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We have analyzed the possible superconducting states of a model layered superconductor with N con-
ducting layers in a unit cell, for N =3 and 4, in the presence of both intralayer and interlayer pairing in-

teractions. In case all layers are identical, the system has the same behavior as one-layer and two-layer
systems, namely that pure intralayer pairing interaction stabilizes an s-wave state with equal and isotro-
pic gaps in all N quasiparticle bands, while interlayer pairing produces both singlet and triplet paired
states with anisotropic gap functions. The singlet state is always energetically more stable than the trip-
let state. The analysis can be easily extended to nonidentical layers. As one example, a model for
YBa&Cu307 q consisting of two Cu02 layers in a unit cell separated by a layer of CuO chains is dis-

cussed. It is shown that the system reduces to an effective two-layer model, due to the large difference in

electronic energy states between the planes and the chains. The chains are most likely nonsuperconduct-
ing. In another example, we show that Bi2Sr2CaCuz08 can be reduced to an effective three-layer system.
Recent tunneling data can be understood on the basis of this model.

I. INTRODUCTION

In two recent papers we have reported a series of anal-
yses of the consequences of intralayer and interlayer pair-
ing on the physical properties of layered superconduc-
tors. ' In a material with one layer per unit cell, both in-
tralayer and interlayer pairing produces isotropic gap
functions, but the ordered states are entirely different in
nature. The intralayer paired state is pure s wave, while
the interlayer paired state is an equal mixture of singlet
and triplet states. The two types of ordered states cannot
coexist in a material where both interactions are present;
the ordered state is dictated by which interaction gives
the higher critical temperature. In a material with two
layers per unit cell, intralayer pairing stabilizes an s-wave
state with an isotropic gap function, while interlayer pair-
ing favors a singlet state with an anisotropic gap func-
tion. The gap functions are associated with electron
bands, not with layers. The competition between in-
tralayer and interlayer interactions is more complex. In
general, there is a three-way competition between in-
tralayer s-wave, interlayer singlet, and interlayer triplet
states in that the one that has the highest critical temper-
ature tends to suppress the others. If intralayer pairing
dominates, the system will have a conventional s-wave-
paired state. If interlayer pairing dominates, the system,
under suitable conditions, may allow either the intralayer
s-wave or the interlayer triplet state to mix with the dom-
inant interlayer state at a lower temperature.

In this paper we extend our analysis to a model with N
layers per unit cell, N =3 and 4, for both intralayer and
interlayer interactions. The investigation was motivated
by the existence of the family of superconducting com-
pounds. T12Ba2Ca~, CuN04+», which has N nearly

identical Cu02 layers in a unit cell. In addition, there
may be other conducting layers in the system, such as
T10 double layers, which participate in the supercon-
ducting properties. The analysis is more complex than
the one-layer and two-layer cases, so we will limit our-
selves to the discussion of intraband paired states because
interband paired states are spontaneously pair broken,
and their order parameters are suppressed in the ordered
phase. We have shown that s-wave intralayer pairing
produces equal and isotropic gap functions in all N quasi-
particle energy bands. We exclude p- and d-wave in-
tralayer pairing because there is no evidence for gap an-
isotropy within the ab plane in YBazCu307 s (Y 1:2:3)or
other layered superconductors. ' Interlayer pairing
favors a singlet paired state with complex and anisotropic
gap functions, at least one of which has a node. A triplet
state is possible but is generally suppressed by the singlet
state. The Ginzburg-Landau free energy is derived, and
we deduce from its expression that the competition be-
tween different ordered states in complete analogy with
the two-layer case.

There is also the question whether Y 1:2:3 should be
regarded as a three-layer material because the CuO
chains, which form a layer distinct from the Cu02 layers,
may participate in superconductivity. We will demon-
strate that because the chains have electronic energy lev-
els very different from the planes, the material reduces to
an effective two-layer system. The observed gap anisotro-
py suggests that the dominant pairing interaction is inter-
layer. Under this condition the chains are nonsupercon-
ducting. In a similar way, the compound Bi2Sr2CaCuz08
(Bi 2:2:1:2),which has two Cu02 layers and two BiO lay-
ers, can be reduced to a three-layer model. We will show
that the recent tunneling data for this material can be un-
derstood on the basis of this model.
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II. THE MODEL

