
PHYSICAL REVIEW B VOLUME 45, NUMBER 8 15 FEBRUARY 1992-II

Many-electron effects in acceptor-related radiative recombination
of quasi-two-dimensional electrons

Pawel Hawrylak
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Canada KIA OR 6

(Received 28 May 1991)

The radiative recombination of electrons from a quasi-two-dimensional electron gas with holes local-

ized on acceptors is investigated. The emission spectra for a single heterojunction are calculated includ-

ing screening and the dynamical response of the Fermi sea. The line-shape analysis provides unambigu-

ous identification of the Fermi-edge singularity in the emission spectra of the two-dimensional electron

gas.

The radiative recombination of electrons in the con-
duction band with photoexcited holes in the valence band
provides information about all occupied electron states in
modulation-doped semiconductor microstructures, such
as quantum wells, wires, and dots. This is to be contrast-
ed with transport measurements which involve only
states at the Fermi surface. The insight into electronic
states from emission spectrum is, however, usually hin-
dered by the nonequilibrium distribution of photoexcited
holes. This problem can be circumvented by a selective
doping of semiconductor microstructures with accep-
tors. ' Acceptor-related recombination has been used in
the study of ground-state properties of the metallic
state, ' incompressible liquid, Wigner crystal, and in
hot carrier relaxation. We shall concentrate on a metal-
lic state here.

Typically when acceptors are present, a well-defined
emission line below the band-to-band recombination
spectrum appears. ' This line corresponds to a recom-
bination of an electron with a hole strongly bound to a
negatively charged acceptor, and one can indeed focus on
the electronic system. Unfortunately the many-electron
response to a localized perturbation, such as recombina-
tion on an acceptor, is divergent and the line shape of the
emission spectrum does not re6ect the single-particle den-
sity of states in a simple way. This phenomenon is
known as the Fermi-edge singularity (FES). The Fermi-
edge singularity in emission spectra of modulation-doped
quantum wells has been observed by Sholnick et al. It
manifests itself in the enhancement of the emission spec-
trum at high energies, i.e., in the vicinity of the Fermi
surface. This is to be contrasted with experimental emis-
sion lines associated with recombination on acceptors
which peak at low energies corresponding to transitions
from the bottom of the conduction band. The explana-
tion of the experiments of Skolnick et al. required holes
to be localized by, e.g., potential fiuctuations. Hence the
experimental spectra of Kukushkin et al. ' and Skolnick
et al. appear to be contradictory. We shall demonstrate
that in fact both of these experiments measured the
Fermi-edge singularity.

Since the standard perturbation theory based on the
summation of an arbitrary class of diagrams (e.g., ladder

diagrams) fails completely in the understanding of FES,
nonperturbative methods are a necessity. We present
here a nonperturbative calculation of the emission spec-
trum due to the recombination of electrons with a hole
localized on an acceptor. The calculation includes
screening, excitonic effects, shakeup of the Fermi sea, and
the effect of the whole wave function.

We consider a single heterojunction with electrons oc-
cupying a single subband at the average position zo and
acceptor at position z&, away from quasi-two-dimensional
electrons. The physical picture is very simple: prior to
illumination our system consists of N electrons and a sin-
gle negatively charged acceptor which acts as a repulsive
scattering center for electrons. The single-particle states
and energies for N conduction electrons in a heterojunc-
tion and one electron trapped on the acceptor are denot-
ed by ~A, ) and e&, and ~It ) and —co„respectively. This is
our final basis and the normal state one would like to
probe optically. Upon illumination one electron is added
to the conduction band and a hole from the valence band
is localized by the negatively charged acceptor, making it
a neutral, weak-scattering center. The single-particle
states and energies of N+1 conduction electrons in a
heterojunction in the presence of neutral acceptor are
denoted by ~

k ) and e„.
The emission spectrum E(to) involves the emission of a

photon with frequency co with one of the N+1 conduc-
tion electrons making a transition to the empty level
(hole) localized on the acceptor. The annihilation of the
hole changes the potential seen by all electrons in the
conduction subband from charge neutral to a negatively
charged acceptor. This makes the transition a many-
electron eff'ect. The emission spectrum E(co) can be de-
rived directly from Fermi's golden rule (we set fr= 1):

