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We study the classical dynamics of a charged particle in a two-dimensional (2D) lattice-periodic po-
tential with a perpendicular magnetic field. Due to chaotic scattering the particle shows diffusion in 1D
and 2D, as well as anomalous diffusion associated with 1/f noise. The onset of diffusion is explained by
heteroclinic intersections and stochastic layers, and the transition from 1D to 2D diffusion is caused by
the destruction of a separating Kolmogorov-Arnold-Moser torus. As a simplification we introduce a
discrete-time model based on a separatrix map, which facilitates the analysis of free-path distributions
related to the occurrence of anomalous diffusion. These results represent classical approximations for
the dynamics of electron wave packets in lateral surface superlattices on semiconductor heterojunctions.

I. INTRODUCTION

Bloch electrons in the presence of a homogeneous mag-
netic field show a variety of interesting phenomena.
Based on the Peierls-Onsager hypothesis, Hofstadter elu-
cidated the existence of a self-similar band structure de-
pending on the incommensurability of two characteristic
length scales."? The corresponding quasiperiodic
Schrodinger operator may have a spectrum with a singu-
lar continuous component and the wave functions may be
critical or exotic, i.e., neither extended nor localized.’
Quantum-mechanical wave packets spread diffusively
without bound, i.e., their width increases linearly in
time.* To circumvent unaccessibly strong magnetic fields
Hofstadter suggested studying artificial two-dimensional
(2D) superlattices with much larger lattice spacing than
in natural crystals.! As the superlattice spacing is in-
creased with respect to the Fermi wavelength; however,
the dynamics of a wave packet approaches the classical
limit. Today it is possible to realize high-mobility hetero-
junctions with lateral surface superlattices, and therefore
the time has come to also investigate the classical coun-
terpart of the problem, e.g., as an approximation for the
dynamics of a ballistic electron.

In the present article we show that the classical coun-
terpart of the problem studied by Hofstadter and oth-
ers! 7> exhibits chaotic behavior as the magnetic field
causes a nonintegrable coupling between the two degrees
of freedom, and we point out the relevance of
Kolmogorov-Arnold-Moser (KAM) theory® for the ob-
served phenomena. We investigate various types of
chaotic diffusion and characterize them by a power spec-
tral analysis of the current fluctuations. As the magnetic
field is increased from zero, a one-dimensional (1D)
anomalous diffusion process sets in. It is accompanied by
1/f noise corresponding to a nonlinear growth of the
mean-square displacement. For strongest fields there are
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transitions to 1D normal diffusion, 2D normal diffusion,
and 2D anomalous diffusion. Based on Poincaré surfaces
of section we explain the mechanism for the onset of 1D
diffusion by the generation of stochastic layers due to
heteroclinic intersections near the unperturbed separa-
trices. The transition to 2D diffusion is caused by the
breakup of invariant KAM tori into cantori. We intro-
duce a discrete-time model related to the whisker map to
describe the diffusion mechanisms and the dynamics in
the stochastic layers. Depending on a nonintegrability
parameter, which is directly related to the magnetic field,
the map generates normal and anomalous diffusion pro-
cesses as well as transitions between these types of
motion. While some of the occurring phenomena were
outlined already in a previous Letter,’ the discrete model
now enables us to a closer analysis of the dynamics.?

As mentioned above, the most important application of
the model is the motion of ballistic electrons in lateral
surface superlattices (LSSL) on semiconductor hetero-
junctions.’"'? At present these systems are studied in-
tensely, not only for academic reasons but also for their
potential use in future devices. The superlattice serves to
break the lateral free-electron behavior and to produce
minigaps.” Lateral superlattices with 1D modula-
tions'®!! and 2D modulations!? have been realized with
lattice parameters down to about 200 nm. The lattice pa-
rameter a is larger than the Fermi wavelength (e.g.,
a/Ap=8 in Ref. 10) and it is a problem to reduce this ra-
tio rather than to increase it. The dynamics of wave
packets can therefore be treated on the basis of classical
approximations.!® Strictly speaking, the classical equa-
tions of motion result from a quasiclassical treatment of
the superlattice potential for the dynamics of quantum
wave packets in k space. In the effective-mass approxi-
mation for the band structure, which is valid in III-
V-compound semiconductors, the quasiclassical equa-
tions of motion reduce to the classical equations of a

4372 ©1992 The American Physical Society



45 CHAOS AND ANOMALOUS DIFFUSION OF BALLISTIC. ..

Hamiltonian system with a mass determined by the
effective mass m* and a total energy determined by the
Fermi energy E.

For a typical 2D modulating potential we have previ-
ously studied the classical chaotic dynamics in the ab-
sence of a magnetic field.'*!> We found a mechanism for
1/f noise and presented a statistical theory for its ex-
planation. Avoiding the chaotic dynamics would require
a special modulating potential consisting of two perpen-
dicular plane waves. This situation may be realized, e.g.,
using the persistent photoconductivity effect.'® Consider-
ing such an integrable potential we show here, however,
that addition of a magnetic field will again cause chaotic
behavior. One of our conclusions regards the elastic
mean free path I, (~10 um in Al,_,Ga, As/GaAs
heterojunctions'®). The occurrence of chaotic diffusion in
a regular superlattice may reduce the lengths of free
paths. Other possible applications of this classical treat-
ment are related to particle channeling, fast ion conduc-
tors, and electrostatic plasma waves.

The article is organized as follows. The model and its
equations of motion are introduced in Sec. II. Dynamical
and statistical properties are investigated in Sec. III and
explained in terms of KAM theory and heteroclinic inter-
sections. Section IV reduces the dynamics to a discrete
map and relates its statistical behavior to the charge-
carrier diffusion.