The model under discussion is a straightforward exten-
sion of the two-layer model defined in Refs. 1 and 2. In
Secs. III and IV we assume N identical conducting layers
separated from each other by distances d within the unit
cell and d' between unit cells such that (X —1)d +d'=s,
where s is the edge of the unit cell perpendicular to the

planes. Within each plane the quasiparticles have two-
dimensional band energies $0(k), where k=(k„,k ) is the
wave vector in the planes. The band energy is measured
from the Fermi level EF. The planes are insulated from
each other except for electron hopping between nearest-
neighbor planes, with hopping matrix elements J, within
the unit cell and Jz between adjacent unit cells. The band
Hamiltonian is then

N N —1

Ho= g g go(k)gj„(k)1(tj„(k)+ g Jl g Qt„(k)1(j„+1 (k)+J2gtN (k)ltd +, , (k)+H. c.
jko n =1 jko n=1

where (0(k) =k /2mo E~, o—is the spin index, and the sum on j is over all unit cells normal to the planes (A'= 1). The
pairing interaction V consists of an intralayer pairing term Vo and an interlayer pairing term V1, where

and

Vo = —g g g ~o„fj„(k)1I('j„(—k)gj„(—k')lt(j„(k'),
jn ko. k'o'

X —1

&1 g pj„(k)pj~„+1 (
—k)g, „+1 ( —k')gj„(k')

j ko k'o' n =1

(2)

+~2ejNcr(k)ej+ 1, ltr'( k)1 j+1,1 '( k )CjN (k )+H'C'

All intralayer coupling strengths A.o„are cut off at co~~. In-
terlayer coupling strengths are A, 1 between nearest-
neighbor planes in the same unit cell and A.2 between
planes in adjacent cells. All interlayer interactions are
cut off at mj.

We have chosen to discuss the simplest possible X-
layer problem at first in order to explore the mathemati-
cal structure of the theory. The N layers are assumed to
be identical, with identical two-dimensional band struc-
tures. It will be shown that interlayer hopping will create
N slightly split bands. This is in accord with band calcu-
lations, for instance, the system YBa2Cu3075 has two
nearly degenerate bands associated with the two Cu02
layers per unit cell. It will be demonstrated in Sec. V that
the chain layer can be treated as a third, nonidentical lay-
er by extending the same formalism. The assumption of
interlayer pairing between nearest-neighbor layers is also
the simplest possible. The formalism can be easily ex-
tended to include pairing between more distant neighbor
layers, as shown in Sec. V.

In the following sections we will discuss the solution of
the three- and four-layer problems. We will emphasize
the limit of J, ,J2 ) T, as found in real materials (kjl = 1).
As in the one- and two-layer problems, the proper start-
ing point of the analysis is to diagonalize Ho in the band
representation first and then treat the pairing interactions
in the mean field approximation using the three-
dimensional band-wave functions as basis states. As a
consequence of this procedure, the gap functions belong
to the electronic bands and are not associated with indivi-
dual layers.

III. THE THREE-LAYER PROBLEM

The band problem is solved in two steps. We first
Fourier analyze the electron operators in the c direction,
the direction normal to the planes. Defining the Fourier
transforms of the electron operators by

J

where M is the number of units cells in the c direction,
k =(k,k, ), and k, is the wave vector in the c direction,
we obtain

Ho= g go(k)1)'lt (k)p„(k)
nka

+ g [J,e ' p, (k)1Tt2 (k)
ko

+J,e '
lt

t2(k)$3 (k)

+J2e '
p3 (k)g, (k)+H. c. ] .

The diagonalization of the Hamiltonian in Eq. (5) is car-
ried out by a canonical transformation to the band opera-
tors P, (k),

fl (k)= gb,„(k,)lIT„(k),

where 1=1,2, 3 is the band index, and the matrix ele-
ments b1„ofthe transformation are solutions of the eigen-
value problem:
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ik„d —ik„d'J,e " J,e 0'
—ik~dJ)e
ik d' —ik dJ,e ' J,e

ik d
J)e bl2 = 0

0
(7)

where the eigenvalues e((k, ) are the roots of the cubic
equation

& —(2J(+J~ )e —2J,Juncos(k, s ) =0 .

