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Hall effect of noninteracting electrons as a Fermi-surface property:
A rigorously derived gauge-independent formula in the on-shell form

Masaki Itoh
Department ofPhysics, Faculty ofScience, Shimane University, Matsue 690, Japan

(Received 21 June 1991)

A rigorously derived formula for the Hall conductivity of a one-electron Hamiltonian is obtained.
The formula is written in terms of the correlation functions with four vertices. For degenerate electrons,
the only relevant energy parameter is found to be the Fermi energy, which shows clearly that the Hall
coefficient for independent electrons in a weak magnetic field is in general, determined only by states on
the Fermi surface. When this formula is evaluated in the ladder approximation, we recover the result
previously derived by Fukuyama et al. and by Itoh.

I. INTRODUCTION

Prior to the advent of the quantum Hall effect under a
strong magnetic field, the study of the nonquantized Hall
effect in a weak uniform field continued to be one of the
most important probes for solid-state physicists and its
importance is by no means diminished even nowadays. '

Of course the quantum-mechanical treatment is essential
even for understanding the nonquantized Hall effect,
which is known to be a difficult problem. In most cases
the analysis of the data has been made based on the pure-
ly classical result, Rtt =1/nec, or its suitable generaliza-
tions to the multicarrier systems. A better treatment is to
use the "semiclassical" Boltzmann equation, which can
incorporate the band-structure effect. However, it is
known that the latter adds nothing new to the former
when the band is isotropic.

Full quantum-mechanical treatments are required par-
ticularly for disordered materials and for interacting sys-
tems. A number of modern theoretical calculations have
indeed been attempted for the former cases in connection
with impurity band conduction in semiconductors, solid
disordered alloys, ' and with liquid or amorphous met-
als. Although these calculations are based on the gen-
eral Kubo formula, their applicability is more or less lim-
ited because of the speciality of the models; only the
tight-binding Hamiltonians or the zero-range potentials
have been treated so far. As for the latter case the only
legitimate theory seems to be the ladder approximation,
formulated by Fukuyama, Ebisawa, and Wada. In this
formalism arbitrary types of scatterings, including
many-body interactions, can be treated in a manifestly
gauge-invariant way. However, the technical complexity
involved in these calculations appears enormous. This
seems to be the price for the general applicability of the
formalism.

The purpose of the present paper is not to introduce
another successful exaxnple of approximation but to pro-
vide a rigorously derived formula, from which one can
start full quantum calculations of the Hall effect with any
suitable approximation. The source of the difficulty un-
derlying the problem, which has restricted the applicabil-

ity or reduced the mathematical simplicity of the above
theories, is the gauge-invariance condition and the relat-
ed divergence of the perturbation expansion. In all of the
above theories the calculations are separated into two
stages. In the first stage the off-diagonal part of the con-
ductivity tensor is calculated by using the Kubo formula
for a system in a magnetic field. In the second stage the
calculated conductivity tensor, given as a function of the
field H, is expanded in powers of H to obtain the expres-
sion for the linear term. The difficulty in this procedure
is that the vector potential representing the field, which
comes into the Hamiltonian, is in general macroscopical-
ly large for a uniform field. To be more precise, it is pro-
portional to the system size and so are all its contribu-
tions to the conductivity. Therefore we must sum up the
divergent terms and find a suitable partial resummation
to give a finite and gauge-invariant answer. In order to
circumvent the above problem, we seek a rigorously de-
rived expression for the linear part of the off-diagonal
conductivity (Hall conductivity), which is sufficient for
the calculation of the Hall coefficient.

The only limitation in the treatment here is that we
start with a one-electron Hamiltonian assumed to be of
the form

2

+ gee (r—R;)
2m

in which many-body interactions will be neglected. The
present author has already derived a general formula for
interacting Hamiltonians. In the present paper, howev-
er, we will make the most of the above limitation to sim-
plify the expression in the noninteracting case. It is
indeed shown to be simplified to a great extent, into the
form of the correlation function of the unperturbed sys-
tem, and the calculation of the Hall effect is thus reduced
to the level of, say, the dc conductivity. %'e also find a
very important fact; the Hall conductivity of independent
electrons is determined solely by states at the Fermi level.
The result is important both physically and in practice,
showing that the Hall effect of independent electrons is a
Fermi-surface property, just like the dc conductivity.

We will not start from Itoh's formula for interacting
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Hamiltonians. Instead we follow a similar argument to
that adopted in his paper, starting from the Kubo formu-
la for the one-electron Hamiltonian (1.1} in the presence
of a uniform magnetic field. This is presented in the next
section. We actually sum up all the contributions
without recourse to any approximation and obtain the
finite and gauge-invariant expression for the Hall conduc-
tivity. It is represented by an energy integration of a
four-vertex correlation function, multiplied by the energy
derivative of the Fermi-Dirac distribution function, so
that the above statements are manifestly shown. The
derivation also shows how the gauge invariance is en-
sured. In Sec. IV an approximate evaluation of the for-

mula is attempted. The ladder approximation is em-
ployed as an example and we recover the one-electron
version of the result obtained for interacting Hamiltoni-
ans. ' Also, a comparison is made to a formula pro-
posed by Morgan and Howson, " who adopted different
approaches to the problem. Our formula is shown to
disagree with theirs.

