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Noise, coherence, and reversibility in Josephson arrays
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The noise sensitivity of Josephson-junction arrays is greatly enhanced in the presence of a so-called

"reversibility" symmetry. We use a simple dynamical picture corresponding to a diffusion process in

phase space to calculate the power spectrum of the total array voltage. Breaking the reversibility sym-

metry leads to a crossover from incoherent to coherent oscillations, reflected by improved scaling of the

voltage with respect to array size. In the limit where the in-phase orbit is strongly attracting, the results

agree with previous theoretical and experimental work.

I. INTRODUCTION

There is great current interest in the study of
Josephson-junction arrays, both as physical systems in
their own right, ' and as a class of nonlinear dynamical
systems with many degrees of freedom. " Special at-
tention has focused on current-biased series arrays, which
have the important property that the voltage across the
entire array can be large, even though each junction gen-
erates a relatively small voltage. From the physical point
of view, there is substantial leeway in the specific circuit
to be studied, in terms of both the type of Josephson-
junction element used, and the type of "load circuit"
which serves to couple the individual nonlinear oscilla-
tors.

Very recently, a remarkable dynamical property of cer-
tain Josephson arrays was discovered, which can be ex-
pressed formally as a symmetry in the underlying circuit
equations. ' ' In addition to the obvious mathematical
interest, this symmetry has profound physical implica-
tions: in particular, it rules out the possibility of stable
phase locking between array elements. The purpose of
the present paper is to focus on the practical
ramifications of this observation, and to draw a connec-
tion with earlier theoretical and experimental work on
Josephson junction arrays. '

In particular, this paper presents a calculation of the
total voltage output in the simplest dynamical regime
(which is also the most important regime from a practical
point of view), depending on whether or not the "reversi-
bility" property described in Ref. 12 is present. Our
starting point is a model for the phase-space flow which
embodies the most essential properties of the dynamics.
In this way, it is possible to draw quantitative conclusions
about the power spectra without making explicit use of
the detailed circuit equations. Our model is based on
only three features: (i) the topology of the phase space
(the dynamics takes place on an N-torus); (ii) the absence
or presence of an in-phase attractor (depending on the
load); and (iii) the symmetry of the governing equations
(in addition to the reversibility property, the Josephson
array equations have a permutation symmetry).

Consider the circuit depicted in Fig. 1. It was shown

that for Josephson junctions of negligible capacitance, the
array dynamics cannot stably phase lock if the coupling
load is purely resistive, though such behavior is possible
for inductor-capacitor loads. ' ' Numerical simula-
tions' verify this picture, by demonstrating the concomi-
tant noise sensitivity in the absence of a phase-locked at-
tractor, also called the in-phase state (see Fig. 2). In this
same work, a simple model of the deterministic phase-
space flow was introduced to estimate the power spectra,
which reproduced the gross features of the numerical
simulations. ' However, the analytic results showed a
flaw in the proposed model, since it predicted perfectly
sharp spectral lines in the in-phase case, which is un-
reasonable on physical grounds. The purpose of the
present paper is to introduce an improved model for the
phase-space dynamics which corrects this flaw, yet is still
simple enough to be analytically tractable. We will show
that only a few fundamental properties of the determinis-
tic flow are needed to get an accurate approximation of
the power spectrum.

Of direct relevance is the work carried out several
years ago based on the "slowly varying amplitude" ap-
proximation by Likharev and co-workers. " The basic
idea there was to launch a direct attack on the governing
nonlinear differential equations. By dividing the response
of each junction into a low-frequency part and a high-
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FIG. 1. Lump-circuit schematic of the Josephson-junction-
series array; the load may be any combination of passive circuit
elements.
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II. PHASE-SPACE MODEL
AND LANGEVIN EQUATIONS

The series array Josephson circuit with inductor-
capacitor load obeys the following ordinary differential
equations:

