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We investigate impact-ionization processes in Si with use of a realistic band structure. The band
structure and the corresponding wave functions, obtained with an empirical pseudopotential method, are
used to evaluate the matrix elements for the ionization transitions. The matrix element includes the
direct and the exchange terms with the umklapp terms associated with the periodic part of the Bloch
function. It is shown that these ionization processes are inherently anisotropic and that it is crucial to
take account of this anisotropy in analyzing the ionization processes. The anisotropy (wave-vector
dependence) of the ionization probability is manifested through the strong restrictions imposed by ener-
gy and the momentum conservation during the transition under a realistic band structure.

I. INTRODUCTION

The interest in impact-ionization processes and high-
field carrier transport in semiconductors becomes even
greater as the size of semiconductor devices continues to
shrink.! Such hot-carrier transport problems have, in
general, been addressed using Monte Carlo methods, and
there has been great success in explaining various
phonon-related transport problems.>® In spite of this
progress, the impact-ionization process is still treated in a
very primitive way in Monte Carlo simulations,*”® and
thus the physics involved in the ionization process has
not yet been clearly resolved. For example, it is not cer-
tain why a significant material dependence of the soft and
hard ionization thresholds (P factor in the Keldysh for-
mula’) exists in Si and GaAs.®?

To clarify the mechanism of impact ionization in semi-
conductors, the most important quantity characterizing
the ionization transitions is the ionization probability.
The ionization probability is calculated formally from
Fermi’s golden rule in a straightforward way.>'© The
problems that prevent the calculation of a realistic ioniza-
tion probability and, in turn, the resolution of the prob-
lems mentioned above are mainly due to the fact that a
realistic band structure in higher-energy regimes is very
complicated in semiconductors. The evaluation of the
matrix elements for the ionization transition and of the
multidimensional integrals in wave-vector space requires
both an accurate band structure and the wave functions,
which results in a huge amount of numerical computa-
tions on a computer.

On the other hand, various investigators have exten-
sively studied the ionization probability using analytical
approaches”!! in which the investigators assumed analyt-
ical forms for the band structure, for example, a parabol-
ic or nonparabolic band structure, for both the conduc-
tion and valence bands. These approaches may be partly
justified for narrow- and direct-band-gap semiconductors
in which the deviation of the band structure employed in
the calculations from the realistic band structure would
be insignificant in the energy range being investigated.
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However, it is clear that the above approach breaks down
for wide- and/or indirect-band-gap semiconductors such
as Si or GaAs.

Recently, the approximations employed in these calcu-
lations have been relaxed. A realistic valence-band struc-
ture distinctly different from the parabolic or nonparabol-
ic band structure has been calculated by the k-p
method,'? and the corresponding wave functions have
been used for evaluating the matrix elements.’>~ 15 This
approach is not, however, accurate enough for wide-gap-
band semiconductors in which the conduction band in
higher-energy regimes also deviates from the analytical
form of the band structure.

The present authors have recently proposed a general-
ized Keldysh formula with wave-vector-dependent ion-
ization thresholds and have performed Monte Carlo
simulations for Si.!® We went on to point out the impor-
tance of the anisotropy imposed by the ionization pro-
cesses. However, the formula employed there was some-
what phenomenological and no justification based on first
principles was given. An alternative approach taking
into account the wave-vector dependence of the ioniza-
tion probability was described by Thoma et al.!” They
used an artificial band structure that reproduces a realis-
tic Si density of states to model the entire band structure
in the first Brillouin zone (BZ). From a technological (de-
vice application) point of view, this approach is advanta-
geous insofar as it reduces the CPU time required for the
computations. Unfortunately, it cannot answer the fun-
damental questions about the physics involved in impact
ionization, because wave functions consistent with the
band structure are not known.

In the present paper we perform a realistic evaluation
of the matrix elements for the ionization transition and of
the ionization probability consistent with a realistic band
structure determined from an empirical pseudopotential
method.!® The symmetry property imposed by the crys-
tal structure is fully exploited for efficient numerical cal-
culations of the matrix elements and ionization probabili-
ties. The overlap integrals, matrix elements, ionization
threshold energies, and ionization probabilities are evalu-
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ated and discussed with emphasis on the anisotropy asso-
ciated with a realistic band structure. It is shown that
the ionization process is inherently anisotropic. The
wave-vector dependence (anisotropy) of the ionization
probability is manifested in the strong restrictions of the
energy and the momentum conservation under a realistic
band structure, though the matrix elements also reveal
strong wave-vector dependence.

