
PHYSICAL REVIEW B VOLUME 45, NUMBER 8 15 FEBRUARY 1992-II

Quantum particle in a random potential: Exact solution and its implications
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I accurately solve the Schrodinger equation in a magnetic field B in an arbitrary set of two-
dimensional point potentials. When B=0, they yield a mobility edge. When BWO, all states are local-
ized below a certain energy E,(B). Above E,(B), they are extended at the Landau energies. At other
energies the localization length is a discontinuous function of B at every rational value of eBd'/eh,
where d is an average interpotential distance.

I. LOCALIZATION AND MAGNETIC FIELD

Eigenstates determine the statistical mechanics of a
system and are crucial for its transport properties. In a
periodic system the accurate Bloch theorem' proves that
all eigenstates are extended and yield a zero resistance.
This theorem dominated the approach to weak disorder
until Anderson suggested disorder-induced localization.
Soon thereafter all states in one dimension (1D) were
found to be localized by even an infinitesimally weak dis-
order, with the localization length g ~ c;m' (c; is the im-

purity concentration). This implied the zero residual
conductivity of an infinite 1D system. Much later a one-
parameter scaling theory demonstrated the localization
of all 2D states, with In/ ~ c; '.

The magnetic field 8 is a formidable problem even in
the Bloch case. Weak 8, with the fiux through a unit cell
small compared to the flux quantum hc/e, may be ap-
proximately accounted for ' by the quantum Lorentz
transformation q~i 'V —e A/Pic (A is the vector po-
tential, q is the wave vector) in the Bloch energy
E =E(q). The resulting Zil'berman-Harper-Lifshitz
equation ' leads to the devil' s-staircase spectrum. The
quantum Hall effect (QHE) revived interest in the magne-
totransport problem and resulted in a study of its invari-
ants. Disordered systems, even besides integer and frac-
tional QHE, yield a very rich behavior, with positive,
negative, and oscillatory magnetoresistance. Theoretical-
ly' '" and experimentally' it was demonstrated that a
disordered system has one extended state per each disor-
der broadened Landau level, i.e., per each energy interval
EEL =fieB/Mc (M is a mass, B is a magnetic field).
However, both theory and experiment were related either
to a strong enough magnetic field' ' or to the scaling ap-
proach. "

In this paper I accurately solve a 2D Schrodinger equa-
tion in magnetic field for a random set of special "Impur-
ity D-function" (IDF) potentials, introduced in Ref. 13.
Then I consider IDF's of random strength situated on a
periodic lattice.

I prove that when the energy E is below a certain criti-
cal energy E,(B), then all states are localized. When
E )E,(B), then the Landau energies

E~=(AeB/Mc)(p+ —,') (p is an integer) are extended in

any 8, while all other energies are localized. This is con-
sistent with the results of Refs. 10—12, but specifies the
mobility energies and is valid down to 8 =0. When
8 =0, extended states exist at all energies above the mo-
bility edge E =0. This agrees with Ref. 14, but disagrees
with Ref. 5. The residual resistance in 8 =0 depends on
the relative number of extended states. In a finite system
it scales with its size.

The accurate solution in BAO yields an unusual result,
which is reminiscent of the devils-staircase states in
periodic lattices. For a fixed EKE~, the localization
length g depends on the decomposition of the number
N~=eBd /ch of flux quanta per IDF (d is an average
inter-IDF distance) into a continuous fraction. The func-
tion g(B) is discontinuous at every rational N . Of
course, in the Mott variable-range hopping (VRH) this
discontinuity is smeared out by finite temperature. Still,
when temperature decreases, VRH magnetoresistance
may reveal a progressively finer structure which resem-
bles oscillations or fluctuations in B cf experimen-ts in
Ref. 15. A similar "superstructure" may appear also in
QHE.

In a general case, I present accurate universal transcen-
dental equations for eigenenergies and eigenstates.

The disagreement of my results in 8 =0 with Ref. 5

may indicate that the scaling theory and resistance
strongly depend on the ratio of the impurity size p to its
Bohr radius pz.

IDF's may also be useful in other problems, such as the
development of chaos in scattering, persistent currents,
QHE, Coulomb blockade, transport and tunneling (in-
cluding resonance tunneling), etc.