0
----- — L

frequency part, a quasilinear averaging scheme yielded a
set of self-consistency equations, which allowed those au-
thors to compute a variety of things, including the power
spectrum for the total voltage across the array when all
of the oscillators were mutually entrained. (They could
also calculate the range over which nonidentical elements
would mutually entrain, which goes well beyond the
scope of the calculations presented below. ) The basic
predictions for the scaling of the linewidth and total
power were consistent with experiments on series arrays
having up to 99 junctions. '

In contrast, the picture presented below is based on
general "geometric" properties of the dynamical system
rather than the details of the governing differential equa-
tions. Nevertheless, there is the opportunity for direct
comparison in the limit of a strongly attracting in-phase
orbit. In this limit, we recover the earlier findings, giving
the same line shape, linewidth, and total integrated power
as a function of the noise strength and the array size (i.e.,
the number of junctions). In addition, we obtain results
valid when the reversibility symmetry is present, which
gives dramatically different scaling properties.

y„+I,sin4
2eT

RI =
2e k

(2a)

LI+ (1/CII =
2e

(2b)

where (2a) obtains for a pure resistive load, and (2b) for a
combination inductor-capacitor load. Here, Pk is the
phase difference of the macroscopic wave function across
the kth junction, r is the junction resistance, I, is the crit-
ical current, Jb is the bias current, e is the electron
charge, A is Planck's constant divided by 2~, L is the load
inductance, C is the load capacitance, R is the load resis-
tance, and the overdot denotes differentiation with
respect to time.

The array equations (1) and (2b) exhibit stable in-phase

periodic oscillations over a range of parameter space. In
this case, each junction oscillates with exactly the same
wave form, corresponding to the largest possible voltage
oscillations across the entire array. In contrast, the array
(1) and (2a) cannot exhibit stable in phase -periodic osciEla
tions for any parameters, due to an underlying symmetry.
The goal of this paper is to compute the line shape of the
total voltage oscillations in the presence of random noise,
e.g., due to the junction resistance, for both situations.

One approach to this problem is to augment Eq. (1) by
independent random processes, and to attempt the solu-
tion of the corresponding Langevin equations. However,
we proceed instead by writing down alternative
differential equations which nevertheless capture the
essential features of the observed phase-space trajectories
of the "true" evolution equations, and augment these by
random noise terms. In particular, our model incorpo-
rates both the topology of the phase space (i.e., the vari-
ables Pk are phases and so defined mod2m) and the per-
mutation symmetry of the dynamical equations.

Now, except for parameter values Ib very close to I„
the in-phase solution corresponds to nearly sinusoidal
voltage oscillations, so that
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FIG. 2. Results of numerical simulations of the Josephson
circuit equations (1) and (2) augmented by independent noise
sources for each junction, as reported in Ref. 13. (a) Resistor
load; (b) inductor-capacitor load.

Pk =co+aco cos[cot+aq(t)] . (4)

The next step is to define more precisely the diffusion
process governing the ak(t). In particular, if the in-phase
orbit is stable, then the line a&=a2= . . - =a& must be
attracting. Moreover, any periodic orbit must be neutral-

ly stable along the orbit. Finally, the original equations
have permutation symmetry owing to the global cou-
pling. A mode1 incorporating all of these features is

a„=—Aa„+—ga +gk(t),
N

(5)
J

In the presence of noise, the trajectories deviate from this
unperturbed solution. An important observation is that
for initial conditions off of the in-phase orbit, the vari-
ables pk are nearly periodic, and adjust only on a time
scale long compared to 2m. /co. This may be modeled by
a diff'using phase in Eq. (3), so that
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where the parameter A, is related to the degenerate Flo-
quet exponent of the attracting in-phase orbit, and each
phase is subject to independent white-noise sources

(g„(r}& =0, (g, (r g„(s) & =~6,.„6(r—s) .

Equations (5) are appropriate for an attracting in-phase
orbit; however, they can also describe the free diffusion
over the entire N-torus if one takes A, =O. This limiting
case is therefore a model when there are no attractors at
all: this is precisely the situation for the pure resistive ar-
ray Eqs. (1) and (2a).