In fact, Kane has already evaluated the ionization
probability with a realistic Si band structure and has
found a rather slow increase (soft threshold) of the ioniza-
tion probability as the electron energy increases.!® Very
recently, Bude et al. have extended Kane’s approach by
including intracollisional field effects.”® In these works,
the ionization probability was averaged over the density
of states, and the ionization probably was thus given as a
function of the electron energy. Therefore, some interest-
ing features, such as the inherent anisotropy of the ion-
ization process (discussed in detail in the present paper),
were overlooked. Furthermore, the average values of the
matrix elements were used for the ionization transitions
because of limitations in the numerical calculations. A
similar approach has been also taken by Laks et al.?! to
obtain the lifetime due to nonradiative Auger recombina-
tions. Laks et al. integrated the transition probability
over initial states and, in doing so, missed the important
feature mentioned above.

The present paper is organized as follows. The matrix
elements of the impact-ionization transition and the ion-
ization probability as a function of the wave vector are
derived in Sec. II. The calculation procedures for
efficient numerical evaluations of the matrix elements and
the ionization probability are given in Sec. III. The re-
sults of the calculations of the overlap integrals, matrix
elements, ionization threshold energies, and ionization
probabilities are given and discussed in Sec. IV. Finally,
we draw some conclusions from the present study in Sec.
V.

II. IMPACT-IONIZATION PROBABILITY

Impact ionization involves electron-electron interac-
tions taking place between the electrons in the conduc-
tion and valence bands in solids. Figure 1 schematically
shows an impact-ionization process in Si. For wide- and
indirect-gap band-semiconductors such as Si, the ioniza-
tion transitions involve a substantial momentum and en-
ergy transfer during the transitions, as we shall explicitly
show in Sec. IV. Therefore, a full knowledge of a realistic
band structure and wave functions in the entire BZ is cru-
cial in evaluating accurate matrix elements and transition
probabilities.

In the present study the band structure and wave func-
tions of Si are calculated with use of the empirical pseu-
dopotential method, which produces a reliable descrip-
tion of the excitation spectrum.'® In the pseudopotential
method the periodic part of the Bloch wave function is
expanded with a basis set of the reciprocal-lattice vectors
(G vectors).”? The wave function for the electron at posi-
tion r; with band index n; and wave vector k; is ex-
pressed by
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FIG. 1. Schematic drawing of an impact-ionization process
in Si. The initial electrons in the conduction and valence bands
before the transition are in states 1 and 4, respectively, and the
final electrons in the conduction band after the transition are in
states 2 and 3.
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where V is the volume of the crystal, ¢ (n;,k;;G) the ex-
pansion coefficient, and i (i =1,2,3,4) denotes the electron
state. States 1 and 4 are the states of the initial electrons
in the conduction and valence bands before the transi-
tion, respectively, and states 2 and 3 those of the final
electrons in the conduction band after the transition (see
Fig. 1). In the summation over the G vectors, we have
employed a set of 113 G vectors for the expansion. This
is large enough to produce a good band structure and sa-
tisfactory convergence of the matrix elements. Figure 2
shows the band structure obtained using the pseudopo-
tential method expanded with 113 G vectors. It should
be noted, however, that the number of the G vectors in
the present work cannot be chosen to be arbitrarily large.
As we shall explain in Sec. III, we employ symmetric
properties such that the basis set of 113 G vectors is in-
variant under the 48 symmetry transformations for the
wave vectors in an irreducible wedge (IW) of the BZ.
Employing this feature, most wave functions outside the
IW can be constructed from the wave functions inside the

L r X K r
Wave vector

FIG. 2. Si band structure obtained from the empirical pseu-
dopotential method. The lowest eight bands (four valence and
four conduction bands) are used in the present study.
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IW. As a result, the matrix elements of the ionization
transition can be efficiently evaluated.

The wave vectors k; are restricted to lie in the first BZ
and satisfy the following momentum conservation:

k,+k,+G,=k,+k; , @)

where Gy, is the reciprocal-lattice vector that returns all
wave vectors k; to the first BZ (umklapp process). The
electrostatic potential responsible for ionization transi-
tion between electrons is given by the screened Coulomb
potential and is expressed by?!
e —Alry =,
Vie,—n)=——, (3)
! 2 € ( q ) ‘ 1'1 - rz\
where e is the elementary charge and A the inverse of the
screening length given by [4mnge?/(kpT)]V2
Throughout the present study, the electron temperature
T equals 300 K and the electron density 7, equals 10'®
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cm 3, which allows one to ignore the degeneracy. kj is
Boltzmann’s constant and €(q) is the dielectric function,
the wave-vector dependence of which is taken into ac-
count via the form given by Nara and Morita.? As al-
ready pointed out by Laks et al.,?!' the inclusion of the
wave-vector dependence of the dielectric function is im-
portant in calculating the matrix elements and, hence,
also in the resulting transition probability because of the
large momentum transfers involved.