II. DERIVATION OF THE FORMULA

We start from the following variation of the Kubo for-
mula for the conductivity tensor' of independent elec-
trons

dGH dGHrr„=ie ()fdE f(E) Tr ( «)„( «) 6(E—%)—( «)«6(E —&)( «)„), (2.1)

A(r),
mc

(2.2)

where 6 H and G& (GH ) are the velocity operator and
the retarded (advanced) Green function for an electron
under a magnetic j7eld, i.e.,

physically meaningful result, namely the correct thermo-
dynamic limit in finite and gauge-invariant form.

We shall follow the procedure invented by Fukuyama,
Ebisawa, and Wada to handle the above problem. This
is described as follows. First the vector potential is as-
sumed to have the periodic form

GH =(Eki5 &)— (2.3)

and ( ) denotes an ensemble average over the distri-
bution of the scatterers. The one-electron Hamiltonian
& in G& and 5(E—%) includes the perturbation due to
the magnetic field

A(r) = Aqe'q' (2.7)

8,„=— [p. A(r)+ A(r).p]
e

ex 2mc

so that, to the first order in the magnetic field,

(2.4)

GH =G — G [p A(r)+ A(r).p]G* .
2mc

(2.5)

In the above equation A(r) is the vector potential and
the symbols without the subscript H are to denote the
field-independent quantities. We have retained only the
terms up to the first order in the magnetic field; the same
procedure will be followed hereafter. The second term of
(2.2) is sometimes called the diamagnetic current. The 5
functions in (2.1) can be eliminated by using the relation

5(E —&)= (GH —GH ) .2' (2.6)

We can then gather up all the contributions to (2.1),
which are linear in A(r), by substituting (2.2) and (2.4)
into (2.1). It must be noted that each term is dependent
on the choice of the gauge although the totality of the
linear contributions is gauge invariant. It is also noted
that, in the case of a uniform magnetic field, the vector
potential becomes xnacroscopically large, as is seen from
the forms of the symmetric gauge or of the Landau
gauge. Under these particular choices of the gauge, each
of the contributions obtained above becomes not only
macroscopically large but also dependent on the sample

shape. Therefore special care must be paid to obtain a

characterized by a wave number q. The magnetic field is
then given by

H=i(qX Aq)e'q' (2.8}

A(r) =—A + A~(iq r); (2.9)

the higher-order terms do not survive in the limit of
q~O. We now gather up all the contributions to (2.1),
which are linear in A, by following the procedure de-
scribed earlier. The result is

and the uniform magnetic Geld is described as a limit of
q =

~q~ ~0. It is important to note that A diverges as

I/q in this limit. The wave number is therefore kept
finite throughout the calculation, so that the periodicity
is much less than the sample size. We then sum up all
the contributions. If we carefully combine the terms we
obtain a gauge-invariant and divergence-free expression,
and the thermodynamic limit is taken naturally. Finally,
the magnitude of the wave number q =

~q~ is set equal to
zero at the end of the calculation.

The procedure described above was followed by
Fukuyama, Ebisawa, and Wada in the ladder approxima-
tion in the case of interacting Hamiltonians. The argu-
ment was extended later to all orders by Itoh, without
recourse to any approximation. In principle, the latter
result includes the case of independent electrons as a spe-
cial case (some discussion is given in his paper about this
problem}. Instead of deriving a formula for this special
case starting from Itoh's expression, here we deal with
the noninteracting electrons from the beginning. We first
note that the following expansion is sufficient for our pur-
pose:
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(2.10)

(2.11)

Pz"(E)= A [
—5 „(Tr[(G+}'c 6+])—5 (Tr[~„(G+)'6+])+5„(Tr[(G+)'u„G ])+5 „(Tr[~„(G+}'6 ])

mc

+5 „(Tr[G ~„(G )'] )+5 (Tr[~„6 (6 )'])—5 „(Tr[6 ~„(6 )']) 5—„(Tr[c.„G (G )'] ) ]

+ A [
—(Tr[~„(G+o 6+)'r „6+])+(Tr[o„(6+c.6+)'o„G])

c

+(Tr[~„G c. (6 c. 6 )'])—(Tr[~„6 ~„(6 c ~6 )'])
—(Tr[~„(G+)'~„6+~6+])+(Tr[~„(6+)'c,G o 6 ])
+(Tr[~„6 +v 6+~„(G )'])—(Tr[c „6 c G c.„(G )'])], (2.12)

p'(E)=i A q&[
—5 „(Tr[r&(6+)'c„6+])—5~„(Tr[c.„(6+)'r&G+])

mc

+5 „(Tr[r&(G+)'~ 6 ])+5 „(Tr[u„(G+)'r&6 ])
+5 „(Tr[r&6+c„(6 )'])+5 „(Tr[~„6+r&(G )'])