II. A SINGLE IDF POTENTIAL IN MAGNETIC FIELD

In this section I introduce a single IDF potential and
discuss its similarity to and difference from a 5 function.
It allows for the explicit analytical solution of the
Schrodinger equation. Almost all of its eigenfunctions
have a very special property: they do not depend on the
IDF strength, but they do depend on its location. The
IDF yields only s scattering.
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Following Ref. 13, introduce

U(R)= —(iiI /2M)D(R),

where

D(R)=lim[2exp( —R /p )/p ln(po/p)] .
p~0

(lb)

Here C is the Euler constant. Now Eq. (6) determines
%(R). When R /p —+ ~, then, apart from normalization,

%(R)=Ko(R /ps ) .

It has a very weak logarithmical divergence at R =0. If
R ))p~,

Here pa determines the IDF strength. The width of a
potential well U, by Eq. (lb), is p~O. So, its zero-point
energy is fi /2Mp Si.nce ~U~ &A' /2Mp ln(po/p), the
well is infinitely shallow' when p~0. Such a well has a
bound eigenstate with the finite Bohr radius. ' ' "' Its
wave function %' exponentially decays ' "at R -pa, i.e.,
infinitely slowly compared to U (which decays at p). So,
similar to a 5 function, p~O yields' "' (for both local-
ized and extended states)

%(R ) -exp( —R /ps ) . (10)

So, by Eqs. (4), (8), and (10), ps is the Bohr radius of an
IDF. When R «p, then Eq. (6) yields

0'(0) = ln(ps /p),
with the interpolation formula for Eqs. (9) and (11)being

D(R)4(R)=D(R)%(0) .
0 (R)—Ko[(R +p)/ps] (12)

By Eq. (lb), D (R) is different from a similar definition
of a 5 function 5(R) only in a factor 2m. /ln(po/p). Its
"area" is

fD(R)dR=2ir/ln(po/p) . (3a)

When p~O, the area ~0. This does not allow for the
introduction of simple symbolic formulas, such as

Jq (R)5(R)dR=%'(0), which are so efficient in the case
of a 6 function, and calls for accurate calculations. They
lead to nontrivial equations (see later, especially Secs. III
and IU), different from "boring" ones for a 5 function.
By Eq. (3a),

pa= pe =534p —+0 (3b)

where EC0 is the Bessel function. Choosing R =0 in Eq.
(6), one determines the eigenenergy from

f Ko(kR)D(R)dR =1 .
0

When p~O, then, by Eqs. (7) and (lb) and Ref. 19(a),

ps =k '=(po/2) exp(C/2) =0.67po .

leads to D(r)~ (5r). Due to the wave-function non-
linearity in the potential, D(r) has a bound eigenstate
and scatters, while 5(r) has no bound (finite-energy)
eigenstate and does not scatter. To demonstrate the
bound state of a single IDF, consider the energy

E ——/2k 2/2~

By Eq. (2}, the Schrodinger equation is

b, %—k 4= D(R)%( )0. —

To solve this equation, I assume a small but finite p in Eq.
(lb) and then take the limit p~O. The same approach is
used throughout the paper. (This is a necessity related to
the discussed difference between D- and 5 functions. ) The
homogeneous equation (with D =0) has no solution
which is finite at R ~~. The inhomogeneous solution
of Eq. (5) is related to the Green function' "

0'(R)=[+(0)/2ir] fKo(k~R —R'i)Do(R')dR', (6)

Equations (4) and (8) demonstrate the difference be-
tween D (R) and 5(R). In the case (3b), when
po=534p~O and D(R) ~5(R), Eqs. (4) and (8) yield
E~—co, i.e., 5(R) does not have a finite-energy bound
state.

Now consider the scattering by a single IDF, with the
positive energy of an incoming wave

E=fi k /2M .

Then, by Eq. (2), the Schrodinger equation is

8%+k 4= D(R)4(0—) .

(4')

(5')

where ps is provided by Eq. (8). If R ))p, then, by Eq.
(6'),

%(R)=exp(ikY)+inHo"(kR)/21n( ikps) . —

When kR ))1, then Eq. (9') provides the scattering am-
plitude ~ 1/ In( ik ps ). —By Eq. (3b}, when

D( R)~ (5R}i.e., ps —+0, there is no scattering. This
happens due to the wavelength k ' being infinitely larger
than the Bohr radius. The scattering also vanishes in the
opposite limiting case kp~ ~ oa of an infinitely high ener-
gy E [see Eq. (4')], or of an infinitely weak IDF (ps ~ 00).
When kps = 1, the scattering is maximal (resonance).