The matrix element T; for the ionization transition
consists of the direct and exchange processes and is given
by

Ty=3(Mp >+ Mg |2+ M, —Mg|?) , 4)

where M, and My represent the matrix elements of the
direct and exchange processes, respectively. The matrix
element M, is calculated in terms of the pseudo-wave-
functions given by Eq. (1) and is written as

Mp= [ d*r, [ g}k, (1)@} 1 (22)V (6= 1) 1 (1) 1 (72)

_ 47re? 1

V 61’62’63’64 E( q )( q2 + }\2)

* . * . . .
8k1+Gl+k4+G4,k2+Gz+k3+jS (n1,k;;G)e*(ny,kg;Gyde (nyky; Gylens, k3 Gs)

(5)

where 8y |G +k,+G, k,+G,+k,+G, is the Kronecker 8 function and q (=k;+G;—k,—G,) the momentum transfer. Us-

ing the momentum conservation given by Eq. (2) and defining G, =G, —G,, Eq. (5) can be simplified as

47e? I (ny,k3n,0,ky Gyl (nykesns, ks Gy)

Mp= , (6)
v g e(g)(q*+1?)
where
Icc(nl,kl;nz,kz;Gu)= 2C*(nl,kl;Gl)C(nz,kz;Gl_Gu) » (7)
Gl
Ivc(n4,k4;n3,k3;Gu)= 2C‘(n4,k4;G4)c(n3,k3;G4+GU_G0) ) (8)
G,

where I,.(n;,k;;n;,k;;Gy) is the overlap integral be-
tween state i in the valence band and state j in the con-
duction band. Similar notation is used for I,. The ex-
change term My is given by simply exchanging the elec-
tron states of the two final electrons in the conduction
band in Eq. (6); (2,3)—(3,2).

Note that I, and I, are both a function of the
reciprocal-lattice vector Gy. The terms with G ;70 are
often called the “umklapp” terms associated with the
periodic part of the Bloch functions, and they have usual-
ly been ignored in past calculations.?* The exclusion of
the umklapp terms may be insignificant for direct- and

2
wii(nl,k1)=2277r (2‘;.)6

nysf3sny

[

narrow-band-gap semiconductors since the magnitude of
the momentum transfer is usually small for such materi-
als. However, for GaAs, which has a wide, direct band
gap, this term is important—a fact already noted by
Brand and Abram,? who found a 50% correction in the
overlap integral as a result of the inclusion of the nonzero
G terms. Therefore, it is expected that the inclusion of
the terms with G ;70 would be even more significant for
Si.

Finally, the ionization probability per unit time for the
initial electron with wave vector k; and band index n, is
calculated from Fermi’s golden rule:?

S [d’k,[d*k,T;8(E,+E,—E,—E;). ()
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Here, the prefactor of 2 on the right-hand side of the
equation represents spin degeneracy of the initial electron
in the valence band (state 4 in Fig. 1) and # is Planck’s
constant divided by 27. The summation over the band
indices is performed over the lowest eight bands, i.e., the
sum is taken over bands 5-8 for the conduction electron
and over bands 1-4 for the valence electron. The
momentum conservation given by Eq. (2) is implicitly im-
posed in Eq. (9).

III. CALCULATIONAL PROCEDURES

In order to carry out the numerical evaluations of the
equations derived in the preceding section, the first BZ is
discretized with the mesh spacing of 0.1 in units of 27 /a,
where a is the lattice constant of the crystal and is given
by 5.43 A for Si. The band structure is calculated for 152
k points in the IW of the first BZ. The region of the IW
in wave-vector space is defined by

0<k,+k,+k, <1.5027/a),
0Sk,<k,<k,<27/a .

The band structure of the entire BZ (4481 points) can
then be reproduced from the band structure in the IW by
application of the 48 symmetry transformations U, on
the wave vectors inside the IW.2” Table I lists the 24
symmetry transformations. An additional 24 symmetry
transformations is generated by operating the inversion
transformation (—k,, —k,, —k;) on the 24 transforma-
tions listed in Table 1. Here, the notation
(—k,, —k,, —k3) represents, for example, that (k,,k,,k;)
is transformed into ( —k,, —k,, —k;).

It should be noted, however, that the wave functions at
two equivalent points in the BZ, i.e., a point inside the IW
and a corresponding point outside the IW obtained by
operating one of the 48 symmetry transformations on the
wave vector inside the IW, are not, in general, identical.
Therefore, it is necessary, in general, to store the wave
functions at every k point in the entire BZ and/or to ex-
plicitly carry out the band calculations whenever the
wave functions are needed. This fact makes it very
difficult to pursue the evaluations of the realistic ioniza-
tion probability.