Our plan is as follows. Based on the dynamics (5), we
first determine the total array voltage V (t), given by

(:-„(&)& =0, (:"J(r):-„(s)& =r~&J (i(r —~ ) (10)

Clearly, the coordinate giv evolves differently than the
others. However, it is mathematically convenient to re-
cast Eqs. (9) in a slightly different, but equivalent, form:

~i4i+=i k=1 »

1
N ~N Xkj

j=1

In these coordinates, all of the input noise cross correla-
tions vanish:

V(t)= gP =Nei+gaco cos[cot +o.z(t)] .
2e

Then, we will compute the correlation function of V(t)
and the resulting power spectrum. Our main concern is
how the line shape depends on the array size N and the
noise strength K.

III. THE FOKKER-PLANCK EQUATION

where A,k=A, for k =1, . . . , N —1, and A,N=O. The ad-
vantage of this formulation is twofold: First, it allows us
to write some of the expressions generated below more
symmetrically; and second, our results can be easily ex-
tended to another interesting case encountered in certain
Josephson arrays, namely when the dynamics is neutrally
stable over the entire N-torus. ' '

The Fokker-Planck equation corresponding to Eqs.
(11) is

The N coupled Langevin equations (5) can be recast as
a Fokker-Planck equation for the probability density
P(ai, . . . , az, t}. It is convenient to first transform the
Langevin system so as to decouple the N variables. Let

N

a,P(e;r)= y a„(z„p„P)+—' y a2„P,
k=1 k=1

(12)

k

k(k+1) a kai+i k=1 . . . N 1

where 4 = (f„.. . , %z ), and Bi, denotes partial
differentiation with respect to g&. This equation is easily
solved. For a 5-function initial condition at an arbitrary
position, the solution is the product of Gaussians

(A simpler transformation to center-of-mass and relative
coordinates which has been used to great effect else-
where, is unhelpful here, since it leads to correlated
noise sources and so a relatively complicated Fokker-
Planck equation. )

In terms of this orthogonal transformation, the
Langevin system (5) becomes

fi, = —
A,ai, +:l„k= 1, . . . , N —1

(9a)

N

Pc(%;t) = g (2m cr i, )
'i exp

k=1

—[i)'ji —ya(0)e " ]'
20' k

where

oi, = (1—e ), 1, . . . , N —1,K —
2XA, t

k

ON =Kt .2 =

(13)

where

and

1

/k(k+1) ~ &~ &~+i
j=1

(9b)

and where we have written P& to emphasize that this is
the conditional probability given this specific initial con-
dition. In what follows, we need the joint probability
density P(+, t;4', t'). We can ensure stationarity by tak-
ing the distribution at the earlier time t to be the equilib-
rium distribution P,q [given by the t~ao limit of Eq.
(13)],so that

N
P(%', t;4', t')=P, (4) + [2m.oi2(r)] 'i exp

k=1

—(yi, —gee " )'

2o i, (r}
(14)

where ~= t —t'. In particular, we have

N

p, (p)= g p'q(lt(„)
k=1

(15}

I

with

p'q(q )=(2~~ ) exp( —
Pi, /2o ),

21rCT
(16)
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where o =sc/2A, for k =1, . . . , N —1, while for k =N
we must take the limit as cr ~ ao, which correctly recov-
ers the fact that the stationary probability density is uni-
form along the limit cycle.

the desired correlation function is
I

C(~)=—(ace) ge ' '(e e ")+c.c. ,
m, n

(18)

IV. CORRELATION FUNCTION
FOR THE TOTAL VOLTAGE

From the probability density (14), we can compute the
correlation function C(r) = ( V(t)V(t +r)) for the total
voltage (7), where the angular brackets denote an ensem-
ble average. Subtracting out the dc contribution to V(t),
which gives rise to a 5 function in the power spectrum at
zero frequency, we have

1C(t, ~)=—(ace) g (cos(a cur a—'„)—
m, n

+cos(2tot +a +cur+a„' ) ), (17)

where the primed and unprimed variables are evaluated
at times t +~ and t, respectively. The second term oscil-
lates rapidly, and disappears upon averaging over one
period. In the remaining term, the slow drift of the
phases a gives rise to the linewidth observed in the
power spectrum.