II. CLASSICAL MODEL OF BALLISTIC DYNAMICS

A. Equations of motion

We consider a classical particle with charge e moving
in a two-dimensional superlattice potential under the
influence of a perpendicular homogeneous magnetic field
B=BZ along the z axis, as described by the Hamiltonian

2
1 eB
H = +£2
(%,9,Px>Py) o | [PxT5Y
B 2
+ py——e2x +Vix,y). (2.1)

We assume the simplest case of an isotropic potential in
two dimensions with superlattice constant a

V(x,p)=V, |2+cos 27 | +cos %:ly 2.2)

Measuring energy and length in units of the potential
strength and the superlattice constant, respectively, we
obtain scaled variables

o _ 27

X="—x, =y, [=wgt. (2.3)
a a

Time is measured in units of the inverse harmonic fre-

quency

1/2
® 2
0 4

VO
m

(2.4)

which arises in the quadratic approximation of the super-
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lattice potential. The equations of motion then read (om-
itting the tildes for convenience)

X =v,, U,=sinx+2Av, ,

(2.5)
y=v,, v,=siny —2Av, ,
corresponding to the Hamiltonian
H(%,9,p,,p,)=1(p, +Ay 2+ 1(p,—Ax)*+ ¥V (x,p) (2.6)
with a scaled potential
V(x,y)=2+cos+cosy . 2.7
The dimensionless quantity
B_a _ 2 2.8)

A=E— =
'\/mVO 47 20)0

proportional to the applied magnetic field B describes the
nonintegrable coupling between the two degrees of free-
dom and is related to the bare cyclotron frequency. Con-
cerning the magnetic field A there are two integrable lim-
its in this model, that is, A—0 (electrostatic limit) and
A— o (magnetic limit). In lateral surface superlattices
this parameter can easily be varied in a large range, as it
does not only depend on B, but is also inversely propor-
tional to V{’%2. Very small potential amplitudes V<1
meV are obtained by the persistent photoconductivity
effect,'® whereas for lithographically patterned gates ¥V,
can be varied between 0 and 1 eV by tuning the gate volt-
age.'"!2 It is thus easy to reach values of A between 1073
and 10' (e.g., A=4 for V,=1 meV, B=1 T, and
a =1um).

B. Energy regimes

The equations of motion in Eq. (2.5) are canonical and
therefore the total energy E=H of the system is con-
served. The two parameters E and A determine the phys-
ical situation. The potential ¥ in Eq. (2.7) has minima at
the energy E =0, saddle points at E =2, and maxima at
E =4. Depending on the total energy E we distinguish
three energy regimes. In the Jow energy regime E <2, all
orbits are localized within one unit cell of the potential
for all values of A. For intermediate energies 2<E <4,
drifting quasiperiodic orbits extended in x but not in y,
and vice versa, may coexist with localized orbits in
dependence of A. At high energies E >4, possible orbits
are in principle not restricted in configuration space. The
most interesting phenomena, deterministic diffusive
motion and 1/f noise, occur in the intermediate energy
regime, with which the main part of this work is con-
cerned.

III. NUMERICAL RESULTS

A. Power spectrum and transport properties

We have analyzed the particle motion by means of the
velocity power spectrum

— 1 ® iwi
Sa(w)—gf_w(va(t)va(O))e ‘dt | (3.1)
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where a distinguishes the Cartesian components. In Eq.
(3.1) the angular brackets denote time averaging, so that
the power spectrum appears as a Fourier transform of the
velocity autocorrelation function. This relation, together
with the well-known equation'®

o?,(t)=2fo'(r —5){v,(s)v,(0))ds (3.2)
from the theory of stochastic processes, gives rise to in-
terdependence between the low-frequency behavior of the
power spectrum S,(w) and the asymptotic behavior of
the mean-square displacement o2(t)={AaX(t)) for
t— . As described in previous articles,!* two varieties
of diffusive motions may occur in classical models for
ballistic electron dynamics.

Normal diffusion is characterized by a linear growth of
the mean-square displacement with time o2(z)~2Dz,
while the power spectrum S () converges to a finite lim-
it for ©—0. The diffusion coefficient D =nS,(0=0) is
finite.

Anomalous diffusion is related to a nonlinear growth
o%(t)~1'"8 with 0<B=1 of the mean-square displace-
ment and a low-frequency divergence S,(w)~w 7 of the
spectral density. Our numerical results exhibit cases with
B=1, i.e., with an occurrence of 1/f noise in the spectral
density S(w) of the velocity fluctuations.

If there is no transport at all in a particular direction (x
or y) the corresponding power spectrum (S, or S,) van-
ishes in the low-frequency limit. This occurs in the low-
energy regime E <2, where all orbits remain confined to
one lattice cell.

We have determined power spectra S,(w) in the inter-
mediate regime 2 <E <4. Qualitatively, the results do
not vary strongly with the actual value of the total energy
E. Therefore we present the main numerical results for a
special choice E =2.92 (Figs. 1 and 2) and others for
E =3.82 (Fig. 3). The numerical determination of the
power spectra makes use of the Wiener-Khinchin
theorem!®

Sal) =5 | [ 7 vatre™ar | (3.3)
d@)=7—1 ] valtle .
and circumvents the determination of the autocorrelation
function. Using a set of initial conditions located in the
stochastic layers [see, e.g., Fig. 8(a)] we have obtained the
following results.