We have found that this difficulty can be overcome by
employing the symmetry properties implied by the crys-
tal structure, as we shall explain below. Recall that the
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basis set of the 113 G vectors transforms into itself under
the 48 symmetry transformations Uj.?® Another trans-
formation matrix Up, represented by a symmetric
113X 113 matrix in the present case, operating on the
wave function at a point inside the IW, can then be con-
structed for each 48 symmetry transformation U,. How-
ever, the transformation matrix Uy so obtained alone
does not produce the correct phase factor of each element
of the wave function because of the fact that the diamond
structure contains two atoms per primitive cell. We have
found that the correct phase factor of each element is
uniquely determined by the diagonal matrix S, whose ma-
trix element S;; (i =1-113) is defined by

S;=exp[il(G, ¥ U, G,)-t|] (11)

for each of the 48 symmetry transformations U,. Here,
t=(a/8)(1,1,1), and the upper sign is taken when U, is
one of the 24 symmetry transformations without inver-
sion (listed in Table I) and the lower sign is taken for the
transformations with inversion. G; denotes the ith basis
vector in the expansion of Eq. (1). Apart from a global
phase factor of the wave function that has no physical
consequences in the present calculations, the correct
wave function at a point outside the IW can be repro-
duced by operating the transformation matrix Uy on the
wave function at the equivalent point inside the IW first
and then by operating the diagonal matrix S on it.

Unfortunately, this method does not work for some
points (71 in number) in the BZ. For those points, the
correct wave functions must be stored before the evalua-
tions of the matrix elements. Still, the correct wave func-
tions at most k points (over 4200 points) outside the IW
for the lowest eight conduction bands are reproducible by
the present method, i.e., the wave functions in the entire
BZ are generated from the wave functions at only the 223
points. The memory in currently available mainframe
computers is entirely sufficient for storing the wave func-
tions. Also, this method is applicable to any covalent
semiconductors having a diamond structure, and would
therefore reduce a large amount of computation time
and/or memory size.

With a full knowledge of both the band structure and
the wave functions in the entire BZ, the calculation of the
ionization probability is, in principle, straightforward.
Equation (9) is discretized and the multidimensional in-
tegrations over the wave vectors are replaced by the sum-
mations. Assuming that the matrix elements inside the
cubic mesh are constant, Eq. (9) becomes

TABLE I. Symmetry transformations from the irreducible wedge.

(klskzyk3) (_klv—erkJ)
(kl,k3,k2) (*k], _k3,k2)
(kz,k},kl) (—kz,_k3,k1)
(k27k17k3) (_kls_khk})
(k.’nkl’kz) (“kSa'_kth)
(s, ko, k) (—ks, — Ky k)

(_kl,kz,'—kg) (kh_‘kz,Ak:g)
(—ky,k;, —k,) (ky, —k;, —k,)
(_kz,k3~'k1) (kz,_k3,_‘k1)
("'kz,kl,_k3) (kz,_'kl,_k3)
(—k3,k1,_kz) (k],_kl,*kz)
(—ks,k,— k) (k;, —k,, — k)
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where the matrix element T; and the wave vectors are
expressed in units of [(ea)?/(7V)]* and 27 /a, respective-
ly. The momentum conservation [Eq. (2)] is explicitly in-
cluded in Eq. (12). The energy-conserving 6 function has
been approximated by the square of unit area of height

1/8E and of width 8E,
1/8E for |[E—E,|<8E/2,

0 otherwise , (13)

S(E —Ey)=

where the energy interval 8E =0.2 eV and the mesh spac-
ing Ak =0.1 are used throughout the study.?”’

It should be noted here that the present calculation is
exact within the uncertainty 8E associated with the
energy-conserving 8 function and with the finite size, Ak,
of mesh spacing in the BZ. As the mesh spacing and en-
ergy uncertainty reduce, the present results, of course,
approach the exact solutions.

IV. RESULTS AND DISCUSSION

In this section we present the concrete results of our
calculations for the overlap integrals, matrix elements,
ionization threshold energies, and ionization probabili-
ties, focusing our attention on the wave-vector depen-
dence implied by the realistic band structure of Si.

A. Opverlap integral and matrix element

We first examine the overlap integrals, which are of
great importance in the analysis not only of the impact-
ionization processes, but also of phonon scattering. The
overlap integrals for direct-band-gap semiconductors un-
der a realistic band structure have been investigated by
several people,’® 32 and the importance of the anisotropy
imposed by the realistic band structure have been
stressed. To our knowledge, concrete results of the over-
lap integrals and the matrix elements of the ionization
transitions under a realistic Si band structure have not
been presented to date.