5 „(T«pG ~„(6 )'])—5 „(Tr[c„G rp(G )']) j

+i A q&[
—(Tr[~„(6+r~ 6+)'u, G+])—(Tr[u„(G+p r&G+)'~„G+])

mc

+(Tr[~„(6+r~ 6+}'c.,G ])+(Tr[c„(6+p r&G+)'c „G ])
+ (Tr[u„G+~,(6 r&p~G )'] ) + (Tr[~„G+u„(6 p~r&6 )'] )
—(Tr[~„6 c „(G r&p G )') —(Tr[u„G ~„(G p~r&G )'])
—( Tr[~„(6+ )'c.,6+r&p 6+ ] ) —(Tr[c „(6+)'u „6+p r&G+ ] )

+(Tr[~„(G+)'cr,G r&p G ])+(Tr[c.„(6+)'u„G p r&G ])
+ (Tr[~„6+ritp~G+c „(6 )'] ) + (Tr[o&6+p~r&G+u„(6 )'])
—(Tr[~„6 r~ G c. (6 )'])—(Tr[~„G p r&G u„(G )'])], (2.13)

where Pz"(E) and P"(E) denote the contributions from the first and the second terms of (2.9), respectively. The sum-
mation over a and P is assumed in (2.12) and (2.13},and ( ) denotes the differentiation with respect to E. The terms
in (2.12) are proportional to A and divergent, but we will shortly see that they are canceled out. Those in (2.13) are
finite and expected to be combined in a gauge-invariant form. The latter are further classified into three groups. The
first one includes only the retarded Green functions G+. We denote this by P,"(++). Likewise we define P'( ——) by
the sum of all the terms with G only. The rest of the terms involve both G+ and G, and we denote the contribution
from them by P (+—). Each of these contributions will be seen to be gauge invariant. In the following we discuss
Pq"(E), P"(++) =P"(——)*,and P (+ —) separately.

We rewrite Eq. (2.12) by using the identities

(G)'= —G

and

Gc G= . [r,G],1

iA

A. Proof of g"(E}=0

(2.14)

(2.15)

The first identity is trivial, and the second is readily proved from c. = —( I/iA'}[r, G ]. In both cases 6 denotes ei-
ther G+ or G . Then we obtain
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Pd"(&)= Aq(Tr[5 „[(6+)u.„—(6+) c 6 —6+x (6 ) +c (6 ) ]mc

+5 [c.„(G+) —6 c.„(G+) —(G } c „G++(G } o„]])

+ Aq(Tr[~„[r, (G+) ]~„G+ u—„[r,(G+} ]~„G

—~„G+~„[r,(G ) ]+a „G c. [r,(G ) ] +o„(G+) c. [r,G+]—u„(6+) u„[r,G ]

c„[—r, G+]c. (6 ) +c „[r,G ]c (6 ) ]) . (2.16)

The first term in the above equation is the contributions from the diamagnetic current. The second term is simplified by
recombining the terms in the curly brackets. For example, the combination of the first and the fifth terms yields

A (Tr[~„[r,(G+) ]~,G++u-„(6+) ~,[r,G+]] )lac

A (Tr[ —~„(6+}[r,~,]G+ —[r,o„](G+)~„6+j )
inc

Aq(Tr[ —5 ~„(6+)—5 „(6+)c „]),
mc

where we have used the cyclic rotations of the operators in the trace operation and also the commutation relation

[r,c y] =(if&/m )5 y .

(2.17)

(2.18)

Equation (2.17} is seen to cancel two of the diamagnetic-current contributions in (2.16). Likewise we can combine the
second, third, and fourth terms with the sixth, seventh, and eighth terms, respectively, and the cancellation is readily
proved.

B. Expressions for P"(++ ) and P"(——)

By collecting all those contributions to (2.13) with 6+ only, we obtain

P (++)= q&A
—[(2/m)5 „(Tr[r&(G+) ~,6+])~,~+(2/m)5 „( Tr[~„(G+) r&G+])~b~

c

+(Tr[~„(6+)u„G+(r&~ +c r&)G+])~,
~

+(Tr[c&( 6+) (rpu +c r&)G+c 6+])~d~

+(Tr[c „6+(ri3u~+n~ri3)(6+) c yG+])(e)] (2.19)

where we have already used (2.14), and each term has been labeled as i)~, ~, . . . , ri~, ~
for later use. A similar expression is

also obtained for P (
——). After some manipulations (see the Appendix) we can transform (2.19) into the following

form:

P"(++}=—
&&A [(2/m )5 „(Tr(r&r„G+))(f) (2/m )5~„(Tr(r&r„G+))~s~

2cW ~ 'aE
+(Tr[G+(r„v rv„)G+(r&—c. +v r&)])~z~] .