At total energy E =2.92 and with increasing magnetic
field A starting from A=10"* the velocity fluctuations
show 1/f noise Sy(co)~co“3 in the low-frequency limit
with B~ 1 [Fig. 1, spectrum (a)] up to fields A< 1073 As
described above, this behavior of the power spectrum is
associated with anomalous diffusion (Ayp2(1)) ~¢!*5,
Note that the diffusive motion is only in one dimension,
the direction (x or y) being determined by the initial con-
ditions. In our special choice the motion is diffusive
along the y axis and is localized in the x direction. The
corresponding power spectrum S, (w) vanishes at low fre-
quencies. Due to the fourfold rotational symmetry of our
model we can also prepare initial conditions with
diffusive motion in the x direction and localization in the
y direction. In this case we achieve the same results as
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FIG. 1. Velocity power spectra S,(w) for various magnetic-
field strengths A at total energy E =2.92. Frequency is in units
of the harmonic frequency w,. For (a) A=10"3 and (c) A=0.07,
S,(w) diverges as »~# with B~1 corresponding to anomalous
diffusion. For (b) A=1072, S,(w) remains finite as @—0 corre-
sponding to normal diffusion.

above. As we increase the magnetic field, we find a tran-
sition region above A=10"3 where the character of the
spectrum changes. Near A=10"2 the low-frequency
divergence has disappeared [Fig. 1, spectrum (b)]. We
can thus conclude that there is a transition to normal
diffusion characterized by a finite value of the diffusion
coefficient D =7S,(0) and by a linear growth of the
mean-square displacement (Ay2(t)). So far, however,
the normal diffusion remains one dimensional. At a criti-
cal field strength A,=~0.014 we found a transition from
1D diffusion to 2D diffusion where the particle performs
a random walk in the x-y plane. Both power spectral
densities S;(w) and S,(w) have a finite limit for ®—0.
With increasing values of A the 2D diffusion also becomes
anomalous [Fig. 1, spectrum (c) and Fig. 2, spectrum (d)],
as S, (w) and S, (o) exhibit 1/f noise. Normal diffusion
in 2D is reached again above A~0.3 [Fig. 2, spectrum
(e)], whereas above A=0.5 all orbits are localized within

10
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FIG. 2. Same as Fig. 1 with different values of the magnetic-
field strength A. For (d) A=0.12, S,(w)~w # (with B=1) per-
taining to anomalous diffusion. For (e) A=0.3, S,(w) remains
finite for ®—0 corresponding to normal diffusion again.
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FIG. 3. Velocity power spectra for various magnetic-field
strengths A at total energy E =3.82. For (a) A=8X107%, S, ()
diverges as o~ ? (B=1) corresponding to anomalous diffusion,
which is one dimensional here. For (b) A=0.25, S,(w) con-
verges to a finite limit as «—0. Diffusion is normal and now
two dimensional.

one unit cell of the potential. This localization is related
to the value of the cyclotron radius, which for
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A>-L

T

(3.4)

2

becomes smaller than the superlattice constant. For a
different total energy E =3.82 one finds the same
scenario, although the critical A values for the transitions
are different (Fig. 3).

B. Distribution of free-path lengths

We have verified the above conclusions concerning the
transport properties in the intermediate energy regime by
studying the distribution of free paths, which are easily
discerned in the motion of the particle. Free paths are
motions crossing the boundaries of one or more lattice
cells. For chaotic diffusion in a perfectly ordered poten-
tial, free paths are intermittent, i.e., they start and end in
chaotic motions within a cell. The chaotic dynamics
gives rise to a quasirandom scattering of ballistic elec-
trons. Thus we assume successive paths as statistically
independent and describe the distributions of their
lengths by a probability density v,(¢), where ¥,(£)d¢
equals the fraction of paths parallel to the a axis with
lengths between ¢ and ¢ +d¢. For computational
reasons and in order to get better statistics we determine
the integrated probability distribution

@a(/)=f/ bl Ed L (3.5)
For obvious reasons the asymptotic behavior of the dis-
tribution of free paths is related to the type of transport
in the system. Also, there is an interdependence between
the power spectrum S,(w) and the probability density
D).

Suppose that we have a single ballistic path of duration
T.. Aslong as t <7, the contribution of this single path
to the velocity autocorrelation function C(z) is propor-
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tional to the length of an interval in which a correlation
between time 7 and time 7+ ¢ is possible, i.e.,

Ct)=<{v?)(r, —1) . (3.6)

For an ensemble of statistically independent free paths we
only need to sum up contributions of individual free
paths and the autocorrelation function becomes

~{d)
()

Here we have transformed from the duration of free
paths to their length =1V (v?) using a mean-squared
velocity (v?). The average length (¢ ) of ballistic paths
gives the correct normalization in Eq. (3.7). In order to
get a relationship between the probability density ¥,(¢)
and the power spectrum we return to the definition Eq.
(3.1). The velocity autocorrelation is an even function
and thus

C,(

a

1) Jw=ngenae. (3.7

Sal0)=~ [ *C,(tcos(wt)d . (3.8)
mYo

Performing a partial integration and observing that the
autocorrelation vanishes for physical reasons as ¢t — oo,
we obtain

Sul@)=—— [ “Clnsin(on)dr . (3.9
Tw * 0

According to Eq. (3.7)

( 2\3/2 w

=—%>7—f/ YLl

(v[21)3/2
R

Equations (3.9) and (3.10) combine to a relation connect-
ing the velocity power spectrum with the integrated
probability density of free path lengths®

(v2)

(£ )w

D) . (3.10)

oY4

Vv (v2)

Using Eq. (3.11) we can now relate the behavior of the
free-path distribution to the various types of transport,
which we observe in the classical model of ballistic elec-
tron motion. Normal diffusion is implied by an exponen-
tial decay ®,(¢)~e %’ of the integrated free-path distri-
bution, since in this case the power spectrum becomes a
Lorentzian

S w)= d¢ . (3.11)

fow D (¢ )sin

_1
*+a?’
which yields a finite value for the diffusion coefficient
D =75 ,(0). In the case of anomalous diffusion we find
algebraically decaying long-time tails ® (¢ )~¢ " in the
integrated distribution of free paths. For v <2, Eq. (3.11)
then yields Sa(a))~a)'B, where

v+p=2.