We investigate the overlap integrals for two particular
cases: the overlap integrals, 7., between the conduction

cc?
bands and the overlap integrals, I,., between the conduc-
tion and the valence band. Since it is impossible to show
all possible values occurring in the impact-ionization pro-
cesses, we show only some specific cases. The final state
(k and n) of the electron expressed by the second argu-
ment of I, and I, in Egs. (7) and (8) is fixed at
k=(—0.85,0,0) with n =5, where the minimum of the
lowest conduction band is located. Hereafter, the wave
vectors and reciprocal-lattice vectors are expressed in
units of 27 /a. In addition, the reciprocal-lattice vectors
(Gy and Gy) included in Egs. (7) and (8) are assumed to
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be zero. The initial state expressed by the first argument
of I, and I, is varied along three different crystallo-
graphic directions: [100], [110], and [111]. Figure 3
shows the squares (|I,.|> and |I,.|?) of the overlap in-
tegrals as a function of the wave vector along these direc-
tions. ]Icc]2 is plotted for n =5 for both the initial and
final states, and |I,.|*> is between n =3 and 5 for the
valence and the conduction band, respectively.33 The
wave vector is normalized by the value of the wave vector
at the intersection with the zone edge for each direction.
It is clear from Fig. 3 that the overlap integrals indeed
depend on the wave vector of the electron. In particular,
the overlap integrals at some regimes become very close
to zero. This is because the cases plotted here are some-
what special in the sense that both the initial and final
states of the electron are on the symmetry lines.

It should be pointed out, however, that most impact-
ionization transitions take place between the states away
from the symmetry lines, which means the values of the
overlap integrals are not always close to zero. This point
is very important in calculating the ionization probability
and should be stressed in another way. As we shall show
below, the number of impact-ionization events increases
steeply as the electron energy becomes larger (see Table
III). Since most of these events are the transitions be-
tween states away from the symmetry lines, the wave-
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FIG. 3. (a) Square, |I.|? of the overlap integral between the
conduction bands (n =5) as a function of the wave vector of the
initial electron along the three crystallographic directions [100],
[110], and [111]. (b) Square, |I,.|?, of the overlap integral be-
tween the valence (n =3) and conduction bands (n =5) as a
function of the wave vector of the valence electron along the
[110] and [111] directions. The state of the final electron in (a)
and (b) is fixed at k=(—0.85, 0, 0). The wave vector is normal-
ized with the magnitude of the wave vector at the intersection
with the zone edge for each direction.
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vector dependence of the overlap integrals are quickly
washed out when the electron energy exceeds the ioniza-
tion threshold energy. As a result, the average value of
the overlap integrals does not vary significantly with
respect to the wave vectors. In other words, the wave-
vector dependence of the overlap integrals shown in Fig.
3 is insignificant, except for regions very close to the ion-
ization threshold energies, as far as the impact-ionization
probability is concerned.

The matrix elements for the ionization transition are
calculated by Eq. (6) and include the summation over the
umklapp terms with nonzero G, vectors and the g-
dependent dielectric function €(q).

In Fig. 4 we show the average magnitudes of the
momentum transfers, |qp| and |qg for the direct and ex-
change processes, respectively, for a typical ionization
transition. The ionization transition considered here is
that for the initial states, k,;=(1.0,0.2,0.0) and
k,=(0.0,0.0, —0.9), and that for the final states,
k,=(0.0, —0.1,0.1) and k;=(0.0, —0.9,0.0), with
Gy,=(—1,—1,—1). Note that the average magnitude of
the momentum transfer is indeed large (on the order of
27/a).3* This also implies that the dielectric function
€(g) becomes an order of magnitude smaller than that of
the static value (~11.9) (Ref. 35) usually used. As al-
ready asserted by Laks et al.,?! this is mainly due to the
fact that Si is an indirect- and wide-band-gap material, so
that the transitions take place between two states greatly
separated from each other in wave-vector space.

Since the magnitude of the momentum transfer is
large, the summation over the umklapp terms (G, vec-
tors) in Eq. (6) is also important. Figure 5 shows the
squares of the matrix elements, |[Mp|* and |M|?, and T
for that particular ionization transition as a function of
the number of the umklapp terms in Eq. (6). Good con-
vergence is obtained when several tens of the umklapp
terms are included in the summation to get a reasonable
result. Therefore, the inclusion of the umklapp terms,
usually ignored in other calculations, is essential for Si, as
clearly pointed out by Laks et al.’!