By Eq. (9'), the scattering is extremely nonuniversal
with respect to the angular moment I: only I =0 is scat-
tered, other I's do not notice the IDF. Now consider
IDF eigenstates with positive energy E )0. When I&0,
then, by Eq. (5'), 4, =exp(ilg)J', (kR), 1%0, does not no-
tice the IDF. The eigenstate with I =0 may be derived
via the Green function of Eq. (5'}:

If the incident wave is exp(ik Y), then, by Eq. (5'),

%(R)=exp(ik Y)+ —,'i+(0)fHo" (k~R —R'~ )D (R')d R',

(6')

where Ho" is the Hankel function. %'hen R =0, then,
accounting for Eq. (6') and Ref. 19(b),

%(0)=ln(po/p)/ln( ikp& ), —
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4 (R}=J (kR) —,'4—(0)fD(R')iii (k~R —R'~)dR',

(13)

where N is the Neumann function. ' ' ' Calculating
%0(0},one obtains

Here 1 is the Laguerre function and L is the Laguerre
polynomial. ' ' ' The homogeneous %„, ,s, by Eq. (22),
does not satisfy Eq. (20) with DO%0. The inhomogeneous
%(R) is related to the Green function' and equals

%(R)=%(0)fD(R')G, (b~R —R'~ }dR', (23)

+o(R)=JO(kR) liio—(kR)I41n(kps) if R/p~~,
(14)

G. (g) = r(a g'"W„,2, o(g),

a =
—,
' —McE/AeB, b=keB/ch .

(24)

(25)

6%+k 4= D(R—)%(R) (16)

yields

%(R)=exp(ikY}+ ,'i fH—o"(k~R —R'~ )D (R')%(R')d R' .

(17)

%0(R)/4(0)-ln(ps/p)/1n(kps) .

The IXO eigenstate 'Pi(R}~0 when R ~0. The degen-
eracy allows for an extended eigenstate

%(R)=exp(ikY) —Jo(kR} .

It also does notice the IDF position: %(0)=0, but it is

independent of the IDF strength. Thus, this feature is
common for almost all IDF eigenstates (the exceptions
are s states). It is related to the IDF point nature and it
vanishes when p@0. Consider, e.g. , the scattering by the
potential ( lb) with small, but finite p. Then the
Schrodinger equation

Here I and 8' are the gamma' " and Whitteker' ' '

functions correspondingly. Choosing R =0 in Eq. (23)
and accounting for Ref. 19(g), one obtains the equation
for the energy

C +2 ln(po/Ls )+g(a }=0, Ls = 1/2b, (26)

a = —p —
—,
' ln(po/Ls) . (27)

When po/L~ ~0 or po!L~~~, then a ~—p, i.e.,
eigenenergies are independent of the IDF strength, as in

the case of B =0. When R »p, then, by Eq. (23), apart
from normalization,

%(R)=G, (bR } .

When bR » ~a ~, i.e., R &&LH (ME/fi )'~, then

(27a)

where g is the Euler li function and Ls is the magnetic
length. When po»Ls or po «Ls, then, by Eq. (26) and

Ref. 19(i),

Consider

4(R) =g% "(R ) exp(il P ) .
I

(18)

%(R)—(bR )' 'exp( bRi/—2) .

IV. GENERAL CASE SOLUTION

(27b)

Then, accounting for Ref. 19(c), one obtains

4'"(R ) =JI (kR )

+ ,'i fHo" (—k'}IR +R' 2RR'cose)—

XD (R ') cos(l e)%'"(R ')dR 'd 8 . (19)

When /%0, in the leading approximation
4'"(R)=Ji(kR). Further perturbations in Eq. (19) yield

the scattering amplitude o-

(p/po)'/ln(peak)

when p «po.

III. A SINGLE IDF POTENTIAL
IN MAGNETIC FIELD

Consider magnetic field B=Bz. In the symmetric vec-
tor potential gauge A= —,'BXr the Schrodinger equation,

by Eq. (2), reads

(V —eBXr/2cfi)2%+2MEVIA' = D(R)%(0} . —

Consider an arbitrary set of IDF's in magnetic field
B=Bz. Denote the ordinal number of an IDF by s, its
strength by p, [i.e., p, replaces po in Eq. (1b)], its position

by R„and its potential by U, = —(iri /2M)D, ( ~R —R, ~
).