S ()~ (3.12)

(3.13)
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Numerically we have obtained the integrated distribu-
tion ®,(¢) of free paths independent of Eq. (3.11). Their
length is given by the number of successive cell boundary
crossings. Their distribution was determined by counting
their occurrence in the course of time. All cases of nor-
mal diffusion were connected with exponentially decaying
free path distributions [e.g., Fig. 4(a)], while the cases of
enhanced anomalous diffusion were accompanied by
long-time tails ® (¢ )~ ¢ " (for large ¢) in the free-path
distribution mostly with v=1 [e.g., Fig. 4(b)]. According
to Eq. (3.13) this implies B~1, i.e.,, 1/f noise in the
current fluctuations. In Sec. IV we will construct a
discrete dynamical system, in which all these features of
the free-path distribution are recovered. It thus can serve
as a model for investigating chaotic diffusion and transi-
tions between various types of diffusive motion in nonin-
tegrable Hamiltonian systems.

C. Poincaré surfaces of section

The mechanisms leading to the different types of
diffusion can be understood by analyzing Poincaré sur-
faces of section (Figs. 5-10). In all cases we plot the in-

10" =T T,

(b) -

URLLALLLLL IRUNLLLALLL

FIG. 4. (a) Integrated probability distribution ®,(¢’) (unnor-
malized) of free-path lengths at total energy E =2.92 and
magnetic-field strength A=0.01. The distribution ®,(¢) falls
off exponentially as £ — o implying normal diffusion. (b) Same
as (a) for magnetic-field strength A=0.07. The distribution de-
cays algebraically as ®,(£)~¢ " for £/ — o with v=~1. This
corresponds to anomalous diffusion and 1/f noise in the veloci-
ty power spectrum.
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FIG. 5. Poincaré surface of section at the potential minimum
for total energy E = 1.3 and magnetic field A=0.1. The motion
appears regular.

tersections of phase-space orbits with the y-v, plane at
x =7 (mod2m), i.e., at the potential minima. Due to the
discrete translational symmetry of the superlattice poten-
tial we identify all y coordinates mod2m and thus reduce
them to the unit cell [0,27]. The phase-space trajectory
is uniquely determined by the points in the surface of sec-
tion. We can partition the total energy as E=E, +E,
where E, and E, are the instantaneous energies in each
degree of freedom, e.g., E,=1+cosy +vy2/2. Since E,
and E, are positive definite, the outer boundary of the
Poincaré surfaces of section is always given by the curve
E,=E. In the case of low energies E <2 this curve is
closed, implying that in this situation the particle is
confined within one unit cell. For intermediate and high
energies (E >2) the boundary consists of two separate
curves and transport across superlattice cells is possible.
Because of the fourfold rotational symmetry of the lattice
it suffices to consider only Poincaré sections in the y-v,
plane as they are identical with the x-v, sections. Anoth-
er choice for Poincaré surfaces of section would be in the
y-v, plane at x =0 (mod2w), i.e., at the saddle points of
the potential.!* This choice, however, would not display
localized pieces of the phase-space trajectory and thus is
not suitable in the present context.

0 02 04 06 08 10
y/2Tt
FIG. 6. Poincaré surface of section at the potential minimum

for E=1.9 and A=0.1. A stochastic layer has grown and now
covers a noticeable part of the phase space.
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FIG. 7. Poincaré surface of section at the potential minimum
for intermediate energies with 2 < E <4 (here E =2.92) as it ap-
pears in the zero-field case (i.e., A=0). Two separatrices divide
the phase space into regions of delocalized (drifting) motions
(ITI) and localized orbits (II).

-3 I N R I Y S O
0 02 04 06 08 1.0

y/ 2Tt

y/2T

FIG. 8. (a) Poincaré surface of section at the potential
minimum for intermediate energy E =2.92 and magnetic field
A=0.01. The onset of diffusive motion is related to the creation
of stochastic layers around the two separatrices caused by
heteroclinic intersections. (b) Partial magnification of (a).
KAM tori in the region of localized orbits (Fig. 7, region II)
separate the two stochastic layers and therefore diffusion is one
dimensional.
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FIG. 9. Same as Fig. 8 for A=0.014. Two-dimensional
diffusion sets in as the KAM tori separating the two stochastic
layers in Fig. 8 are destroyed. The connected stochastic region
was generated by a single orbit.

1. Low-energy regime

In a first part we consider Poincaré surfaces of section
for energies E <2 (Figs. 5 and 6). We have obtained sur-
faces of section for magnetic fields in the range from
A=0.001 to 0.1 and for energies between E =1.3 and 1.9.
Chaotic behavior becomes important for magnetic fields
A20.1. While for energies E <1 the Poincaré surfaces of
section show regular motions (Fig. 5), for higher energy a
region of stochastic motion appears in the vicinity of a
hyperbolic fixed point. The size of this stochastic region
grows with increasing energy (Fig. 6).

The regular motions for E <1 can be understood by
partitioning the superlattice potential

Vix,p)=V.(r)+AV(x,y) (3.14)
in a point symmetric part
V.(r)=2—2Jy(r) (3.15)

with #2=x2+y? and a perturbation AV, which breaks
the continuous rotational symmetry. If AV=0 there is
another invariant of motion besides the total energy E,

0 02 04 06 08 10
yl2TT
FIG. 10. Same as Fig. 8 for A=1.0. In the limit of strong

magnetic fields the stochastic region is shrinking and a regime
of regular (localized) motion is reached again.
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the z component L, of the angular momentum. The
Hamiltonian system then is integrable, allowing only reg-
ular orbits in phase space. As long as E <1, the pertur-
bation AV is small and does not substantially alter the
regular motions in the surface of section (e.g., Fig. 5).
Higher energies involve stronger perturbations AV and
give rise to the occurrence of chaotic dynamics (Fig. 6).
In the low-energy regime, the energy E thus serves as a
parameter controlling the transition from regular to
chaotic dynamics, in contrast to the case of intermediate
energies (see below). This transition to chaos is of in-
terest in itself. In the following we will concentrate, how-
ever, on large-scale chaotic motions occurring above
E =2.