35 ——r——r————

lq | (2n /a)
n
T
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] . Direct 1
L Exchange

s
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Number of G, terms

FIG. 4. Average magnitudes of momentum transfer for the
direct process, |qpl, and for the exchange process, |qz|, as a
function of the number of the umklapp (nonzero G, vector)
terms. The momentum transfer is expressed in units of 27 /a.
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FIG. 5. Matrix elements for the direct process, |Mp|?, and
for the exchange process, |M Elz, and T} as a function of the
number of the umklapp terms. The matrix elements are ex-
pressed in units of [(ea)?/(7V)]%

B. Threshold energy and ionization probability

Another important quantity characterizing the ioniza-
tion transition is the ionization threshold energy. The
ionization threshold energy is defined as the minimum
energy required for the electron in the conduction band
to excite an electron in the valence band. The ionization
threshold energy is determined from the rules of energy
and momentum conservation under a realistic band struc-
ture. If both the conduction and valence bands are as-
sumed to be parabolic, the well-known 3 rule holds true:
the ionization threshold energy E,;, is given by 3E, /2,
where E, is the band gap.'® However, this is not true,
especially for wide-band-gap materials. The conduction
bands in high-energy regimes are greatly deformed and
different from the analytical band structures assumed by
the parabolic or nonparabolic approximations. In addi-
tion, the valence bands are usually deformed. Therefore,
it is essential to incorporate a realistic band structure in
order to evaluate the ionization threshold energies.

Since energy and momentum conservation under a
realistic band structure is explicitly taken into account in
the present work, the ionization threshold energies found
here are exact within the energy interval 8E. The ioniza-
tion threshold energies are then simply given by the
minimum energies for the electron to induce impact ion-
ization. As we stressed in our previous paper, the ioniza-
tion threshold energies are dependent on the directions of
the wave vector of the initial electron in state 1.'® For ex-
ample, although the minimum threshold energy is given
by about 1.1 eV along the [100] direction, the electron

TABLE II. Ionization threshold energies along the three
crystallographic directions concerned.

Direction This work AC method
[100] 1.0 eV 1.1 eV
[110] 1.4 eV 2.0 eV
[111] 1.8 eV 30 eV
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with energy above 1.1 eV does not necessarily impact-
ionize if the electron is located away from the [100] direc-
tion. This is seen in Table II, where the ionization
threshold energies found from the present method along
the [100], [110], and [111] directions are listed. We also
determined the threshold energies using the Anderson-
Crowell (AC) method,® and they are listed for compar-
ison. The same band structure was used to calculate the
threshold energies in both approaches.

A discrepancy between the threshold energies found in
this work and those from the AC method is seen in the
[110] and [111] directions. This difference is beyond the
energy uncertainty 8E in the present calculations and is
due to the breakdown of the approximations implicitly as-
sumed in the AC method: the idnization transitions at
the ionization threshold energies are assumed to take place
in parallel or antiparallel. This is correct only if the band
structures are locally isotropic. If the materials have a
direct-band gap, this approximation might be sufficient.
However, the approximation becomes questionable for
materials having an indirect and wide band gap, such as
Si. This is probably the reason for the discrepancy be-
tween the present results and those obtained by use of the
AC method. It should be emphasized, however, that it is
still true that the ionization threshold energy depends on
the direction of the wave vector of the initial electron.
As we shall explain below in more detail, taking this fact
into account is crucial in analyzing the ionization pro-
cesses.

Table III lists the number, C;, of possible ionization
transition events and the average matrix element, (T} ),
along the [100], [110], and [111] directions. Here, we
have considered only the lowest conduction band (n; =35)
for the initial electron (state 1). Note that C; is directly
related to the energy and momentum conservation under
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a realistic band structure and corresponds to g;(n,k,) in
Eq. (10) with constant matrix elements T; (=1) for each
ionization event. The most important feature seen here is
that C; is strongly dependent on the wave vector of the
initial electron, as opposed to the wave-vector depen-
dence of (T,). As the electron energy increases, the
magnitude of C;; increases several orders. This suggests
that, when the electron energy is above the threshold en-
ergies, the number of possible ionization transitions be-
comes so large that the wave-vector dependence of the
matrix elements would be averaged out, as we mentioned
before. Figure 6 shows the average matrix elements
(IMp|?), {IMg|*), and (T;) as a function of the num-
ber of ionization events for the initial electron with
k,=(0,0,0). The average matrix elements do not vary
significantly as the number of the ionization events in-
creases and, therefore, the wave-vector dependence of the
matrix element is indeed averaged out. As a conse-
quence, the wave-vector dependence of the ionization
probability calculated from Eq. (12) is dominated by C;;.
This implies that the wave-vector dependence of the ion-
ization probability is manifested by the strong restrictions
imposed by energy and momentum conservation under a
realistic band structure. This fact may be used to develop
a new model of the ionization probability consistent with
a realistic band structure, in which the matrix elements
are replaced by the wave-vector-independent constant and
treated as a fitting parameter.’’