N+1 2

E(m)=2wz (4'f(N+() z p, v;(N+((
f j=1

X5(E,(N+1) EI(N+1)—co) . —(1)

The initial state ~%;(N+1) ) is the Slater determinant of
N + 1 particles occupying the N + 1 lowest single-particle
conduction states

~
k ) in the presence of a neutral accep-

tor. The final states ~%&(N+1)) are Slater determinants
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of N+1 particles with one particle occupying the local-
ized acceptor level lb ) and N particles occupying all pos-
sible single-particle states lA, ), i.e., conduction states in
the presence of a repulsive acceptor potential. The main
diSculty in using the golden rule directly is the enormous
number of final many-particle states, for which both ma-
trix elements and energies have to be evaluated. This
problem was circumvented by Combescot and Nozieres,
Mahan, and Ohtaka and Tanabe. We give here a brief
derivation.

The total interband momentum operator couples con-
duction states only to the localized acceptor state. Ex-
panding final states with respect to the localized state and
using the Fourier transform of a 5 function allows us to
rewrite Eq. (1}as

N+1 N+1 k —itHE(t)= g g rnk (
—1)"&%',"(N)le

' I+;"'(N))
n =1 n'=1

itE 0

Xmk ( —1)"e

The time-dependent overlap of ¹lectron wave functions
of the initial basis propa(1ated by the final-state Hamil-

k„ —itH
tonian &ql, "(N). le l%;"(N)) is equal to the deter-
minant Dk k of matrix 4 of order N + 1 build out of ma-—ithftrix elements P~~ (P~~ =&pie lp'), with p,p' occu-
pied) whose nth row and n' column have been deleted.
Using the relationship between the inverse of matrix 4
and determinants Dk k we obtain the Combescot-
Nozieres result for emission:

E(co)=2Re J dt e '" E(t) .
0

(2)
tE0tE(t)=e f det[4(t)] g mk4kk(t)mk

k, k' & kF

(6)

The maximum photon frequency is given by the
difference between the ground-state energies of N+1
particles before and after emission: co,„
=E;(N + 1)—[Ef(N)+( co,—) ]. Here Ef(N) is the
ground-state energy of the normal (final) state, i.e.,
without the photoexcited electron. The time-dependent
enussion spectrum E(t) of course ensures that no fre-
quencies larger than the maximum allowed frequency
co,„contribute to the frequency spectrum. From Eq. (1)
E(t) is given by

N+1
E(t)= g g mk ( —I)"&Vf(N)l+;"(N))

f n=1

The first term in Eq. (4) [det(4)] describes the shakeup
of the Fermi sea due to the disappearance of the valence
hole, while the last term describes vertex corrections, i.e.,
the scattering of the hole inside the Fermi surface by a
repulsive potential in the final-state Hamiltonian. This
scattering process is mediated by exchange of the photo-
created hole with holes (empty states) above the Fermi
surface. Equation (6) involves the states of the photoex-
cited system while one wants to measure the states of the
final basis. This is done by transforming Eq. (6) into the
final basis. We define matrix G& &, which describes the
propagation of the hole in the Fermi sea in the final-state
basis as

—iEf (N)t itEfXe (3)

In Eq (3) transition matrix elements are expressed in
terms of single-particle transition matrix elements
mk=p„, &hlk) corresponding to transition from a con-
duction state lk) to a localized state lh ). p„are con-
duction to valence momentum matrix elements and
& h

l
k ) is the overlap of the conduction and localized elec-

tron envelope wave function. Each single-particle matrix
element is weighted by the overlap of initial and final N
electron states. The initial state 4; "(N) ) is formed from
the N+1 lowest lk ) states except for the state lk„). It
therefore represents a hole in the Fermi surface. Equa-
tion (3) can now be manipulated further to explicitly in-

volve the summation over final states:

k, k'& kF

where &

klan,

) are the overlap matrix elements between the
initial and final single-particle states. Using the identity

the relationship between the initial matrix elements mk
and final basis matrix elements m & given by

mt, = gi mi & A, lk ), and the identity det(4)
=exp [Tr[ln(4') ] ]