Similar to Eq. (2), D, ( ~R —R, ~
)p(R)

=D, (~R—R, ~)%(R, ). So, in the symmetric vector-
potential gauge, the Schrodinger equation reads

(V —eBXr/2ch) 4'+2MEqlIA

= —gD, (R—R, )%, , ql, —=+(R, ) . (28)

Suppose EWE =(A'eBIMc)(p+ —,'), where E is the Lan-
dau energy. Then Eq. (28) has no homogeneous solu-
tions, and the inhomogeneous %(R) is related, by the
Green function, to 4(R, ):

%(R)=g%, exp(ib R, XR)

The homogeneous equation (with D =—0) yields the Lan-
dau eigenenergy' ' ' X D, R' G, bR —R, —R' dR'. (29)

E =(fieBIMc)(p + —,
' }

(p is an integer) and the homogeneous eigenfunction

Vh, ,s(R) =1~(meBR /ch), .

l~(g) =exp( —g/2)L~(g) .

(21)

(22} E 4 =g'4, exp(ib. R, XR )G, (b~R —R, ~ ), (30)

Choosing R=R, where R is the location of the 0.th

IDF, I obtain the equation for the eigenvalues of E and
ql, . When p~O, it reads (cf. Ref. 13),
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e =rl +f(a), g =C+ln(2bp ) . (31) 0'(R)~0~(R) . (37a)

E =(0.5 a)Tie—B/Mc,
—1'(a)=C+ln(2apo/d )+e(a)/G, (a),
a=bd

(32)

where Z(a) satisfies the equation

Z —3e+2 cos(a&3/2) =0 . (33)

When E~E~, then a = —p +y, y —+0, and, by Eqs. (21)
and (31) and Ref. 19(i), so~ —1/y, G, (g)~fz(g)/y. So,
by Eq (32),.

E= 1/1~(a) (34)

is independent of the IDF strength. By Eqs. (33) and (34)
the equation

The prime in Eq. (30) denotes that the diagonal term
s =o is missing in the sum; a is from Eq. (25). This equa-
tion allows one to easily study a small number of IDF's.
Consider, e.g., an instructive example of three identical
IDF's with p, =po, situated at the sites of an equilateral
triangle with side d. The determinant of three linear
equations (30) must be zero. This yields a and thus, by
Eq. (25), the energy

However, in a rather general case (see Sec. V) W(R)—:0 if
q', yields Eq. (30) with a +p =y~O (i.e., with E~E~).
Then it is more convenient to use I'(R}, which, by Eq.
(35) and the 1'Hopitale formula, equals

d% d%,4'(R) = =g W"(R—R, ) . (37b)
p dp —p

By Eq. (36) 4" is the Wannier-type presentation of the
homogeneous solution to Eq. (20) with E=E„, and
W (R—R, ) is the eigenfunction (22) centered at R, rath-
er than at R=O, with the phase accounted for. Equation
(30}, which determines E and 4, =%(R, ), and Eq. (35),
which determines 4 when RAR„are universal, general,
and accurate for IDF's. If E =E, then the homogene-
ous solution %~ must be orthogonal to the right-hand
side of Eq. (28), i.e., g, ~%~(R, )~ =0. So, by Eq. (36),

H(R') =+4,%"~(R—R, ) =0

for all s.
For simplicity, from now on, unless stated otherwise,

consider IDF's on a square lattice R, =r, d,
r, =mx +ny —=r „,r =mox +noy. Introduce

21 (a) cos(a&3/2) —3l (a)+1=0 (34a) „=exp(iamn)% „, a=bd (39)

:—n%'(R)/sin(na ) . (35a)

[I introduce 4* for further convenience —see Eq. (35c).]
By Refs. 20 and 19(f), the Green function G, (b) may be
presented through the Laguerre functions l,(R ):

G, (g)= g l,(g)/(v+a) .
v=O

So, 4' from Eq. (35a) equals

%*(R)—= %(R) sin(ma)/vr

(35b)

determines the values of a=a(p) when this happens.
One readily verifies that IDF strength-independent eigen-
states exist even when IDF strengths are different. Then
they also have the Landau energies.

Back to a general case. When RAR, (i.e.,
~R —R, ~/p~ ~ for all s), then, by Eq. (29), the wave
function, apart from normalization, is

%(R)=g%, exp(ib R, XR)G, (b~R —R, ~
)

("L"denotes the Landau gauge). Then, by Eq. (30),

„exp[ia(m —mo)(n +np)]
m, n

mo, n no
(40a)

„=exp(imq, )4„ (41a)

and Eq. (40a} accurately reduces to a 1D equation for 4„,
which provides a test stone for 2D studies:

„=f(a)+C+ln(2ap „/d ),
G „=G,(a~m +n ~) if m +n %0, Goo=0 . (40b)

Equation (40a) is universal, general, and accurate. It has
only diagonal disorder, related to the IDF strength p „.
Nondiagonal elements in Eq. (40a) depend on two param-
eters: the number of flux quanta a/n per unit cell and
the dimensionless energy a from Eq. (25}. Consider spe-
cial cases. Suppose a total IDF potential is periodic
along x and is arbitrary along y, i.e., c „=c.„.Then

where

= g 4 (R) sin(ma)/m. (v+a),
v=O

(35c} e„%„=g%„gcos[m [a(n +no)+q, ] j G

(41b)

4"(R)=g%', 4'"(R—R, ),
4'"(R—R, ) =exp(ib R, X R)l (b~R —R, ~ ) .