If we define J =(2J
&
+Jz ) /3 and t/(k, ) by

co(s3t/) = [JIJ2/J ]cos(k s ),
we can write the solutions of Eq. (7) as

e((k, )=2J cos[t/(k, )+—,'m(l —1)],

(8)

(9)

(10)

for I = 1,2, 3. The diagonalized band Hamiltonian is

Ho= g k(k)%i~(k)A~(k), (11)
1k'

where f((k) =go(k)+e((kz } is the energy of the band la-
beled by l. The Fermi surfaces generated by the bands
are three concentric corrugated cylinders. In the super-
conducting state each band has its own gap function.

The coefficients [b(„] are solved from Eq. (7) plus the
normalization condition, i.e., Q„Ib(„I =1, up to a com-
mon phase factor. For example, we may regard Eq. (7) as
a set of three linear homogeneous equations, and solve
the first two for the ratios of the coefficients bl„. We then
choose bl3 to be real for all 1 and use the normalization
condition to obtain

ikz d'+ i/(3( kz
—(

and

J
&
sin(k, s )

tang(3
EiJz+J,cos(k, s)

(16)

The two sets of results in Eqs. (12) and (14) must be
equivalent to within a common phase factor. This re-
quires that the phases P(„satisfy the following sum rule:

yy(„(k, )=k,s . (17)

The orthogonality of the band states implies another use-
ful sum rule:

g b;„b(„=5„„.
l

(18)

where

These result will be used to study the pairing interactions.
We first investigate the ordered state, which results

from intralayer pairing alone. We transform Vp in Eq.
(2) to the band operators by applying the inverse transfor-
mations of Eqs. (4) and (6). This results in a host of pair-
ing interaction terms; some involve electrons within the
same band and others involve electrons in different bands.
As discussed in detail in Ref. 2, interband pairing breaks
the time-reversal symmetry and the resulting supercon-
ducting state is suppressed. Consequently, we need only
keep the intraband pairing terms in Vp.

Vo= —(M) 'g g g V(((k„k,')tt(, (k)g( ( k)—
ll' ko k'o'

(19)

' z '~12 z (12)
V(((k k')= g Ao u( (k )ui (k') (20)

b(3 = Ib(31,

where

~2 J2
b,

3( 2 J2)

1/2

(13)

and u,„(k,)=Ib(„(k, )I .
Unlike the one-layer and two-layer problems, the sym-

metry of the order parameters is not obvious from the ex-
pression of the pairing matrix elements V(((k„k,'). A set
of mathematical tools will be needed, and we will develop
them presently. Given any three complex numbers cl,
l =1,2, 3, we can uniquely resolve them into linear com-
binations of three other complex numbers c, m =0, 1, 2
in terms of a unitary transformation:

The expressions for the phase angles $(„will be given
later. Alternatively, we may solve the last two equations
for the ratios, choose bl, to be real for all l and obtain

C)
1 1

v'3 v'6
1

v'2

Cp

C) (21)

~11
r2e

z d 13 z

(14)

C3
1

v'2
C2

where the phases are

Jz sin( k,s )
tang(( = tan1)) (~

=
e(+Jpcos(kzs )

(15}

The inverse transformation is given by the transpose ma-
trix. The meaning of the transformation becomes clear if
we write the column vectors as diagonal matrices. We in-
troduce three 3X3 diagonal matrices p, j =0, 1,2, as
follows:
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1 0 0
pp= 0 1 0

0 0 1

2 0 0
1

p&= — 0 —1v'2
0 0

. &/'2 0 0 0
3P2= — 0 1 0—2 2

0 0 —1

0
—1

(22)

The matrix p p is simply the unit matrix, and p &,p 2 are,
aside from a numerical factor and some rearrangement of
elements, the two diagonal generators of the SU(3)
group. The transformation in Eq. (21) can be written as

ci 0

0 c2

0 0 c3

0
1—(cop 0+cia i+ciL(z) (23)

We will call [c ] the SU(3) components of [c(]. As an
example, the SU(3) components of the band energies [ e(]
are co=0, s, =&6Jcosrl(k, ), Ez=&6J sinful(k, ). The fact
that the SU(3) symmetry becomes relevant in the three-
layer problem is not surprising, in view of the importance
of SU(2) symmetry in the two-layer problem.