Therefore, by a partial integration with respect to E, the contribution of P, '(++ ) to cr„ is seen to be on shell. The

gauge invariance of P'(++ ) however, is, not explicitly shown by (2.20). We need further manipulations for its mani-

festation. For this purpose we use the following identity:

1
G(r&c +~ r&)6= [r r&, G]+G(c r& c&r )G—

iA

=1 [r r&, G]+(5 „5&„5„5&„)G(~„r,~,r„—)6, — (2.21)

where G denotes either G+ or G . The first line of the above relation is readily proved by using
v = —(1/i')[r, G ] and Eq. (2.15). The second line is obtained if we recall that p and v directions are perpendicular
to the magnetic field H, and that, from Eq. (2.8), the vectors A and q are also perpendicular to H. In other words, we

can assume that the indices a and P are either p or v. By using (2.21) the expression (2.20) is transformed to (see the
Appendix)
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P"(++)= qp(5 „5p„5—„5p„)A [(Tr[ uG+c „6+(r„u„r,—u„)6+])
2c

—(Tr[u„G+u 6 (r„u„r—u„}G+])] .

By noting that

H = iq—p(5 „5i)„5—„5i)„)A

(2.22)

(2.23)

the vector potential is eliminated from (2.21}and the expression is manifestly gauge invariant. It is interesting to note
that the angular momentum operator appears in (2.21}. The calculation of the contribution from g),'"(++ ) is therefore
reduced to that of the correlation functions with three verteces, one of which corresponds to the angular momentum
operator. This corresponds to the expression obtained by Itoh [Ref. 9, Eq. (3.7)].

In many cases it is practical to avoid the angular momentum operator. This is possible at the cost of introducing one
more vertex (see the Appendix} and we obtain a very simple expression

P,"(++)=— H (Tr(c „6+u,G+c „6+u,G+)) .
2c

The expression for P, ( ——) is also obtained by replacing (M by v and G+ by G in (2.24),

gj"( ——}=+ H (Tr(upG u,G u„G u„G ) ) .ieR B

2c

(2.24)

(2.25)

C. Expression for gP(+ —)

The rest of the contributions to (2.13), involving both 6+ and 6, gives the expression for P'(+ —). By noting
(2.14), it is obviously written in the following form of the energy derivatives:

g'"(+ —)=+ q&A
~ [(2/m )5 „(Tr(r&6+u„G ))(;)+(2/m )5~„(Tr(rt)G u„G+) )(J)2c ~ qaE

+(Tr[c„G+(r&u +u r&)G+c „6+])(k)+(Tr[u„G (r&u +u r&)G u&6+])(()],

(2.26)

where, again, the terms have been labeled. After similar manipulations to those used for g, (++},Eq. (2.26} is
transformed into a gauge-invariant form (see the Appendix):

P, (+ —) =+ [(1/m )(Tr(u„G+r„G ))—(I/m )(Tr(u„G r,G+))
2c BE

+(Tr[u„G+u„G (r„c„r„c„)G ])+(—Tr[c „6 u„G+(r„c „—r,u„)G+])] .

We can further eliminate the angular momentum components from the above expressions (see the Appendix)

(2.27)

H [(Tr(u„G+uG u„G u„G ))( )
—(Tr(u„G Gu+ Gu+ Gu+))(„)],

c BE
(2.28)

which is quite analogous to (2.24) and (2.25).
From Eqs. (2.10), (2.24), (2.25), and (2.28) we finally obtain the gauge-invariant and rigorous expression for the Hall

conductivity in the on-shell form

CTpv
e A I — Im[2(Tr(u„6+u„G u„G u,G ) ) + (Tr(c „6+u„G+u„G+u,G+ ) ) ] .
2c 2n BE

(2.29)

The calculation of the Hall effect is thus reduced to that of the four-vertex correlation function. It is further
transformed into a compact form

me3A~ dE
c 2m BE

I (mTr[ Gu+c 5(E &)c „6+x 5(E—%)]),— (2.30)

where & is the Hamiltonian (1.1) without magnetic field. The second expression, (2.30), is obtained froin (2.29) by in-

serting into the curly brackets the term

+ (Tr(u„G+u„G Gu+r „G ) ),
which is a real quantity and so contributes nothing, and also replacing half of the first term by the negative of its com-
plex conjugate.
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III. APPLICATIONS
TO DISORDERED SYSTEMS

Our formula (2.29) is particularly useful for disordered
systems if the one-electron picture holds. Since it is writ-
ten in terms of the Green-function operators, the di-
agrammatic expansion can be used to evaluate it. When
the resistance is caused by the random array of rather
weak scattering potentials, the nearly-free-electron repre-
sentation is a suitable starting point. Interesting exam-
ples are liquid or amorphous simple metals, in which only
sp electrons are considered to be relevant to the conduc-
tion. The Edwards theory' for the resistivity calcula-
tion, which is the first to discuss the electron transport by
combining the Green-function technique and the Kubo
formula, is still one of the few reliable theories for these
systems. ' This is the ideal test case for our formula and
we attempt to evaluate Eq. (2.30) by using the approxima-
tion adopted in his theory.