(36)

(37)

In periodic total IDF potential with c, „=c, choose
a =

m Q & /Q, (where Q, and Q are integers, Q & /Q is the
number of magnetic flux quanta per unit cell) and
n =NQ+p, no=NoQ+A, , O~p, A, &Q —l. Introduce

Equation (35) explains the introduction of %*(R), with
the normalization diff'erent from 'P(R). When a~ —p,
then %(R) diverges, while

%„=%' &+~„=exp(iq2N) II„. (42a)

Since exp[2iano(m —mo)] is periodic in no~no+Q, Eq.
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(41) reduces then to Q linear algebraic equations for ~p~.. a = —p + (
—1 }t'(p /m. Inp)(irego /p)~

—1

eqiz= g G&„qi~
p=0

G ~i„=(—1) 'cos[m[a(p+A, }+q,]]
X exp(iqzN)G z&+„

(42b)

X exp( —1rgo/2}( cosqi +cosq2 ),
where p is an integer.

V. LANDAU LEVELS
AND DEVIL' S-STAIRCASE LOCALIZATION

(46)

where the superscript "t" denotes the total. Equation
(42b) is the exact IDF version of the Zil'berman-Harper-
Lifshitz equation. Different from the latter, it already
has proper quantum numbers and depends on magnetic
field via a and a. More important, while Eqs. (40a) and
(41b} depend on a parameter a, it explicitly depends on
the (integer) nominator Q i and denominator Q of
a/ir=g, /Q. For instance, the number of linear equa-
tions in Eq. (42b) is 2 if a/n. =0.5 and is 10 if
a/n =0 5000.01. It is natural that such a change in the
number of equations significantly changes the eigenener-

gy. Similar to Ref. 7, this leads to the devil s-staircase-
type spectrum, which is related to the decomposition of
a/vr into the continuous fraction and which has a singu-
larity at every rational value of n/~. All of the above
equations are accurate. Now consider an approximate
case. The change s~s+cr in Eq. (30) on a square lattice
(where r, =s) leads to qI, + =exp(sd/do )ip . When
a«1, the coefficients in Eq. (30) change slowly. If c.

also slowly changes with cr together with p [see Eq.
(40a)], then in the leading approximation one replaces
id/do by the dimensionless generalized wave vector q,
with q=q +a r, Xr being the kinematic wave vector.
Then one obtains the accurate classical dispersion in
magnetic field:

When E~E~, i.e., when, by Eq. (25), a = —p+y,
y ~0, then, by Eqs. (24) and (31) and Ref. 19(i),
G, (g) —+i~(g)/y, co~ —I/y. So, Eq. (40a) reduces to

m, n = —oo

„exp[ia(m —mo)(n +no)]l (ar „„)
=0 . (47)

~&+„=exp(iq, m +iq2N)c„.

Then, by Eq. (47),

Q
—

1 oo

g SI,„c„=O, Sz„= g S~zi,„=Si,i,
m, N = —oo

(49)

S~~„i=(—1) 'exp[im[a(@+A)+q, ]+iq2N]

By Eq. (35c), when a~ —p, then ' ip"(r)~%~(r). Since
Eq. (47) is clearly ignorant of randomness, follow the
reasoning of the periodic case (42b) and obtain extended
solutions for y~O [cf. Ref. 17(b) for a free particle].
Choose a/m. =g, Ig, n =Ng+p, no=NOQ+A, , 0&A,,
p&g —1, and

c.= g cos(q r „)G „.
m, n

(43)

Different from Refs. 2 and 6, it depends on magnetic field
via a and a from Eqs. (40b) and (25). Now consider
a=irgo+ai, where ~a, ~