The quasiparticle Green's functions are defined in the
familiar way:

G "p(k, r r'): —(—T[g—( (k, r)g( p(k, r')] ~,
F p(k r r )=(T[g( (k r)g(p( —k, &')]),

(24)

etc. Since intralayer pairing only allows singlet pairs, the
spin indices a and P must have the opposite signs. As
discussed earlier, we will limit our discussion to intra-
band pairing, so only I=l' components of the Green's
functions will survive. In the mean-field approximation,
the equations of motion of the Green's-function com-
ponents can be written in a compact SU(2) XSU(3)
X SU(2) matrix form:

G '(k, m)=(~Pop@ OC8o 0
—go(k)P3L(oo o

—&2J cosy(k, )p 3 p ](T 0

The self-consistent equations for the gap functions are

d k'—
Z = —

,', T—g g f"" V"',(k„k,')
I p 2'

XTr[(p, i p
—z)(M ~o ~C(k', co)],

(27)

where

3
V' ' (k„k,')= g A,o„u „(k,)u „(k,'), (28)

n=1

and [ u „]are the SU(3) components of [ u(„].
The matrix 0 ' is diagonal in three 4X4 blocks, each

of which can be inverted. There are two ways to write
the gap equations, either in the SU(3) representation as in
Eq. (27) or in the band representation as in, Eq. (26). The
two sets of equations are related by the canonical trans-
formation in Eq. (21). The SU(3) equations are more con-
venient for the purpose of determining the bare critical
temperatures, but those in the band representation are
simpler in form for deriving the Ginzburg-Landau free
energy. Up to the third order of the gap function, the
gap equations in the band representation are

s dk,'
b, ((k, )=n TN(0) g g f V(((k„k,')

N 1
2'

5( (k,') 6( (k,' 9 ('(k,')

2/col'

(29)

In the above equation the gap function of the lth band is
denoted by EI, which is, in general, dependent upon k, .
The quantity N (0) is the density of states per band at the
Fermi level.

The linearized gap equation in the SU(3) representation
has the form of an eigenvalue problem:

b, (k, )=a~~(T,O)N(0) y Ao„u „(k,)
n

s dk,'

Xg f u „(k,')b, (k,'),
2m

(30)

—&2J sing(kz )p 3(M z o 0

2—g (~ '
p i

—~ "p»~)L ~ ~ . (25)

where the quantity

a) ( T,o) =ln(2ycoi/m'T),

b((k, )= g g V((k„k,')(P(, +(k')P(, (
—k')) . (26)

m=0

In the above equation the Pauli matrices [cr ], j =1,2,3
and its associated identity matrix o.

p identify the spin
states of the quasiparticles, a second set of Pauli matrices
[p ] identify the four Green's function components
G, F,F,—G, co is the Matsubara frequency, and 6',
b, ", are the real and imaginary parts of the SU(3) com-
ponent 6 of the gap functions 6& for the bands
l = 1,2, 3. The band gap functions are defined by

and y=1.78. Using the sum role on u(„ in Eq. (18), we
can establish that uo„= I /&3 for all layer indices n and

1—
~m1 ~m2 T~m3 &

for m+0. In the special case where all Ao„are equal to
A,~, it is not difticult to establish that Vpp'=A, o, and

Vo ' = V' 0=0. Therefore, 3X3 matrix (V' ' .) is block
diagonal, and one of the eigenvalues is A,p. Numerical di-
agonalization of the 2 X 2 block shows that the other two
eigenvalues are much smaller. As a result, the critical
temperature T,p is given by
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(31) 2.5
I I

The corresponding eigenvector 50 is independent of k„
which means that the band gap functions 6I are equal
and isotropic. The presence of the other two eigenfunc-
tions can be neglected entirely because the dominant iso-
tropic gap suppresses all other possible superconducting
states.