Figure 7 shows the ionization probabilities w;(n,k;)
along the [100], [110], and [111] directions as a function
of the wave vector for the lowest conduction band
(ny=5). Here, the wave vector is again normalized by
the value of the wave vector at the intersection with the
zone edge for each direction. Strong direction depen-

TABLE III. Number, C;, of possible ionization events and the average matrix element, { T; ), of the
ionization transitions along the three crystallographic directions. The initial electron is assumed in the

lowest conduction band (n; =5).

k, E, (V) Ci (Ty)

[100] direction (0.0, 0.0, 0.0) 2.417 34314 0.4559X 1072
(0.1,0.0,0.0) 2.269 24934 0.4586X 1072
(0.2, 0.0, 0.0) 1.904 8462 0.3886X 1072
(0.3,0.0,0.0) 1.459 532 0.3252X 1072
(0.4,0.0,0.0) 1.021 6 0.4394 X 1072
(0.5,0.0,0.0) 0.653 0

[110] direction (0.0, 0.0,0.0) 2.417 34314 0.4559X 1072
(0.1,0.1,0.0) 2.502 37674 0.4737X 1072
(0.2,0.2,0.0) 2.726 44783 0.4968 X 102
(0.3,0.3,0.0) 2.768 38213 0.3095X 102
(0.4, 0.4,0.0) 2.517 15252 0.4080X 1072
(0.5,0.5,0.0) 1.990 664 0.1892X1072
(0.6,0.6,0.0) 1.395 18 0.8492X 1072
(0.7,0.7,0.0) 0.865 0

[111] direction (0.0, 0.0,0.0) 2.417 34314 0.4559X 1072
(0.1,0.1,0.1) 2.254 21864 0.4530X 1072
(0.2,0.2,0.2) 1.755 2925 0.3793X 1072
(0.3,0.3,0.3) 1.312 0
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FIG. 6. Average matrix elements for the direct process,
(|Mp?), the exchange process, {|M|*), and {T;) as a func-
tion of the number of ionization events. The matrix elements
are normalized by [(ea)*/(7V)}.

dence (anisotropy) is clearly seen from the figure. It
should be noted here that the anisotropy shown in Fig. 7
is associated with two factors: one due to the anisotropy
implied by the band structure itself, and the other is asso-
ciated with the anisotropy inherent in the ionization pro-
cesses. The former factor is taken into account if one em-
ploys the isotropic ionization probability as in the Kel-
dysh formula’ with a realistic band structure along each
direction. Employing the present band structure and the
Keldysh formula expressed as

(E—Ey)

2 ’
th

wy (E)=P (14)

the ionization probability is calculated along the [100],
[110], and [111] directions. Here, E is the electron ener-
gy and E,; the isotropic threshold energy given by 1.1 eV.
P is a fitting parameter and is fixed by fitting wg, (E)
with the ionization probability at the I' point of the
present calculations. We have found that P =5.79X 10"

s~!. This formula has usually been used in past Monte
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FIG. 7. Ionization probability w;(n,k,) as a function of the
wave vector k, of the initial electron in state 1 along the three
crystallographic directions [100], [110], and [111]. The initial
electron is assumed to be in the lowest conduction band
(n 1=35).
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Carlo simulations to model the ionization processes.?®

Figure 8 shows the ionization probability obtained
from the present calculations and from the Keldysh for-
mula along the [100], [110], and [111] directions. The
discrepancy between the two results is clearly seen in the
plot, and this represents the second factor, namely that
the ionization process is inherently anisotropic. In par-
ticular, the (111) directions show a large difference be-
tween the present anisotropic description and the isotropic
Keldysh description. This results from the large
difference in the ionization threshold energies used in the
two cases. The Keldysh description assumes an isotropic
threshold energy for all directions, while the present
description imposes the direction-dependent threshold
energy. Therefore, the use of isotropic ionization proba-
bilities cannot be clearly justified, because the anisotropic
character of the ionization processes cannot be taken into
account.
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FIG. 8. Ionization probabilities obtained from the present
calculations (circles with dotted curves) and from the isotropic
Keldysh formula (solid curves) as a function of the electron
wave vector along the (a) [100], (b) [110], and (c) [111] direc-
tions.