&&1, Qo &1. In the leading ap-
proximation (a, ~0) one may replace
exp[ia(m —mo)(n +no)] in Eq. (40a) by

exp[in Qo(n no)] —If e. „slowly changes, then
0 0

„=exp(iq r „)yields, by Eq. (40a),

~—m, NQ+p —A,
(50)

where r „=m +n [cf. Eqs. (49), (50), and (42b)]. A bar
denotes the complex conjugation. The Landau energy
states (with a ~—p) are extended when the Q X Q deter-
minant of the matrix S' from Eq. (49) is zero:

s= g( —1) 'cos(q r „)G „ (44)
D(q, p, g, , g)=DetS'=0 . (51)

which, by Eq. (43), includes the case of go=0. So, Eq.
(44) is valid for any a/vr close to an integer. It is accu-
rate for e=const and a=ergo&0. When ~go&&l, ~a~,

then

When +=0, i.e., B =0, then, using the Green function of
Eq. (5'), Eq. (47) is replaced by

Jo( kdr „„)=0. Its Fourier transforma-

tion

s = (cosq, +cosq2 )1 (a)(ago )
' exp( —irgo /2) . (45) g Jo(kdr „)cos(q. r „)exp( —ar „/2) =0

m, n

This is the tight-binding case. The leading approxima-
tion in exp( —m.go/2) corresponds to a single IDF with
e=0 [cf. Eq. (26)]. The next approximation yields the
effective mass m *= ( ,' m. )r}SIdE [S is the are—a of
E(q)=E] of a Bloch electron, which exponentially in-
creases ~ exp(ergo/2) with magnetic field. When
—a ))1,then' "

for all q in virtue of the Poisson summation formula and
Refs. 19(c) and 19 (k). So, all states (for E &0) are ex-
tended.

The Landau energy (a = —p} states are extended if
D =0 in Eq. (51). Consider localization in their vicinity

(~y~ && l, y=a +p) for q which yields D(q, p, g, , Q)=0.
Introduce in Eq. (40a)
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e~„=a~ Ng+„=a~~„—lly, 6 „=6*„+lp(ar „)ly if mAn, GOO=0,

N&+„=exp(iq, m+iq2N)t ~„, 0~@ Q —1 .

When y ~0, then G*„and E*„are calculated according to Ref. 19(i), and

E*z„=g(1+p)+C+ln(2ap z&+„/d ) .

By Eqs. (40a), (52), and (53),

(52)

(53)

(54)

Ap+moNop Y smoNO+moNOX g mNkp+m +ma, N+No, p
P m, N, p

Fm0N0A, '

X mNAp(+m +ma, N No, p —+moNop}
m, N, p

(55)

Here S is presented by Eqs. (49), (50), and

mNQ (S vx&=G xg+„x(—1)

(Ni) are real constants (independent of m, N). The
linear transformation from m, N to m, X allows one to
eliminate 8 X/Bm BN in Eq. (60). Then the phase shift

X exp [im [a(A, +p)+q& ]+q2N] X=exp(i z,m +i v2N }X (62)

~ —m, —N, pA, (56}

The "homogeneous" Eq. (55) with F z &=0, by Eq.
0 0

(49), has a solution t z„=c„. Therefore, the inhomo-
geneous Eq. (55}with F ~ &@0has a solution if

0 0
82 a2

Bm dN
+ +(K +yg)X=O, K =K)+K2, (63)

with properly chosen (real and constant) lr&, a2 eliminates
BX/Bm, BX/BN and leads to the Schrodinger-type equa-
tion

yc,F „,=0. (57)
g =g(m, N) . (64)

Consider

mNp +mN p (58a)

and assume that X z [which was constant in Eq. (48)]
slowly changes with m, N. Then with the accuracy y one
&nay replace 0'mN„by ym N c„ in the figure brackets in

m0 0 P

Eq. (55), and rewrite Eq. (57) as ing=~y (63')

Here ~„ir2 and random g depend on Q„Q. The X phase
in Eq. (63) must be chosen to provide slowly changing
X(m, N). The localization length g~ ~ when y ~0. In a
1D case (when e „=e„) it may be calculated analytically,
similar to Ref. 23. When v+0 and g is an analytical
function, then

STygmoNOXmoNO W Xm+m NO+N XOmoNO mlV
m, n

(58b) When g is not an analytical function and has a singulari-
ty, then

Here in' ~
I lny I . (63")

S~~—g c~c„S~xzl,=S ~ x,
m, N

gmo+0 g lcq I &~,~ ~
— 2 chic S~~z„=g~

A m, N, A, ,p

(59)
The factors in Eqs. (63') and (63") depend, via z and g, on

Q and Q&. The crucial point in the above reasoning is
the existence of q which satisfies Eq. (51). Consider the
case when Eq. (40a) reduces to Eq. (44}. Then
a+p =Y~O, by Eq. (44), yields