The scattering between the two states k and k' is given

in the Edwards theory by the (averaged) matrix element
I & kI({)lk' & I2a(k —k'), where w is the scattering
(pseudo)potential and a(k —k') is the atomic structure
factor. The two-vertex Kubo-Greenwood formula for the
dc conductivity is then evaluated by summing up the
ladder diagrams for a current vertex. The procedure is
readily extended to our four-vertex formula (2.29) as
shown in Figs. 1 and 2. In these figures the hatched
corners represent the current vertex functions calculated
in the ladder approximation. There exist three possible
cases, U++(k), v (k), and U+ (k), and also there ap-
pear two components ((((, or v) for each. The bold lines
are the renormalized Green functions 6& and G& and
the hatched belts in the figures represent the scattering
kernels in the ladder approximation, for the particle-
particle, hole-hole, and particle-hole pairs. The diagrams
(D) and (H) in Fig. l are seen to cancel each other; they
have been introduced artificially in order to make the cal-
culation easier. The contributions from these diagrams
are

I'"'+' '=2 f + (k) + (k)IG+(6 ) (k)v (k) —(G+ ) 6 ++(k) ++(k)J,
(2m )

(3.l)

I(B)+(F) f — + —
(k) + —

(k) G+ (G
—

)2
——

(k) (G+ )2G
— ~++(k)

(2n. )
A' ()k " " "

(r) ()kV P

I(c)+(D) 2
dk + (k)G+ l ()

G
l () + (k)" A' ()k " A' ()k

I(G)+(H) — 2 + —
(k) G+G — + —

(k)Yak " "Yak

(3.2)

(3.3)

(3.4)

2i Im ( Tr v G e G v Gu G &
P V 4 V

+ v V v (k) =3 +-

h Bk„ ~

Y/gg~

II,

+

V

+

(A)

+

V P,

(c)

+ ]4-

+

+

v„ (k)
h Bk v„ (k)

F' "0 F'
wiiiiizzzzxzzzxi

(E)

V

P V y V

+ P%+
ir

V

(H)

FIG. I. The diagram representations of the first term of Eq.
{2.29). The diagrams {D) and {H) are introduced artificially,

and cancel each other.

w+ V ~+ p

+ i++
p

2 x

+ V

++ V

FIG. 2. The diagram equations for the current vertices in Ed-
wards theory {the first line). The expressions for their momen-

turn derivatives {the second and the third lines) are obtained by
differentiating the first line for the particle-hole and the hole-
hole pairs. The identity for the particle-particle pair is the same
as the second line.
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Equation (3.1) is trivial. In deriving Eqs. (3.2)—(3.4) we have used the relations shown in Fig. 2. By noting the Ward
identities

and

R Bk
G+ =(G+ )2 ++(k) (3.5a}

G), =(G), )'~ (k), (3.5b)

Eqs. (3.1) and (3.2) are combined as

I " + + + =—f + (k) + (k) g+ [(g )&~ (k)]— [(g+ )2 ++(k)]g-
k (3 6)

It is then easy to show by partial integrations that the summation over ( A }—(H) amounts to

I(w)+(ii)+ '. . +(~) 1 dk
(2m )

(3.7)

As for the second term of (2.29), we only need to sum up three diagrams with the topological structures of ( A), (8),
and (C) in Fig. 1. The result is

(Tr(~ G+~„G+c „6+c.,g+)) =2f [ ++(k) ++(k)] (G+ ) + ++(k)c ++(k)— ++(k)(G)+, )
(2m } A Bk„

(3.8)

Again, by noting (3.5b) and using partial integration, the first term is seen to be written as

—-'f — I[ ++(k)]' ++(k}}(g+)'
(2~)3 A' Bk,

so that it becomes

(3.9)

(Tr(~„G+~„G+u„g+c„g+))=' f — — ~++(k)~++(k)~++(k) ~++(k)[ ++(k)]2 (g+)3dk 1

(2~)3 R Bk,

Finally, we make use of the isotropy of the system; namely we write the vertex functions in the following forms,

c + (k)=k c.)+,

and

(3.10)

(3.11a)

++(k)—k. ++

where ~)+, and ~)+,
+ are functions of k = Ikl only, and k=k/k. From (2.29), (3.7), and (3.10) we obtain, after some ma-

nipulations using (3.11a) and (3.11b),

e A'

g /H = fgE —f f Im[( + )& ++(g+ )2g — l
(

++ )3(g+ }3]3ncBE. (2~)3 k
(3.12)