2. Intermediate-energy regime

A detailed analysis of Poincaré surfaces of section done
at intermediate energies shows that the magnetic field A is
the relevant parameter affecting the dynamics and the
transport properties (see Figs. 1-3). We have deter-
mined surfaces of section for various energies 2<E <4
and various field parameters from A=10"* to about A =2
[Figs. 8(a)-10]. Consider first the zero-field case A=0
(Fig. 7). Here the Hamiltonian (2.6) separates into Ham-
iltonians for two uncoupled pendula as can be seen in the
decoupling of the equations of motion (2.5). The energies
E, and E, of the x and y degrees of freedom are each
conserved. The Hamiltonian system is integrable and
regular orbits appear as invariant curves of constant E,
in the surfaces of section. The sections thus look similar
to the phase portrait of a pendulum. There are two pen-
dulum separatrices, however, for E,=2 and E,=E —2
(i.e., where E, =2), which divide the plane into three re-
gions as shown in Fig. 7: In region I, above the y separa-
trix (E, >2), the orbits correspond to running solutions
of the y pendulum. They correspond to delocalized
motion in the y direction (drifting orbits) and must be lo-
calized in x (in the intermediate-energy regime 2 < E <4).
In region III, for E, <E —2, we have E, >2, and there-
fore the orbits belong to running solutions of the x pen-
dulum and localized motion in the y direction. Note that
these two regions are interchanged under the symmetry
operation x+>y, y—>—x (7/2 rotation). In the inter-
mediate region II, we have E, <2 and E, <2 correspond-
ing to swinging motion of both pendula. The particle
thus remains confined in both directions within one unit
cell. The area II of localized orbits between the two
separatrices decreases with increasing total energy and
disappears for E =4, when the particle energy exceeds
the potential maximum. In the surface of section there is
an elliptic fixed point at y =m,v, =0, corresponding to
the minimum of the potential, and a hyperbolic point at
y =0,v, =0, corresponding to the saddle point of the po-
tential V. As we apply a magnetic field (A >0), regular
drifting orbits continue to exist in regions I and III [Fig.
8(a)] in accordance with the KAM theorem.® Around
each of the two separatrices a stochastic layer is generat-
ed, in which the orbits perform irregular chaotic dynam-
ics [Fig. 8(a)]. These stochastic layers exist for the lowest
fields (AL<10"%), although they are only visible under
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sufficiently strong magnification. They extend into the
regions of localized (II) and delocalized (I or III) orbits
(see Fig. 7) and thus a chaotic orbit in the layer can
switch in a finite time from a localized region to a delo-
calized region and vice versa. This is the origin of
diffusive motion in 1D. The layer around the outer
separatrix generates diffusion in the y direction. For
symmetry reasons the inner layer plays the same role for
the x direction. The stochastic layers and thus the onset
of 1D diffusion are caused by heteroclinic intersections of
the unstable and stable manifolds® of the hyperbolic fixed
point at y =0,v,=0. In the next section we approximate
the dynamics in the stochastic layer responsible for 1D
diffusion by a discrete map.

The mechanism for transition from 1D diffusion to 2D
diffusion can be understood from a magnification of Fig.
8(a) shown in Fig. 8(b). We can clearly distinguish KAM
tori in the region II of localized orbits separating the
inner and outer stochastic layer. Since KAM tori are in-
variant manifolds, they cannot be penetrated by chaotic
orbits. An orbit in the outer layer thus cannot reach the
inner layer and a particle diffusing in the y direction can-
not change to a free path in the x direction and vice ver-
sa. For this reason, diffusion is possible only in 1D as
long as these KAM tori are not destroyed by increasing
resonances. In Fig. 8(a) we also distinguish a pair of el-
liptic and hyperbolic fixed points in the localized region
II, resulting from a 1:1 nonlinear resonance with rotation
number a,=w, /o, =1. For A=0 this rotation number
belongs to an invariant curve with E,=E, =E /2. The
KAM tori outside this curve have E, > E, and therefore
a, <1; the ones inside have a, >1. The most prominent
KAM tori in these regions have golden-mean rotation
number ay=7/=(\/5+l)/2 and a,=1/y =y —1. These
are the most irrational rotation numbers in the sense of a
continued fraction expansion. The golden tori are the
most robust as they are far from resonant conditions and
are the last to be destroyed. This happens at a critical
field of A.=~=0.014 where the inner and outer layers start
being connected (Fig. 9) and can both be visited by indivi-
dual orbits in the course of time. Diffusion in two dimen-
sions is thus generated for fields A=A.. The rate of
switching between x diffusion and y diffusion is deter-
mined by the flux across the two golden cantori (broken
tori). From work on the standard map!’ we may expect
that it shows critical scaling behavior near A, with a
power-law growth as (A — A, )*011722,

In Fig. 9 the elliptic fixed point at the center
y=m,v,=0 (for A=0, see Fig. 7) moves to the left ac-
cording to the Lorentz force, which also points left for
v, >0. Similarly the KAM tori in region III are not cen-
tered at y =m,v, =0 but are shifted to the left to an ex-
tent depending on the mean value of v,, or the diameter
of the circles. The hyperbolic point at y =0,v, =0 (for
A=0), however, moves to the right due to the Lorentz
force and the local y curvature of the potential at the sad-
dle point, which is opposite to the y curvature in the
minimum.