In case the three layers do not have the same coupling
constant, the matrix V ~ is not block diagonal so that
the gap functions must be found by diagonalizing Eq.
(30). One finds that this results in nonvanishing Z com-
ponents with m = 1,2 and the band gap functions become
slightly dependent on k, . As an extreme example, we
show in Fig. 1 the gap functions for A,o&

=A.o3 and Ap2=0.
In the top panel we show the results for J, /J2 =0.5. The
gap functions for bands 1 and 3 are nearly equal, and
both are larger than that for band 2. In the bottom panel
we show that for Jz/Jt=0. 5 the middle band has a
larger gap function than the other two bands. The densi-
ty of states (DOS) of the two cases are shown in Figs. 2
and 3. In these and all other similar curves, the DOS in
the superconducting state N, (ro) is normalized to the to-

1.0

J,/J, =O5
01 03

Khz=0

2.0

Log XQ3 ls Xop ~ 0
Jq/J2 = 0.5

0.5

-3 -2 0
~»max

FIG. 2. The density of states (DOS) for the intralayer pairing
model with A,Q&

=A,Q3 XQ2 0, and J& /J2 =0.5. The DOS N, (co)
in the superconducting state is normalized by the total normal-
state DOS NT(0), which is the number of bands N multiplied by
the DOS N(0) per band. The single band with the smaller gap
gives rise to an inner structure between the main peaks. In this
and later DOS plots a small broadening factor I =0.035,„ is
folded into the calculation to smooth out sharp cusps so that the
curves resembled more closely the measured tunneling conduc-
tance curves.

0
0

1.0

I

0.5
kzs/m

1.0

2.5

2.0

I I I

o&
= ~o3 = 1, XQ2 = 0

Jg/Jq 0.5

N

0.5

0
0

I

0.5

kzs/x

1.0

FIG. 1. Normalized gap functions for the superconducting
state of a three-layer model with unequal intralayer pairing
strengths. The coupling constants are A.D, =A03, Qz=O. In the
top panel the hopping matrix elements are such that
J& /J2 =0.5, whereas in the bottom panel J2/J, =0.5.

0
~»max

FIG. 3. The density of states for the intralayer pairing model
with the same Q„values but J2/J, =0.5. The single band with
the larger gap gives rise to structures outside of the main peaks.
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F, F„=——,'N(0)fo, (32)

with

tal DOS in the normal state NT(0) which is the product
of the number of bands N and the DOS per band N(0).
A small broadening factor I =0.035,„ is also folded
into the DOS calculation to smooth out sharp cusps so
that the curves more closely resemble the measured tun-
neling conductance curves. Both figures show multiple
gap features, namely, additional peaks inside of the main
peaks. In the limit of J, =J2 all three bands have equal
and isotropie gaps for arbitrary values of A,o„.

Returning to the case that all A,O„are equal, we denote
the band-gap functions 6I by b,o/&3 and put them into
the nonlinear gap equation, Eq. (29). After functionally
integrating the resulting equation, we find the following
expression for the Ginzburg-Landau free energy:

and n'=n +1 (mod 3). In deriving these results we have
used the sum rule on phase angles in Eq. (17). Explicitly,
we find

sI (k, )J,+J,J2 cos(k, s )

3(s —J }

sI(k, )Jz+J I cos(k, s )

3(sI —J }

III(k, ) =III&(k, ) =

u»(k, )=

2

Vn'(k„k,')=A& g [uIn(kz)uI'n(k, ')+vI„(k, )UI „.k,')]
n=1

+A2[uI3(k, )u( 3(.k,')+UI3(k, )UI.3(k,')], (34)

where

tII, = lbI, bI~ lcosItII„,

I,= laol'in + bolaol4- ,
Tc0 2

(33) J,J, sin(k, s)
U„(k, ) =vI2(k, ) =

3(sI —J )

(36)

and bo =7/(3) l[8(m T) ]. The quantity ho is the only or
der parameter for intralayer intraband s-wave pairing.

We now turn our attention to the consequences of in-
terlayer pairing alone. As was done for intralayer pair-
ing, we transform V, in Eq. (3) to band operators and
keep only intraband pairing terms to obtain V', in analo-

gy with Eqs. (19) and (20), with

J
&
sin(k, s )

UI3(k )=
3(sI —J )

The functions u&„are even functions of k„while vi„are
odd functions, and as a result interlayer pairing will allow
both singlet and triplet states.