The above expression is different from the one obtained by Fukuyama et ah. , who adopted the same approximation to
the interacting electrons in evaluating the on-shell contributions. The off-shell contributions have been evaluated ex-
plicitly by the present author' and their inclusion is shown to lead exactly to the above form, as it should be. Once we
know the exact formula (2.29), the derivation becomes simple for noninteracting electrons. Equation (3.12) has been ap-
plied to liquid and amorphous metals recently. '

When the vertex corrections are neglected, Eq. (3.12) is reduced to the following form:
'3

cr /H = — dE4&e A Bf dk 1 3 1—(c ), ) ——Img(,9c BE

where ~I, =4k/m. The above expression is known to be a typical form of the Hall conductivity when the vertex correc-
tion does not exist.
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IV. DISCUSSION

It is a well-known fact that the dc conductivity is
determined solely by the electronic states at the Fermi
level. This conclusion is valid both for the noninteracting
and the interacting electrons. In particular, it is explicit-
ly shown by the Kubo-Greenwood formula that

o„„=ere A f dE — (Tr[c.„5(E A)—c &5(E—%)])
a

(4.1)

for the noninteracting case (for interacting electrons, see
Mahan' . The present study has shown that the same can
be said for the Hall conductivity of noninteracting elec-
trons. In this respect it is interesting to note that the
second form (2.30) of our formula is somewhat similar to
(4.1). The present author' has also shown, under some
approximation, that the situation is the same for interact-
ing electrons. He indeed obtained the same expression as
(3.12) in the ladder approximation, allowing for any kind
of many-body interaction. It is therefore strongly sug-
gested that our theorem is possibly generalized to in-
teracting electrons.

A simple physical explanation is possible for the dc
conductivity. When the system is under an electric field
the distribution of electrons in k space is distorted by an

infinitesimal amount. However, the states inside the Fer-
mi surface do not cause any change to the total current
because they cancel out, so that there should arise no net
current in the zero electric field. We therefore need to
calculate only the distortion of the distribution function,
which has finite amplitude only in the vicinity of the Fer-
mi surface. When a magnetic field is applied, the cancel-
lation occurs in a very complicated way. The current
component associated with each electronic state acquires
an additional term, i.e., the diamagnetic current, as is
shown in Eq. (2.2), so the states inside the Fermi surface
do have the contribution to the conduction. It is there-
fore surprising that the total contribution has been writ-
ten in the on-shell form. Also, the final expression is
surprisingly simple, considering the rather enormous cal-
culations involved in its derivation.

In this connection it should be worth noting the simi-
larity of the present work to that of Baranger and
Stone, ' who claimed that, in the case of two-dimensional
noninteracting electrons, the conductance of any mul-
tiprobe structure of finite size under an arbitrary magnet-
ic field is determined solely by the states at the Fermi lev-
el. These authors have also derived rigorous expressions
for the conductances in terms of the exact Green func-
tions under a magnetic field. The starting point of
Baranger and Stone is the inhomogeneous version of the
following expression for the conductivity tensor:

f dE — &T [(-tt)„G.(-tt).Gtt ]&
e fi Bf(E) +
2~ aE

e A dG~ + dG

2' f dE f(E) Tr (~ tt„)~(tt.)Gtt+(~tt)pGH(~H)~ dE
(4.2}

which is obtained from (2.1) by integrating by parts with
respect to energy [cf. Eq. (52) in their paper]. They then
show that the off-shell contributions, which correspond
to the second term of the above equation, do not contrib-
ute to the conductance of any Pnite multiprobe structure.
Several points should be borne in mind in making com-
parison between the two theories.

In spite of the close resemblance between the two
works, there seems to be a fundamental difference. First,
it is obvious that the off-shell contribution definitely has a
finite contribution to the conductiuity of a macroscopic
sample [for example, without this term we would not re-
cover the correct expression for the longitudinal conduc-
tivity (4.1)]. Second, the boundary condition of the prob-
lem treated in their paper is different from ours. In par-
ticular, they have adopted the Landau gauge to examine
the asymptotic behavior of the Green functions, a pro-
cedure which cannot be applied to the present case of a
macroscopic system under a uniform magnetic field,
which involves intrinsically the divergence, as we have
often emphasized. The physical meanings of the two
similar assertions are therefore different. No gauge-
invariant (and finite) expression would have been ob-

tained for the conductivity if we had omitted the off-shell

term in (4.2). In the actual Hall constant measurement
the Hall field is exerted upon electrons in the system to
cancel the Lorentz force. Our calculation is therefore a
determination of the macroscopic conductivity tensor
which makes the net current fiow in the infinite system

along the direction of the applied electric field when the
total field is exerted upon electrons.