2i (mi ) — + (Ni ) =2ygX, (60)ax - ax
Bm BN

~fmN ~ XfmNSmN
m, N

(61}

where, by Eq. (59), (m ), (N ), (mN), (mi ), and

"T" denotes total. Expanding in Eq. (58b)
+ N +N

—y N in m, X, one obtains the equation

for ym

a2 a2 82
( 2) X +(N2) X +2( N) X

Bm 3m B'AV

m, N= —oo

( —1) cos(q r „)l (aIm +n I)=0 . (65)

i (12mr&, +ql la)=0.
m, N = —oo

(66)

If p&0, a ((1/p, the leading term in Eq. (66) corre-
sponds to 1 =s =0. Then L (q/a) =0 yields' '

q=(~/2)(n —~)(a/p)', where n is an integer. Since
one may choose Iq ~ I ~ Iq2 I

~ m in Eq. (65), the maximal n is
an integer part of [2(2p/a)'~2+ —,

'
] &&p.

When a » l,p, the only term in Eq. (65) which is not

If Qo is even, the Poisson summation formula, together
with Refs. 19(k) and 19(1) and Eq. (22) for i, yields
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D= =0,BD

Bq;
(67}

exponentially small with a has m =n =0. It is %0, and
thus Eq. (65) has no solutions. Since Eq. (65) has solu-
tions when a « 1/p and does not have them when o, »p,
there must exist the "critical line(s)" a, =a, (p), with

only localized states above it and the extended Landau
states below it. So, weak fields a«1 always yield ex-
tended Landau states (this is consistent with the con-
sidered case of a=O). Physical intuition and numerical
experiments verify that (for a fixed a) higher energies

p » Ila »1 enhance extended Landau states; a, starts
with a Anite value, numerically = 1.

The real solutions to Eq. (51) vanish at degeneracy
points. So, a, is provided by

S „DO=1,(2rrr „)=(1 —2rrr „)exp( r—rr~„)

and thus q, =qz =0 satisfies Eq. (49), if

(68)

gl, (ar „)=0.
m, n

By Eq. (48), '0 „=1; by Eq. (39),

(69)

(69a)

So, by Eqs. (36) and (37a),

%*(r)=4'(r) =exp(2rrixy)%" (r),

ql'(r) = g exp[2rri(m —x)(n +y}]l,(2' r —r „~ )
m, n = —oo

where q; is q or q . Since this equation depends on

Q„Q and since, by definition, p is an integer, a, (p) will

probably form a fractal line for a fixed p. Its calculation
is planned to be the subject of a separate study.

=qi"'(x + l,y} .

Equation (69), by Eq. (70), may be presented as

t'(0, 0) =0 .

(70}

(71)

VI. THE EXAMPLE

A general analysis may be demonstrated by the exam-
ple of a=2m (i.e., Q, =2, Q =1), p =1, and qi =q2=0.
Then, by Eq. (53), A, =p, =O, N =n, and c„=co may be
chosen to be co= 1. By Eq. (50),

Finally, by Eqs. (61) and (68), (m ) =(N ) =(mN) =0,
( m ) = ( n ), and thus Eq. (60) reads

(72)

Now calculate the Fourier components ~p„'(y) of t(r) in
x. By Eq. (70), after a straightforward calculation,

0'(y) = g f exp[2rri [vx+(m x)(n ——y)]]1, [2rr[(x —m) +(y —n) ] I dx
m, n = —oo

J c so[ n2x(y +n
—v)]1, [2rr[x +(y —n) ]Idx

n = —oo

=(2y —v) exp[ —2rry(y —v) —mv ] g (2n —v) exp[ 2rrn(n —v)]:——0 . (73)

qi (q, R)=0 when D (q) =0 (74)

leads to an unusual identity for the Laguerre functions,
which calls for a special study. In this case one should
determine, by Eq. (37b), %(r) rather than %*(r) for
/r —r, / »p.

VII. OUTSTANDING PROBLEMS

(1) For simplicity, I studied only random-strength
IDF's on a square lattice. However, a random IDF situa-

Since t„(y)=0 for all v, so 4,'(x,y) =0, and, in particu-
lar, Eq. (71) is satisfied. The situation, when by Eq. (69a)

„=1 while qi'(r)=0, is similar to the case of Eqs.
(10)—(12) when p~0; in both cases the probability densi-

ty is infinitely (logarithmically in p) larger at the lattice
sites than elsewhere.