For still larger values of the magnetic field A= 1.0 the
stochastic region shrinks again and regular motion
predominates (Fig. 10). This is because for
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the force due to the potential can be neglected with
respect to the magnetic force. In the magnetic limit the
particle performs regular motions localized in one unit
cell. In this section we have only presented Poincaré sur-
faces of section for E =2.92. Surfaces of section for oth-
er energy values in the intermediate regime are qualita-
tively similar® and are therefore not included in this pa-
per. For example, for E =3.82 (Fig. 3) we find the same
scenario as above. The main difference consists in other
critical values A for the transitions between different
types of diffusion. So for E =3.82 the transition to 2D
diffusion occurs at lower values of A as the localized re-
gion II shrinks with increasing energy. The magnetic
limit according to Eq. (3.16) is also reached at smaller
fields.

A>> (3.16)

1IV. DISCRETE MODEL OF DIFFUSION

In the preceding section we gave a qualitative explana-
tion for the occurrence of anomalous diffusive motion
and 1/f noise in the velocity power spectrum. It was
shown that diffusion is caused by the growth of a stochas-
tic layer near the unperturbed separatrix. In the present
section we will construct a discrete map for the dynamics
in the stochastic layer. Relating the diffusion process to
the iteration of a separatrix map'® will reproduce all
features of diffusive motion in the system including tran-
sitions between various types of diffusion.

To construct this discrete map we consider the outer
stochastic layer at the unperturbed separatrix E, =2 [see,
e.g., Fig. 8(a)], i.e., we treat the case where the y degree of
freedom switches between localized and delocalized
motions for E,~2. For reasons of symmetry the inner
stochastic layer is described by the same map. At first
sight one might expect that the applicability of the
separatrix map is restricted to small values of A, where
the y pendulum stays near the outer separatrix and
diffusion is in 1D, as the stochastic layers are not con-
nected. Our numerical investigations will show, however,
that transitions between normal and anomalous diffusion
also occur in the regime of 2D motion. This is due to the
fourfold rotational symmetry of the Hamiltonian system,
where the stochastic layers and corresponding separa-
trices can be interchanged by a symmetry operation. The
same map (although with a different meaning of the ener-
gy variable w) describes all the dynamics of scattering
processes occurring within each of the stochastic layers.

For E =2 the motion of the y pendulum depends sensi-
tively on the momentary value of E,. For E, > 2 the pen-

y
dulum rotates, whereas for E, <2 it shows oscillations.

y
We consider in detail the motion of the pendulum in the
time interval T, defined to enclose a full rotation in the
case E,>2 and half of an oscillation for E, <2. The
length of this time interval in the unperturbed case is
given by
2K (k,) for E, <2
Ty~ ok (k1 /k, for E,>2,

where

4.1
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ky = '2— 4.2)

is the modulus and K denotes a complete elliptic integral
of the first kind. As the motion of the y pendulum is sen-
sitive to E, <2 and E,, >2 we introduce a new variable

w=E,—2. 4.3)

An expansion near E,=2,i.e, ky =1, yields the approxi-
mation!®

T,=In(32/|wl) . 4.4)
Note that the duration of oscillation and rotation
diverges logarithmically as the pendulum approaches the
separatrix, i.e., as w —0.

While the y pendulum performs a rotation or half of an
oscillation, the x pendulum oscillates because of the con-
dition E <4, i.e., E, <2. To a first approximation we re-
gard the x pendulum as a driving force, acting on the
motion in the y degree of freedom. We now determine
the additive change Aw of the variable w within the time
interval T, for a typical motion of the y pendulum.

T, /2

Aw=AE,= [’ E,dt.

B 4.5)

Evaluation of the Poisson brackets for E,= vf /2+1
+cosy immediately gives
E,={E,,H}={E,,E}=—2\v,v, . (4.6)

This equation can be understood in terms of the Lorentz
force in the y direction expressed by

dE,/dy=—2\v, . 4.7)
Equations (4.5) and (4.6) lead to
_ T, /2
Aw=—2A f—Ty/Z v v,dt . (4.8)

In order to get an explicit expression for Eq. (4.8) we in-
troduce the following approximations. We use the unper-
turbed swinging motion of the x pendulum as we set

v, =2k.cn(t +71olk,) , (4.9)
where cn denotes the Jacobian elliptic cosine and the
variable 7, describes the phase difference between the
motions of the x and y pendulum, respectively. We will
see later that besides the energy variable w, the phase 7
is the second variable involved in the discrete description
of the stochastic layer dynamics. As a further approxi-
mation we replace the motion of the y pendulum, which

is near the outer separatrix by the unperturbed separatrix
motion

v,(£)=2/cosh(z) . (4.10)
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As a consequence we then set the lower and upper limits
of the integral in Eq. (4.8) to infinity,
(t+70lky)

Aw=—82k, [* =

- cosh(?) @11

The Jacobian elliptic cosine can be expanded in a Fourier
19
series

]

® cos[(2n + 1w, 4]
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20, = cos[(2n + 1w, u]
ke wZo cosh[(2n + Do, K(V 1—k2)]
(4.12)

cn(ulk, )=

Carrying out the integral in Eq. (4.11) we obtain Aw as an
infinite series

Aw=—16Arw,

where w, denotes the frequency of the swinging x pendu-
lum. In the investigated energy range E <3, the
coeflicients of the infinite series fall off very rapidly (by a
factor of about 500 between the first two coefficients) and
thus a good approximation is given by the first term of
the sum

16Aw, 7 cos(w, 7)

cosh[w, K(V 1—k?)]cosh(w, 7/2)

Aw=— (4.14)

As far as the energy variable w is concerned, the dynami-
cal structure of the stochastic layer is described by the
map

v=w+Aw . (4.15)

Besides, also the phase of the swinging x pendulum is
mapped to a new value. It changes additively by the
duration T, of the y motion

Fo=70+T, . (4.16)

For convenience we replace w, 7y by 7, and obtain the

map

o =w — Acos(7y) ,

4.17)
To=To+ 0, In(32/|w|),
where according to Eq. (4.14)
A=10A and o, <1 (4.18)

in the parameter region considered here.