A similar formula to Eq. (2.30) has also been proposed
rather recently by Morgan and Howson, " the validity of
which was then questioned by the present author from
the viewpoint of the gauge invariance and the associated
divergence problem. ' In their expression all G's in Eq.
(2.30}are replaced by 5(E—&) and the operation to take
the imaginary part is not required. In their derivation
the contributions from the principal part integrations are
set equal to zero and this is probably the major source of
the error. Also, they have omitted from symmetry con-
siderations the macroscopic integrations including the
vector potential in a particular choice of the gauge. As
we have seen, it is essential to take the proper macroscop-
ic limit when we deal with the system under a uniform
magnetic field, so their symmetry consideration will not
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be justified.
In any case, the Hall effect has been rigorously shown

to be attributed to the states at the Fermi level, and this
fact has important physical implications. It explains, for
example, why the measured Hall constants of liquid noble
metals are so close to the free-electron value, despite the
fact that the d-resonance states are very close to the Fer-
mi level. As an example of more recent experiments, we
note the measurements by Haussler and Baumann, ' who
discovered systematic changes of the Hall constant, as
well as of other transport properties of the noble-metal-
based amorphous alloys, as functions of the carrier num-
ber. %e can now confirm that their data on the Hall con-
stant have depicted the change of the scattering strength
at the Fermi leuel associated with the structural changes.

Besides its fundamental importance, the formula is also
useful for practical purposes; we have already seen in the
preceding section that the analytic calculation is

simplified to a great extent compared to the earlier treat-
ments. It is generally useful for disordered materials, and
more sophisticated approximations can be used to evalu-
ate the formula. Among others the effective medium ap-
proximation (EMA) is most interesting, in connection
with the positive Hall coefficients observed in many
liquid and amorphous metals including the transition-
metal or rare-earth elements, and the author hopes to
deal with this problem in future publications.

APPENDIX

The details of the proofs of the equations are given in
this appendix.

Equation (2.20)

First we show that the terms ri{,~, . . . , ri~, ~
in Eq. (2.19)

are rewritten as

ri~, ~+ ri~b~= {(2/m )5 „(tr(r&G+[r,6+]))+(2/m)5 (Tr( [r„,G+ ]6+r&)I,1

(iA')
(A 1)

(Tr{[r„,G+][r„,G+](r&u +c r&}J),1

(iA)
(A2)

(Tr[6+(r„~ r„c„}(6+)(r—&~ +c,r&}])1

rim

+ (Tr[(r,[r,G+]—[r„,G+]r&)G+(r&c ~+a ~r&)]),
2(ih')

(A3)

{Tr[G+(r&~~+a.~r&)(G+) (r„~„—r„~„)])1

six

+
z (,Tr[(r&c +c. r&)G+(r„[r„,G+]—[r„,G+]r„)]) .

2(iA)
(A4)

Equations (Al) and (A2) are readily obtained by using (2.15). As for (A3), we first note that the two alternative forms
for (d ) are obtained by using (2.15) in difFerent ways:

or

(T {[„6+] „(6+)'( .+ . )J &

1

iA

(A5)

(tr{G+o [r„,G+]6+(r&~ +u r&)I ) .i'
Each of the above expressions are further transformed by using (2.15) again:

+ + 2 1(Tr[6+r u&(G+) (r&u +u r&)])+ z (Tr{r„[r&,6+]6+(r&c +~ r&)])
tA (iA')

or

+ + 2 1{Tr[G+u~„(G ) (r&~ +~ r&)])— (Tr{[r,G+]r„G+(r&u+c r&)J ). .(ie'

(A6)

Equation (A3) is then obtained by adding the above two expressions and dividing by 2. Equation (A4) is derived in ex-
actly the same way.

Now the terms in (A2)—(A4) are seen to be proportional either to (iR) or (i') . We can combine the terms in the
latter group and, after some rearrangement by using the cyclic rotations of the operators in the trace operation, we have
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1
ii),)+iield)+il), )= [(Tr[6+(r„c-„r—„c„)(6+){r&c +c r&)])+(Tr[(6+) (r„~„r—„u„)G+(r&r +~ r&)]) ]2iR

+ [(Tr(G+r„G+[r„,r&c +~ r&]))—(Tr(G+r„G+[r„,r&u +c r&]})](i')

+ ( —(Tr[r„(G+) [r, r&c +c r&]])+(Tr[(6+)r„[r„,r&u +u r&]])) .
2(i')

The commutators appearing in the above equation can be simplified by using (2.18). The resultant terins are partly can-
celed by the contributions from ri), )+i))),) of Eq. (Al). Equation (2.19) then becomes

P, "(++ )= q&A [(2/m )5 „(Tr[r&r„(6+) ] ) —(2/m )5 „(Tr[r&r„(6+)i] )
2em I'

+ (Tr[6+(r„u, r„c „—)(6+) (r&u +c r&)])

+(Tr[(G+ } (r„~„r~„—)G+(r&c +u r&)]) ] .

Thus, from (2.14), the terms ri( f) 7/(g) and ri) s) in (2.20) are obtained.