This seems to be the case for all p, q and a/~& n +1,
studied in numerical calculation. In a general case,
then25

tion may be seen as a disorder on a lattice whose period
~0. Thus, I conjecture that all results are valid in a gen-
eral case. However, an accurate study is in order.

(2) In the absence of magnetic field all states (for any

q„q2) are extended above the mobility edge. This may
suggest a zero residual resistance (at zero temperature) of
a 2D system with random IDF disorder, and thus an ex-
ample of a perfect disordered conductor. It also means
that a residual resistivity decreases with the size p ( not
the Bohr radius pe) of impurities, and also calls for a de-
tailed study.

(3) In magnetic field, when the Fermi energy E„=F. ,
Eq. (51) yields q, =q, (q2). In a finite system L XL this
typically means the fraction of extended states, which is
~ 1/L. Since the eff'ective mean free path for an extend-
ed state is L, then the eff'ective residual 2D conductivity
0 ff should be size independent.

(4) One expects that the lower the temperature T is, the
finer the details in the discontinuous g(B) are manifested.
What is the exact dependence of g(B) and cr,gB, T)? The
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first question may be answered, e.g., by the numerical
study of the derived equations; the second demands a
finer analysis (see Ref. 13 for the numerical approach to
the Mott variable-range hopping in a random IDF sys-
tem).

(5) To determine the applicability of the scaling
theory, one must calculate the mean free path for weak
localization for the IDF disorder.

VIII. SUMMARY

(i} Start with the listing of derived equations. The main
equation, which determines the eigenenergy E and eigen-
values of the wave function qi, at the IDF sites (for their
arbitrary locations R, and strengths p, ), is Eq. (30),
where a, b, and G are provided by Eqs. (24) and (25), and
e by Eq. (31). The wave function %(R) everywhere, ex-
cept for the IDF locations, is presented by Eqs.
(35a)-(37), where l„ is the Laguerre function. When
IDF's are situated on a square lattice with period d, then
Eq. (30) reduces to universal Eqs. (40a} and (40b}, with di-
agonal disorder only. If the energy
E~E~ =(p + ,' )AeB/M—c is the Landau level and

tz=srg/Qt, Q, Qi, and p are integers, then Eq. (30)
reduces, by Eq. (48) (extended Landau states), to Eqs. (49)
and (50}, which are independent of the IDF strength,
while qt reduces to 4'i'(r) from Eqs. (36) and (37) or to qt

from Eq. (37b). If E=E~, i.e., a+p =y, ~y~ &&1, then
Eqs. (53), (58a}, (60}, and (61) describe localization, with
the localization length g provided by Eqs. (63') and (63")
with the factor depending on Q, Q, . If the total IDF po-
tential is periodic along x, then the Schrodinger equation
reduces to 1D Eqs. (41a} and (41b}. When the total IDF
potential is periodic in both directions and the number of
flux quanta per unit cell is a/n = Qi /Q, where Qi, Q are
integers, then, by Eq. (42a), the problem reduces to Q
linear algebraic equation (42b). When a=ago+a„go is
an integer, ~a, ~

&&1, the dispersion in magnetic field is
described by Eq. (44).

(ii) The main features of the presented equations, which
are absent in all other models, are the following. The
main equation is general, accurate, and universal. On a
lattice it has only diagonal disorder. It depends explicitly
not only on the (conventionally accounted for) Lorentz
phase shift in magnetic field, but also on the exponential
shrinkage of the wave function with magnetic field. In
the vicinity of the Landau levels (of a free electron in
magnetic field} it reduces to Q linear algebraic equations
(where Q is the integer denominator in the number of flux
quanta a/m =Q, /Q per unit cell), whose coefficients de-

pend on Qi, g.
In any magnetic field they reduce to a 1D situation if

the total IDF potential is periodic along one of the lattice
axis, and to Q algebraic equations if it is periodic along
both axis (the Bloch case). A comprehensive picture of
2D localization in a random IDF set may be obtained
from computer calculations of the presented equations.
Even in the Bloch case it would be interesting to find out
how the wave-function shrinkage affects the Hofstadter
bat terfl spectrum.

(iii) Analytical calculations prove that in any 2D sys-
tem all Landau levels E =(p+ ,')AeB/M—c are extended
when p ~p, (8). When 8 ~8„ then p, (8) depends on

Q, g„which are related to the number of flux quanta
eBd /ch =Q/g, per IDF. When 8 &8„then p, (8)=0.
This implies the mobility edge E =0 in a 2D system in
the absence of magnetic field. In the vicinity of the Lan-
dau levels I determine the behavior of the localization
length g(8).
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