45 IMPACT-IONIZATION THEORY CONSISTENT WITHA . ..

Though the present ionization probability is defined at
every k point in the BZ, it can be expressed as a function
of electron energy by averaging the ionization probability
over the Si density of states, which allows us to compare
our results directly with those found by others. The ion-
ization probability is then given by

J @k w(n,,k)8(E —E (n,,k))
a(ny, E)= :
i [ @k 8(E —E(n,,K))

(15)

Figure 9 shows the ionization probability w;(n,,E) for
the lowest conduction band (n;=5) as a function of the
electron energy, along with the ionization probabilities
obtained from recent investigations.®!”"?° The ionization
probability shows the well-known “soft” behavior; that
is, the probability slowly increases as the energy in-
creases. This is again explained by the fact that Si is an
indirect-band-gap material. A similar calculation for a
direct- and wide-band-gap material (GaAs) is now being
performed, and our preliminary result shows a rather
steep increase of the ionization probability (hard thresh-
old). Note that there are some structures in the ioniza-
tion probability in Fig. 9 associated with a realistic band
structure. Therefore, the ionization probability cannot be
fitted by the simple Keldysh formula with a single set of
parameters. This is consistent with the finding by Thoma
et al.,'” in which a realistic Si density of states was em-
ployed.

A large discrepancy between the present results and
those of Bude et al.?° is seen in the low-energy regimes.
This is probably due to the different numerical methods
employed in the two approaches when the ionization
probability is integrated over the multidimensional
wave-vector space. In our case, we explicitly carried out
the integrations over the six-dimensional cubic grid. On
the other hand, the Monte Carlo method was used for the
integrations of Bude et al.?° However, the integrands are
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FIG. 9. Ionization probability for the initial electron in the
lowest conduction band (n;=35) as a function of electron ener-
gy. The wave-vector-dependent ionization probability is aver-
aged over Si density of states. The ionization probabilities tak-
en from Refs. 6 and 17 are also shown by dashed curves for
comparison. The open circles represent the results of quantum
calculations taken from Ref. 20.
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not smooth functions of wave vector near the thresholds,
but instead are strongly varying functions because of an-
isotropic thresholds in wave-vector space. For such func-
tions, the Monte Carlo (random-sampling) evaluations of
the integrals do not work well,>® and this might explain
the difference between the two results.

We would like to stress here that the ionization proba-
bility expressed as a function of energy is somewhat
misleading. When the ionization probability is expressed
in terms of the electron energy, one implicitly imposes
the isotropy of the ionization processes.’® The ionization
process are, however, inherently anisotropic, as we have
shown above. Therefore, the ionization probability
should be defined at every k point in the BZ rather than
by using the electron energy. Yet, it should be noted that
the anisotropic characteristics of ionization processes are
not expected to be visible under steady-state situations be-
cause the carrier distribution is entirely spread in wave-
vector space®!® and this would wash out any anisotropy.
On the other hand, the nearly ballistic transient transport
under inhomogeneous field configurations, in which the
electron distribution in wave-vector space is expected to
remain anisotropic, should be analyzed in terms of an an-
isotropic ionization probability like ours, because the ion-
ization process is very sensitive to field configuration.*’

Finally, we would like to comment on the possible im-
portance of the phonon-assisted impact-ionization pro-
cesses. Since the phonon-assisted processes are second-
order contributions, the contributions should be small
compared to the first-order contributions that we have
examined here. Thus, the phonon-assisted processes have
been ignored in the present work. However, the contri-
butions from the phonon-assisted processes might be-
come significant near threshold, where the strong restric-
tion imposed by momentum conservation is relaxed in
these processes. If this is the case, the anisotropy im-
posed by first-order contributions might be washed out
by second-order contributions. This might explain the
experimental determination that the nature of the ioniza-
tion coefficients in Si is isotropic.*’ In any case, the
phonon-assisted processes have not yet been clarified, and
detailed investigations along the lines presented in this
work are recommended.

V. CONCLUSION

We have investigated impact-ionization processes in Si
by taking into account a realistic band structure obtained
from an empirical pseudopotential method. The pseudo-
wave-functions are used to evaluate the matrix elements
of the ionization transitions consisting of the exchange
process as well as the direct process, with the umklapp
term associated with the periodic part of the Bloch func-
tion. The wave-vector dependence of the dielectric func-
tion is explicitly taken into account. An efficient calcula-
tional procedure has been developed and employed for
the calculations of the matrix elements and the ionization
probabilities. The wave-vector dependence associated
with a realistic band structure of the overlap integrals,
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matrix elements, ionization threshold energies, and ion-
ization probability has been examined. It has been shown
that the ionization process is inherently anisotropic and
that its anisotropy (wave-vector dependence) is mainly
manifested in the strong restrictions imposed by energy
and momentum conservation under a realistic band struc-
ture.
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