The map in Egs. (4.17) is not canonical and does not
preserve the phase-space volume in (w,7,). A canonical
form of Egs. (4.17) can be obtained by computing the
phase shift 7, [Eq. (4.4)] from the final energy ,

w=w — Acos(1g) ,

(4.19)
Fo=To+Q1n(32/|m]) .

The map is now area preserving and it is an example for
Chirikov’s whisker map.!® To make a connection to Ref.
18, w, used in Eqgs. (4.17) is replaced by . We want to
emphasize that in our model Q is restricted to [0,1] due
to the physical meaning of w,.

We now relate the dynamics of the separatrix map to
the particle diffusion in the system. According to Eq.

n=0 cosh[(2n + 1), K(V 1—k2)]cosh[(2n + Dw,7/2]

(4.13)

[

(4.3), for w <0 the y pendulum performs a swinging
motion (E, <2). The electron is therefore momentarily
localized in one unit cell along the y direction. In the
case w >0, however, the electron performs a delocalized,
ballistic motion in the y direction corresponding to rota-
tions for the y pendulum (E, >2). This implies that a se-
quence of positive values of w occurring in the iteration
of the map belongs to a ballistic free path (see Sec. III B)
over a number of lattice cells corresponding to the length
of the sequence. By iteration of the map Eq. (4.19) we
can thus deduce the statistic distribution of free-path
length from a discrete model of the stochastic layer dy-
namics. We may expect that at least the 1D diffusive
motion can be described and that different types of
diffusion (normal and anomalous) can be distinguished in
that way. Note that a backscattering process is connect-
ed with a change of the phase 7,=7,+n 7 where n is odd,
whereas forward scattering belongs to even values of n.

We have studied the temporal behavior of the discrete
model Eq. (4.19). Detection of sequences with positive
values of the variable w as described above and counting
the various free path lengths (i.e., the length of sequences
w > 0) directly gives the (unnormalized) integrated distri-
bution ®(¢') [see Eq. (3.5)]. In order to remove singulari-
ty effects we have used an ensemble of initial conditions
from which the iterations are started.

Figures 11 and 12 show the integrated distribution
®(¢) obtained from Eq. (4.19) for a constant frequency
Q=1 and for various “magnetic-field strengths” from
A=10"2 to 1. For weak magnetic fields A <1072 we
found an algebraic decay ®(¢ )~ ¢ ™" of free-path lengths
with v~1 [see Fig. 11, distribution (a), A=10"2]. As we
have shown in Sec. III, this pertains to anomalous
diffusion and to a low-frequency divergence S(w)~w ?
with B~=1 in the velocity power spectrum. The same re-
sult is recovered for strong fields A > 1.0 [see Fig. 11, dis-
tribution (c), A=1.0]. At intermediate values, however,
a transition to an exponential decay ®(£)~e ~9¢ of free
path lengths and hence to normal diffusive motion with a
Lorentzian power spectrum is observed (Fig. 12,
A=0.05).

In between the critical values of the magnetic field cor-
responding to normal and anomalous diffusion there is a
regime where the decay for large ¢ follows another
power law ®(¢)~¢ " with v=2 [Fig. 11, distribution
(b), A=0.1]. It can be shown? from Egs. (3.2), (3.7), and
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FIG. 11. Integrated probability distribution ®(¢) of free-
path lengths (unnormalized) resulting from the separatrix map
Eq. (4.19) for (a) A=0.01, (b) A=0.1, (c) A=1.0. The length of
ballistic paths falls off algebraically like ®(£)~¢"" with (a)

=1, (b)v=2,(c)v=1.

(3.8) that in the case v=2 the power spectrum diverges
logarithmically S(w)~|Inw| and the mean-square dis-
placement oX(t) diverges like ¢ Int, i.e., diffusion is anom-
alous by a logarithmic correction only. We point out
that this intermediate regime of quadratic decay
®(/)~¢ 2 for £ — o of the distribution reproduces an
analogous regime in the original Hamiltonian system
[Egs. (2.6) and (2.7)], which also shows up in between the
critical values of the magnetic field A corresponding to
normal and anomalous diffusion (see, e.g., Fig. 13 for
A=0.04). As the separatrix map has a universal applica-
bility in nonintegrable Hamiltonian systems, this might
be a universal transition regime between normal and
anomalous temporal behavior. Also from a formal point
of view the case v=2 represents a transition point from
anomalous to normal diffusion as the exponent v of alge-
braic distributions ®(¢£)~¢ " crosses the value v=2
from below. Algebraic distributions, although with a
different exponent v, have previously been reported for
the whisker map in a different parameter regime.?! In
that work the parameter A was fixed (A=1), while the
frequency ratio } was varied from Q=1 to 100. This
rather applies to a fast driven nonlinear pendulum under
strong perturbation.

200

0 100

FIG. 12. Same as Fig. 11 for A=0.05.
ponentially.

®(¢) decays ex-
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FIG. 13. Integrated probability distribution ®,(¢) of free-
path lengths (unnormalized) of the original Hamiltonian system
at total energy E =2.92 and A=0.04. In this transition regime
between normal and anomalous diffusion we find a quadratic de-
cay ®,(£)~¢"% for £ — oo similar to the one found in the
separatrix map model [see Fig. 11, distribution (b)].