It is convenient to introduce complex notation, so that
I

ak =Xckjkg
J

where

CkN =N —1/2

ck, =[j (j +1)] ', for j =k, . . . , N —1,
ck k —1= [(k 1)Ik] i

ck =0, for j=1, . . . , k —2.
It follows that

(20)

I N I'm 'ni mk ~k nk ~k

k=1
(21)

Since the joint probability density is simply the product
of terms, one for each k, we have [using Eqs. (14) and
(15)]

where "c.c." denotes the complex conjugate. The re-
quired averages are more simply performed in terms of
the trasnformed variables fk. From Eq. (8), we have the
linear transformation

~ I N
(e' e

' ")=g f dPk f dt's'ke" " "e""""Pkq(gk)[2mak(r)] ' exp
oo oo

—(yk —1(ke
'"')'

2o „(r)
(22)

The Gaussian integrals are readily evaluated. [Some care must be taken with the k =N factor; recall that PN (fN ) is
the iL —n0 limit of Eq. (16).] Performing first the integration over the primed coordinates yields

N r
(e' e

' ")= g exp[ ,'ok(r)c„—k—]f dgke" " Pk~(gk)e (23)
k=1

For kAN, the integral over Pk has the value [see Eq. (16)]

Ak T
exp[ 2cr (c k

——
cnz—e "

) ], k =1, . . . , N —1, (24a)

while for k =N we have instead (recall that A, N =0)

f dy e mN~Ne nNtN —
1 7L~co 2L —L

(24b)

where we have used the fact that, from Eqs. (20), c &= 1/&'N for all m. Moreover, since o &=o2= =cr&
&

and
we have1 2 N —1&

I N —1 1 N —1

(e e ")=exp — crIr(r) exp ——o f(r) g C„k — cr g (c k
—c„ke —' )

k=1 k=1
(25)

Using Eqs. (20), the sums are readily performed, with the result

i am —ia„ —1 2 N —1 2 N —1 1 2 1 1(e -e ")=exp o N
— o f— o'(1+e ' )+o'e (26)

Substitution of this expression into the correlation function Eq. (18) yields, upon performing the double sum,
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1 N 1 2 N 1C(r)= —(ac@) cos(cor)exp o~ — o f — cr (1+e ' )

X N exp
N —1

N
o e ' +N(N —1).exp o e

N
(27)

Finally, reintroducing the explicit expressions for 0.
&, o &, and cr, this becomes

C(~)=—(aco) exp — cos(cor)exp — N exp e ' +N(N —1)exp —— e
1 2 N —1 N —1 ]c 1

2 N 2A, 2N N 2A, N 2A.

(28)

The form of Eq. (28) is suggestive. First, we see that the
output is the sum of two terms: Apparently, the one pro-
portional to N represents the contribution from in-
coherent superposition, while the term proportional to
N(N —1) represents coherent superposition. Second, the
correlation function has an exponentially decaying pre-
factor, which contributes an additional width to the re-
sulting spectral line centered at frequency co.

V. POWER SPECTRUM:
COMPARISON OF TWO LOADS

The power spectrum S(Q) for the total voltage is relat-
ed to Eq. (28) via

S(Q)=(2A) J C(r)cos(Qr)dr .
0

Now, since C(~) is the product of a pure cosine with a
(somewhat complicated} decaying function, we see that
S(Q) has the form of a line centered at Q=co, with the
line shape given by the transform of the decaying factor.
Equation (28) is valid for any choice of parameters; how-
ever, we are especially interested in two limiting cases,
both of which correspond to small noise intensities, so
that ~ &(1.