=exp[ iC ( t) ], a—set of nonlinear
differential equations for the time evolution of the vertex
(G) and self-energy (C) functions can be derived:

N+1 N+1
E(t)= X X m~ ( —()" '1;"(N) X 4'~(N()

n =1 n'=1 f
+i g Gi i: (t)ei. Gi i,.(t),

—C(t)=2+eiGi i(t} .a

itE 0

Xmk ( —1)"e (4)

The summation over a complete set of final states can
now be eliminated by introducing a final-state Hamiltoni-
an Hf which produces a correct final single-particle spec-
trum. Hf is the sum of single-particle Hamiltonians hf.
Using the final-state Hamiltonian we can write formally

The final expression for the emission' function E(t) is
now given simply in terms of the vertex G and self-energy
corrections C:

f —ic(t)
~ 0 +ie&tE(t)=e f e ' g m~e Gi„i (t)mi

iL, A'

An important consequence of working in the final-state
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basis is that all single-particle states of the final basis con-
tribute to the frequency spectrum of the emission E(t),
irrespective of whether they are occupied or empty in the
final ground state of the system, i.e., in the absence of the
hole. The filling of phase space of initial states enters via
the initial condition for the matrix G (0):

1.25

1.00

E(%) y T~axEF 1 0.0

k~kF

The overlap matrix elements &k~A, & between the initial
and final states are solutions of the Wannier equation:

e„&k~k&+ g V„„&k'(A,&=e„&k~A, & .

The interaction Vk k. is the change in the one-electron
potential between initial and final bases. This change cor-
responds to a repulsive scattering potential due to the
screened charge of the hole localized on an acceptor. The
matrix element is written in the initial basis, i.e., basis of
the neutral acceptor.

We now apply our theory to the single heterojunction
with only lowest subband occupied. The electron states
in the absence of an acceptor can be written as a product
of plane waves and the lowest subband wave function,
which we take to be in the Stern-Howard form:
gp(z)=+b /2ze "' . The average position of the elec-
tron layer is given by zp=3/b The pa. rameter b is ob-
tained from variational calculations as a function of elec-
tron density. The acceptor and the hole are located away
from the electron layer at position z&. The effect of elec-
trons and heterojunction structure on the hole is very
small and we treat the acceptor as a bulk acceptor. We
expand the hole wave function in terms of Gaussians and
retain only a single term in a first approximation. The
hole wave function is therefore written as
4(x,y, z)=(2/ma ) exp[ —(x +y +z )/a ] with pa-
rameter a playing the role of the effective hole radius.
Since the hole screens the charge of the acceptor very
effectively, it is a very good approximation to assume a
perfect screening condition, i.e., the initial basis is the
basis in the absence of an impurity. In this approxima-
tion the matrix elements of the hole potential can be writ-
ten as Vk k

= V(q)f (q)F(q), with q = ~k —k'~ and V(q)
the statistically screened interaction. F(q) is a standard
electron-hole form factor, which can be well approximat-
ed by F(q)=exp( q~zp

—
zi, ~), and—f (q)=exp( —

q a /8)
is the Fourier transform of the in-plane hole charge den-
sity. V(q) is the screened Coulomb interaction. 'p In a
similar way matrix elements mk can be effectively ap-
proximated by

—bz~ /2
mk=mp(2n. a b /4) zi, e " exp( —k a /4),

where mo is a constant. Hence the coupling of conduc-
tion electron states with the hole is largest at the bottom
of the band and decreases rapidly as the energy of the
carriers increases.