In Ref. 14 an explanation for the occurrence of 1/f
noise and anomalous diffusion was given in terms of a
trapping mechanism in a hierarchy of nested barriers
(cantori) in phase space. The hierarchy stems from the
self-similar structure of nonlinear resonances in phase
space manifesting themselves as islands of regular motion
embedded in the chaotic sea. Each island contains KAM
tori and is encircled by broken tori (cantori) acting as
partial barriers. A chaotic orbit may penetrate into this
infinite hierarchy of barriers and remain trapped for an
arbitrarily long time. If the hierarchy dominates the
delocalized regions of phase space (e.g., region I in Fig. 7)
the particle can be trapped in long free paths and exhibit
1/f noise fluctuations.'* In the framework of the separa-
trix map we expect a modification of this mechanism. If
there is a hierarchy in the upper part (w >0) of its chaot-
ic sea, trapping in this region may cause a long-time tail
in the distribution ®(¢) of free paths. This is what we
find, indeed, in the cases associated with 1/f noise. More
exactly, whenever we found a distribution ®(¢ y~¢ !
there was a trapping hierarchy at the upper boundary of
the chaotic sea, which could not be detected in the cases
of exponential distributions ®(¢£)~e ~97.

V. CONCLUSION

The main application of our work is to the motion of
ballistic electrons in lateral surface superlattices (LSSL’s).
We predict that the chaotic dynamics in the anharmonic
potential gives rise to diffusive scattering and thereby can
lead to a finite mean free path or to a reduction of the
mean free path of an experimental system. Depending on
the parameters we do not only find regimes of normal
diffusion with a linear growth of the mean-square dis-
placement, but also regimes of anomalous diffusion with
quadratic growth and associated 1/f noise in the velocity
power spectrum. The speed of transport in the latter re-
gime is thus comparable to a pure ballistic motion. In
electronic devices where short switching times are re-
quired, an anomalous diffusive regime will show a better
performance than a normal diffusive regime.
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The mechanisms for the onset of different diffusive re-
gimes were analyzed in detail. One-dimensional diffusion
is caused by heteroclinic intersections of stable and unsta-
ble manifolds and the birth of a stochastic layer at the
unperturbed separatrix. A transition from 1D to 2D
diffusion arises by the destruction of the last separating
KAM torus. Anomalous diffusion and 1/f noise is relat-
ed to a trapping of chaotic orbits in a self-similar hierar-
chy of nested cantori. The analysis was facilitated by the
introduction of a simplified discrete-time model, which
makes use of a separatrix map. It reproduces various re-
gimes and allows a more convenient analysis of free-path
distributions.

The values of the coupling parameter A considered
here can be realized experimentally in LSSL’s. As dis-
cussed in Sec. I A, the necessary values of the magnetic
field and period of the superlattice are easily accessible
(e.g., A=4 for B=1T, a=1 pum, and Vy;=1 meV). In
realistic samples there is an elastic mean free path ¢, due
to scattering on impurities. It can be as large as 12 um
corresponding to more than 30 lattice cells.!® The mean
free path (¢) associated with chaotic diffusion in the
normal regimes is an order of magnitude below [e.g.,
(¢)=4.3 unit cells in Fig. 4(a)]. Chaotic diffusion can
thus lead to an observable reduction of the elastic mean
free path. In antidot lattices a reduction from ¢,=33
unit cells to 2.4 unit cells was recently reported.?> These
samples are sufficiently clean that classical nonlinear or-
bits are reflected in magnetoresistance peaks.

The anomalous diffusive regimes will be harder to
detect, of course. They are indicated by 1/f noise in the
velocity power spectrum S () as in Fig. 1. This quantity
is directly accessible in experiments since the Kubo for-
mula for the classical frequency-dependent conductivity
o(w) and the definition of S(w) [Eq. (3.1)] are propor-
tional. Figures 1-3 for S () thus also represent the con-
ductivity o(w) (up to a prefactor), which can be mea-
sured in far-infrared (FIR) and microwave experiments.
The onset of normal diffusion will be indicated by a non-
vanishing low-frequency value o(w—0), i.e., dc conduc-
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tivity, whereas anomalous diffusive regimes will be
reflected by a power-law increase of o(w) as w—0. Asa
matter of fact, FIR transmission measurements on 2D
periodic arrays of quantum dots have recently been re-
ported by Lorke, Kotthaus, and Ploog.?? Their results
indeed display an increasing low-frequency background
of o(w) as the gate voltage is varied from —3.1 to —2.7
V (Fig. 3) of Ref. 22). This may be a first indication for
the onset of an anomalous diffusion process.

The power-law behavior of S(w) and o(w) for the
anomalous diffusive regimes is expected to hold down to
infinitesimal frequencies w in a perfectly pure system.
The presence of impurities introduces a mean free time
(which otherwise would be infinite) of the order of the
time between collisions 7. Correspondingly there will
be a crossover frequency w,~1/7.,; where the power-
law behavior ends and turns into a constant for o <w,,.
Very pure samples with mobilities above 1X10°
cm?/V sec can be realized today (e.g., Refs. 10 and 23),
for which w,, is of the order of 3 X 10" sec™!. An upper
limit of the power-law regime is given by the harmonic
frequency wo=(2m/a)(Vy/m)!/? of the superlattice po-
tential. For soft potentials, i.e., for sufficiently small V,,
the anomalous diffusive regime will thus be covered by
impurity scattering. In harder potentials, however,
which arise in antidot superlattices (considering a finite
depletion length)* the upper limit w, is shifted to higher
frequencies. For example, for values of V=100 meV
and @ =0.2 um one has w,=2X10'® sec ™! and thus the
anomalous diffusion can show up in the FIR regime down
to .. The impact of impurity scattering on the non-
linear dynamics is treated in more detail in a paper** on
the interpretation of magnetoresistance experiments.
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FIG. 7. Poincareé surface of section at the potential minimum
for intermediate energies with 2 <E <4 (here E =2.92) as it ap-
pears in the zero-field case (i.e., A=0). Two separatrices divide
the phase space into regions of delocalized (drifting) motions
(ITI) and localized orbits (II).