The 12 X 12 inverse Green s-function matrix is given by

'(k, aI)=icopoL4oo o
—go(k)p3L4oIr o

—&2J cosri(k, )p3L4, o o
—&2J sing(k, )p3jll2o o

2 3—X X (~',PI —~".,P~)L. ~,
m =0 j=0

(37)

where Z . =b ' +iZ" are the singlet (j =2) and triplet (j =0, 1,3) order parameters. The self-consistent gap equa-

tions are

(k, ) = — T g g f V (k„k,')Tr[(p, ip ~)L— Io C(k', co)],1 d k'—
12 (2m. )'

(38)

where V ~ is the SU(3) representation of V II. in Eq. (34). Again, the inverse Green s function is block diagonal in

4 X 4 blocks and each block can be inverted without dificulty. We define a four-vector band-order parameter EI(k, ) by

~l (I~IO ~I1 ~l2 ~I3)

Then the nonlinear gap equations in the band representation become, after a considerable amount of algebra,

s dk,' s dk,'
b, ,(k, )=ATTN(0)a (T) g f V„(k„k,')b, .(k,') —N(0)b y f '

V„,(k„k,')[2S,,Z, S;.—Z;.S, E,,],
I' 277 I 27T

(39)

where a~(T)=ln(2yco~lmT}, and aI~ is the cutoff energy
of interlayer pairing interaction. The quantity bo has
been defined under Eq. (33). We will use this equation
1ater to deduce the Ginzburg-Landau free-energy expres-
sion. For the moment we will study the linearized gap
equation in the SU(3) representation to deduce the equa-
tions for the bare critical temperatures. The equations
are

s dk,'
b, ,(k, )= (aI)Tg f V .(k„k,')Z '(k,'),

I 0 2'

(41)

where j =2 is for the singlet state, and the other three j's
are for the triplet states.
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It will be shown in the Appendix that gaul„
=rivi„=O. Hence, in the expression for 71'

~ the com-
ponents uo„and von are zero. Consequently, the gap-
function component EOJ vanishes for both singlet and
triplet states. In complete analogy with the two-layer
problem, we construct orthonormal bases from the
remaining basis functions, u n and v „ for m =1,2, and
diagonalize the V matrix to obtain the eigenvalues and
bare critical temperatures. Since VI&. contains no cross
terms between the u and v functions, the V matrix is
block diagonal in terms of singlet and triplet blocks, and
each can be diagonalized separately. One can see from
Eq. (36) that there are two linearly independent u „ for
each m. We define the transformation to orthonormal
bases by

2
(n) ~

~mn ~ amp ~mp
p=l

(42)

It follows that the singlet part of the linearized gap equa-
tion reduces to the matrix eigenvalue problem:

(u «~h )= N( 0) aj(T„) g 0''« .
« (u .

«.
, ~b, ~ ),

m'p'

(43)

1 =A, ,N (0)a~( T„),
and the gap functions are

1
v(k, )= —(b, ++6, )v" (k, ),mO z

(49)

b, ,(k, }=6,,ov (k, ), (50)

Z, (k, }= (6,+ —6, )v (k, ),
&2

where v" (k, } for m =1,2 are the normalized gap func-
tions and the three components of the triplet order pa-
rameter form a vector h, . Again, the band-gap functions

hlj(k, )=h, vI(k, ) are obtained from the results in Eq.
(50) by the transformation in Eq. (21}.

In Fig. 4 we show a set of typical band-gap functions
ui(k, ) and 8'&(k, ) for both singlet and triplet states. The
singlet gap functions for bands 1 and 3 reflect into the
negative of each other at the point k, =m/2s, while the
one for band 2 reflects into the negative of itself. Except
for a small region of the parameter space near A,

&
(&A.3

and J, & J3 the singlet gap functions for the two outer
bands are nodeless. For the middle band, however, the

where the bracket notation represents the inner product
of the two functions involved, and the interaction matrix
element is

2~ a'"'a'"' ~~ a' 'a' '

n=1

We denote the largest eigenvalue of the 4X4 f"matrix
by A,, and the eigenvector by u (k, }, then the bare criti-
cal temperature of the singlet state is solved from

p

1 =A,,N (0)a~( T„),
and the SU(3) components of the gap functions are

(45)