In Fig. 1 we show calculated emission spectra for Fer-
mi energy EF=2 Ry. Energies are measured in bulk ryd-
bergs and the Fermi energy is related to the carrier densi-
ty n by n =EF/2mao where ao is the effective Bohr ra-

O

dius. For GaAs, ao =100 A and EF=2 Ry corresponds
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FIG. 1. The emission spectrum for E+=2.0 Ry (solid lines)
for two different times of evolution. The joint density of states
of the initial D; and final D& bases are also shown. The acceptor
is located at z& =1.Sao.

to a carrier density n =3X10" cm . The emission
spectra were calculated' by propagating vertex and self-
energy corrections up to a maximum time T,„. The
emission spectra (solid lines) for two different time cutoffs
T,„EF=1.0 and 10.0 are shown. They are compared
with the joint single-particle density states of conduction
electrons and a hole in the absence of impurity D;
and in the presence of impurity DI, D; (co)

mk5(ek+co, co) and —DI(co)= gz&z m&5(ez
+co, —m), respectively. As illustrated in Fig. I, the effect
of self-energy and vertex correction is to modify the final
joint density of states D& in the vicinity of the Fermi en-
ergy. The two different times illustrate nicely the fact
that as the system relaxes after emission of a photon, the
removal of forbidden frequencies co) co,„corresponds to
the buildup of the oscillator strength below co,„, i.e., the
formation of the Fermi-edge singularity. We have
broadened the singularity by adding an imaginary part of
0.1—0.2 Ry to the frequency co. The final joint density of
states D& approximates reasonable well the line shape of
the spectrum apart from FES. The joint density of initial
states D, is a poor approximation to the line shape. How-
ever, the total integrated intensity of the emission line
E(t =0) is given exactly by the total integrated intensity
of the initial joint density of states D, . In our model this

is given by E (0)=m pgp(zI, )/2na [ I —exp( EF ) ], —
where EF is given in bulk rydbergs. This allows a very
easy interpretation of the integrated intensity as a func-
tion of carrier density, in contrast to a complicated line
shape. This should be compared with carrier densities
extracted from the width of the emission line.

The dependence of the emission spectrum on the densi-
ty of free carriers is shown in Fig. 2. The width of the
line increases and the intensity decreases with increasing
carrier density. The excitonic effects are reduced due to
screening and the fact that as the electron density in-
creases, the electron layer moves away from the hole.
The emission line increasingly resembles the final joint
density of states DI, with small remnants of the FES at
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FIG. 2. The emission spectrum for 3 different carrier densi-
ties corresponding to Fermi energies EF=2,4, 8 Ry and fixed
hole position at z& = 1.SaQ.

FIG. 3. The emission spectrum for a fixed carrier density
corresponding to Fermi energy EF=4.0 Ry for different posi-
tions of the hole.

higher energies. A similar effect is obtained by moving
the acceptor away from the electron layer. The emission
spectra for three different hole positions z& =1.0, 1.5, 2.0
and carrier density corresponding to E+=4.0 Ry are
shown in Fig. 3. The average position of the electron lay-
er is zo =0.7ao.

Let us now comment on the experiments of Skolnick
et al. , Kukushkin et al. ,

' and Petrou et al. In Ref. 6
it was assumed that in the initial state the hole was local-
ized by, e.g. , potential fluctuation. Hence the initial state
was that of a positively charged localized hole in the elec-
tron gas, while in the final state electrons relaxed to their
unperturbed states. This relaxation is equivalent to the
switching of a repulsive hole potential in the basis of ini-
tial states. In acceptor related transitions the initial state
is unperturbed and the final state contains electrons re-

laxed around the negatively charged repulsive center.
Hence the only difference is in the single-particle density
of states and both experiments measure the Fermi-edge
singularity.

In summary, the emission spectra associated with
recombination of electrons in a quasi-two-dimensional
gas with holes localized on acceptors have been calculat-
ed. The calculation shows that when the single-particle
joint density of states is properly taken into account, the
spectra show an enhancement in the vicinity of the Fermi
energy due to correlations of many electrons with the lo-
calized hole.

The author would like to acknowledge useful discus-
sions with A. Plaut, B. McCombe, A. Petrou, Jeff Young,
G. C. Aers, and R. Williams.
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