The first case is when the in-phase state is a bona jide
attractor. Physically, this can happen as long as the junc-
tions have substantial capacitance [so that there is also a
term in Eq. (1) proportional to the second derivative of
P„],or if the circuit load is not purely resistive, as in Eq.
(2b). In this event, the relaxation rate k is (at least) of or-
der unity, and we can expand the exponentials appearing
in the square bracket of Eq. (28), with the result

C(r) = exp
(ace)'

2

2

N2A,
cos(cor)exp — N + ,'(N —1) —e "'+0(~ )

2N
(29)

(~e have not bothered to expand the first exponential prefactor, which is just an overall constant very nearly equal to
unity. ) The corresponding power spectrum is

N —1S(Q)= (aco) exp
2

y f+(Q —~)2 2 2A,

2

+(CO —+ CO),
y2

y2+(Q —co)~
(30)

where ye=el(2N) and y2=~/(2N)+2k, . The dominant
contribution to the output thus has the two hallmark
features expected for coherent phase locking: overall
growth as N and a linewidth which narrows inversely
with N. Dynamically, the magnitude is set by the (very
slow} diffusion along the limit cycle. This result differs
from an earlier calculation based on an oversimplified
model which led to a spectral line with zero linewidth. '

Equation (30) gives the more palatable result of a finite
linewidth, which is nevertheless seen to be quite small in
the weak noise limit. Moreover, in addition to the dom-
inant sharp line, there is a small broadband "skirt" whose
width is determined by the relaxation rate perpendicular
to the limit cycle, and whose relative magnitude becomes
increasingly negligible for larger N. (Its absolute magni-
tude grows linearly with N, and so represents a manifest-
ly incoherent contribution to the output. ) Finally, the
term proportional to N with (co~ —co) is negligible,
since it corresponds to the tail of a line sharply peaked at

the negative frequency 0= —co.

These scaling results are in agreement with calcula-
tions based on the slowly varying amplitude approxima-
tion and also experiments on Josephson arrays having up
to 99 elements. ' In the present context, we see that this
corresponds to the limit of a strongly attracting limit cy-
cle, which is the most desirable circumstance for all prac-
tical applications.

The second case of interest corresponds to no attract-
ing in-phase limit cycle, but instead a neutrally stable N-
torus in phase space. While this seems like a situation so
special as to be of no practical interest, the Josephson ar-
ray has an underlying dynamical symmetry which forces
this behavior if the junction capacitance is negligible [as
in Eq. (1)] and the circuit load is a resistor, conditions
which on physical grounds are certainly realizable. '

Indeed, the e8'ects of random noise will serve to extend
the range of validity af the purely di8'usive behavior even
in the presence of weakly attracting orbits. This case cor-
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responds to iL=O in the Langevin system (5); we can still
use Eq. (28) if we take the limit as A, ~O. Taking this lim-
it yields the simple result

C(r) =
—,'( ace) cos(cor)Ne (31)

This result makes good sense: It is just the incoherent
sum of N independent and identical phase diffusion pro-
cesses. The power spectrum is then

S(Q)=N (ac@)
2

1 2 sj2
2

+(co~ —co) .
2m (s/2) +(Q —~)

(32)

For the small noise regime we have been considering, the
Lorentian is very narrow, so that the (co~ —co) term is
negligible at positive frequencies. Note that the linewidth
is now independent of array size X, while the total power
grows only linearly with N.

As a final point, we note that the numerical simulations
reproduced in Fig. 2, involved time series that were hun-
dreds of oscillation periods, which is far too short for the
statistics to reach the stationary state. There, the initial

conditions were always taken on the in-phase orbit, and
while the resulting power spectra clearly show the severe
noise sensitivity of the LC-load circuit when compared
with the corresponding R-load circuit, the amount of
time required for those simulations to reach the station-
ary limit considered in the present work would have been
enormous. On the other hand, for a real Josephson-
junction system, the characteristic oscillation frequency
is anywhere from 1 to 500 6Hz, so that laboratory exper-
iments are likely to recover the stationary limit even for
time series lasting "only" a few seconds. Consequently,
such experiments can be quantitatively compared with
the above results, in order to determine the validity of the
underlying dynamical model given by the Langevin sys-
tem Eqs. (5).
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