Equation (2.22)

The term rich) in Eq. (2.20) is rewritten by using (2.21) as

1 (Tr([r r&, r&~„r„u„]G+—)) —(5 „5I) —5 5&„)(Tr[(r„~„—r u„)6+(r„~„r„~„)6+]—)

(A8)

(A9)

where the cyclic rotation has been used to deal with the commutator [r r&, G+] to obtain the first term. The second
term is transformed by using (2.15):

(Tr[{r„c —r„nq)6+(r„u„rc „)6+])—
=(Tr[c (i%6+m „6++6+r„)(r„~„ru„)6+])—+(Tr[(ifiG+~ G+ r„G+)u„G+(—r„.~„r„c„)—]) .

By using (2.15) again, it becomes

=2i))i(Tr[c „6+u„G+(r„~„r„o„)6+—] )

The second and the third terms can be simplified by using the cyclic rotations and applying (2.18). We thus have

(Tr[{r„~„r„c„)6+(r„~,—r„~„)6+—])

=2iiri(Tr[~ 6+c „6+(r„c ru„)6+])—(—1/m )[(Tr(6+r„r„))+(Tr(G+r r„))] . (A10)

The left-hand side of the above equation is seen to be symmetric with respect to p and v. Therefore we can symmetrize
the right-hand side:

(Tr[(r„e, r„u„)6+(r„u„r„c„—)6+])—
= ii)i'[ (Tr[~„G+~„6+(r„~„r,v„)G+ ] ) ——( Tr[~„6+~„6+(r„~ r„rr„)6+] )]—

—(1/m )[(Tr(G+r„r„)) + (Tr(G+r„r ) ) ] . (Al 1)

Now we substitute (All) into (A9). Together with the
factor (5 5~ —5 „5t) ) in (A9), the second term of (Al 1)

yields the terms which just cancels ri(f) and i)(g) in (2.20),
and we finally arrive at (2.22).

(Tr(u„G c „6+a „6+a.„(6+))

(Tr(c „6+a 6+v.„[r„,G+]) )
iA

Equation (2.24)

lt is easier to show that Eq. (2.24) is reduced to (2.22).

By using (2.15} differently we obtain the following alter-

native forms:

or (A12)
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By adding the above two and then dividing by 2, we ob-

tain

and the equivalence between (2.24) and (2.22} has thus
been proved.

{(Tr[~ G ~„G+(r„~ r—~„)6+])
2iA

—(Tr[ „6+ 6+(r„„r„—„)6+])]

Equation (2.27)

The terms ri~k~ and g~t~ in (2.26) can be transformed by
using (2.21), as in the case of ri~&~.

rl~k&+ri~t~= . (Tr(t „[r r&, 6 ]c G ))~z~+ . (Tr(c [r r&, 6 ]o„G ))~ ~i'
—(5 „5&„—5,5»}[(Tr[ tG+(r„~„r„c—„)G+~„G ])+(Tr[t „6 (r„t „rc.„—)G t „6+)]]. (A13)

9(p)+ 9(q) (Tr([r rit, t.„]G+c 6 ))
i%'

(Tr([r rit, ~„]G c&6+)) .
I,A

(A14)

The commutators in the above equation are simplified by
using (2.18). The resulting terms are partly canceled by

g(;~ and g(J], leaving just the gauge-invariant contribu-
tions proportional to (5 „5tt,—5 „5»). We thus obtain
(2.27).

Equation (2.28)

The proof of (2.28) is somewhat similar to that of
(2.24). We shall derive (2.27) from (2.28) to show their
equivalence. By using (2.18) we rewrite the term 71~ ~

in

(2.28) as

The third term in the above equation has the desired

gauge invariance, due to the factor (5 „5tt„—5 „5»). The
first and second terms, labeled as g(p) and g( ~, are recom-

bined by using the cyclic rotations as

where we have summed up two de'erent expression for

~
and divided by 2. We decompose the commutators

and obtain

(Tr[~„G t „6 (r„~, r„t „—)6 ))1

2tfi

+
z [(Tr(~„6+t „r„[r„G ]))

2(ih')

—(Tr(r„~„G+~„[r„,G ]))], (A15)

where we have again used (2.18) to derive the second
term. In the same way we also obtain the expression for
the term rh„~ in (2.28):

[(Tr( tG t „r,[r„,G+]))
2(iiri)

g( )=+ [(Tr(u„G+t.„[r„,G ]c „6 ))
2iA

+(Tr(cqG+c„G t„[r„G ]))}, and therefore,

—(Tr(r„ ,t6~„[r„,G+]))] (A16)

~+ri~„~= — [(Tr[t &6+ Gt(r„t r„t „)6 ]) +—(Tr[ t, Gt „6+(r„t„r„t„)6+])]-
2t fi

+ [(Tr(G+t G [r„r„,u„]})—(Tr(G c.„G+[r„r„t.,]})],
2(ih')

(A17)

where we have used the cyclic rotations to compose the commutators. The second term of (A17) is further simplified by
using (2.18) and the equivalence of (2.28) to (2.27) is then trivial.
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