2(kz)=h, u (k, ), (46)

where 6, is the order parameter. The functions s7 are
normalized such that

-1
0

I

0.5
kzSlx

t

1.0
J) = 0 5 J2

2 0'3 ~1

f [u, (k, )+u z(k, )]=1 .—n./s 2K
(47)

The band-gap functions 61(k, )=b,uI(k, ) can be de-
duced from Eq. (46) by the canonical transformation in
Eq. (21). The functions ui(k, ) are normalized according
to

N

p

sdk,
g f u i(k, )=1 .
l=l

(48)

In analogy with the two-layer problem, we will call ui(k, )
the normalized gap functions.

The gap functions for the triplet states satisfy an equa-
tion similar to Eq. (43) except that the matrix f""is 2 X2
because all vt„ functions are proportional to each other.
We construct P"'" in the same way as g", and denote
the largest eigenvalue by A, The bare critical tempera-
ture for the triplet state is solved from

0.5
kzalx

1.0

FIG. 4. Normalized gap functions for singlet (top) and triplet
(bottom) states of a three-layer model with interlayer pairing in-
teraction.
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gap function always has a node. The triplet gap func-
tions have nodes at k, =0 and m/s, and the gap functions
for bands 1 and 3 reflect into each other and the one for
band 2 reflects into itself. The bare critical temperature
for the triplet state is much less than that for the singlet
state except when J, =J2, where the three-layer model
reduces to the one-layer model.

Putting the results in Eqs. (46) and (50) into the non-
linear gap functions in Eq. (40) and functionally integrat-
ing the resulting equations with respect to the singlet and
triplet order parameters, we find the Ginzburg-Landau
free energy of the system has the form:

F, F„=——,'N (0)f, ,

with

2.5

2.0

1.5
I-

X
8
z 1.0

0.5

l l l

A, 2ik, q
= 0.3, J)/J2 0.5

+ b, lb, l

—+ b, (—b, , 6;) -3 0
~~ max

+b, [2la, I'a, a,"—Res,"'a, ~, ] .

The coefficients b„b„and b„are given by

(5i) FIG. 5. The density of states of the three-layer interlayer in-
teraction model whose gap functions are shown in Fig. 4.

sdk,
b, =—bo J [u, (k, )+ ~2(k, )]

sdk,
b, =—bo I [U, (k, )+U2(k, )]2' (52)

and

b„= bo J —[ti&(k, )+62(k, )][U",(k, )+U"z(k, )] .2' 2m

The free energy is obviously minimized by choosing the
singlet and vector triplet order parameters to be in phase.
Furthermore, since the free energy has the same structure
as the two-layer problem, the competition and coex-
istence of singlet and triplet order parameters in the two
systems are in complete analogy. For instance, since
T„&&T„over most of the parameter space, the singlet
order tends to suppress the triplet order. In the narrow
region where the two bare critical temperatures are close,
it is possible to have a second-order phase transition at
T„&T„&T„where triplet order begins to coexist with
singlet order.

One can also demonstrate that, as in the two-layer
case, the gap functions change very little with tempera-
ture. The fact that the singlet gap function for the rnid-
dle band has a pair of nodes gives rise to an interesting
energy level structure as shown in the density-of-states
curve in Fig. 5. In contrast to the standard s-wave super-
conductor, the DOS is zero at the point of zero quasipar-
ticle energy and rises linearly on both sides of this point.
There are also multiple peak structures coming from the
flat regions of the gap functions at the center and the
boundary of the Brillouin zone. In the narrow region of
parameter space, where J&-—J2, the emergence of the
triplet state below T„removes the nodes of the singlet
gap function of the middle band as well as the linear por-

+2I&ol'd&* 4, —Re&0'&, &, j . (53)

The quantities fo and f, are given in Eqs. (32) and (5i),
respectively. Again, this expression has the same struc-
tures as that for the two-layer problem. An immediate
consequence is that it is not possible to minimize the free
energy by choosing the phases of intralayer singlet, inter-
layer singlet, and interlayer triplet order parameters with
all three being nonvanishing. As a result, the three types

tions of the DOS near zero energy. We are not aware of
any tunneling data on the three-layer Tl compound to
compare with, but the curve bears some resemblance to
the observed tunneling characteristic of Y 1:2:3material.
However, there are other indications that Y 1:2:3 is
better represented by the two-layer model, as we will dis-
cuss in detail in Sec. V. We also show in Sec. VI that Bi
2:2:1:2can be reduced to an e6'ective three-layer system
with nonidentical layers, and this model can explain the
recent tunneling data for this material.

