
For nonperiodic media, the condition that the solution
vanishes far from the surface suffices to determine the
logarithmic derivative at the surface, as in the Green-
function matching formalism. For periodic media the
central role is played here by eigenvalues of the transfer
matrix M determined over one period. Establishing rela-
tions between the eigenvalues of M (M transfers solutions
through one period) and the Bloch condition (4) for the
allowed energies or the exponential decay condition (5)
for forbidden energies is the most essential advantage of
this formalism. This serves to find the logarithmic
derivatives which are to be matched or used to determine
0. at the surface. This way of finding LD's eliminates the
difficulties which occur when LD's are determined from

the requirement of vanishing of the solution at infinity in-
side the periodic bulk.

Although the theory has been applied to simple mod-
els, based on a single second-order differential equation, it
is clear that the same approach may also be used in more
complex cases. Detailed investigations are in progress.
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