Finally, we summarize very briefly the competing roles
of intralayer and interlayer interactions. Recalling that
the intralayer order parameter belongs to the m =0 rep-
resentation of the SU(3) group and the interlayer singlet
order parameter belongs to the m =1,2 representations,
we immediately conclude that their bare critical tempera-
tures completely separate. One interaction cannot help
the other to boost the critical temperature of the system.
Without showing any of the details, we write down here
the total free energy of the system when both interactions
are present:

F, F„=—,'N (0)f, —

where

f=fo+f i +b[ oI~21'0I~, I'+Redo'~, '
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1,)/X, 2 = 0.9, Jq/J2 = 0.8
= 0.2

e —(3Jf +J2 )e + [J,+JfJq —2J,Juncos(k, s )]=0 .

(55)

If we denote J = (3J, +Jz )/4 and

3 =IJ, +J,J~ —2J,J2cos(k, s)]'

1.5
I-

8
z ) 0

we can write

e, =-'(4J'+ ~)'"+(4J'—~)'"],
1

1 (4J 2+ g )1/2 (4J 2 g )1/2]
2 2

2~ &4= 1 ~

(56)

0.5

-2 0
~/~max

All four roots are real. The four bands generate four con-
centric cylindrical Fermi surfaces.

The elements of the transformation matrix are calcu-
lated in the same way as in the three layer case. The re-
sults are

b„= lb

FIG. 6. The density of states of a three-layer model with
mixed interlayer and intralayer order parameters. The node is
removed by mixing with the isotropic intralayer gap function.

—2ik d+i (yi}+$12)b»= ~b

—3«,d+&~4I )+4'i2+&I3']
bi4= I b,4~e

(57)

of order cannot exist in one system simultaneously. If in-
tralayer pairing dominates, it will suppress the interlayer
pairing effects completely. If interlayer pairing dom-
inates, however, the system may suppress the interlayer
triplet order but allow the intralayer order parameter to
become nonvanishing below a temperature T,o& T,o, as
discussed before for the two-layer system. '

One consequence of mixing the intralayer s-wave order
parameter into the interlayer singlet order parameter is
to remove the node in the gap function of the middle
band. Just like the mixing of the interlayer singlet and
triplet order parameters, a real gap appears in the DOS,
as shown in Fig. 6.

IV. THE FOUR-LAYER PROBLEM

—ik d
J1e J Z

ik d
bI2

The solution of the four-layer problem follows substan-
tially the same procedure as the three-layer problem.
The band Hamiltonian is diagonalized by the same set of
transformations in Eqs. (4) and (6), but with both layer in-
dex n and band index I ranging from 1 to 4. The band en-
ergies el(k, ), and the transformation matrix elements
b,„(k, ) are solved from the eigenvalue problem:

ik d —ik d'
E( J1e 0 J2e

where
' 1/2

I bi) I

= lb14I =
4(EI —J )

2 2 2 1/2
c. —J —J

I bl21 =
I b!31=

4(Ei —J )

and

J]J2sjn(k $ )
tang„(k, ) =tang(3(k, ) =

E2I
—J~j +J]Juncos(k s )

J,J,sin(k, s )
tang(2(k, ) =

e&
—J2+J,J2cos(k, s )

J,sin(k, s )
tan/I~(k, ) =

J2(s, —Jf )+J,cos(k, s )

The following identities are satisfied:

g bi*„bi„=5„„,
I

(5&)

(59)

(60)

ik d'

—ik dJ,e
—ik d

J1e

ik d
J1e

bI4

0
k, )=k (61)

(54)

The band energies are the roots of the following quartic
equation

The coelftcients I bI„] are normalized according to

The symmetry of the order parameters is readily sorted
out by considering the SU(4) symmetry. We define
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1 0 0 0
0 1 0 0
0010
0 0 0 1

1 0 0 0
0 1 0 0
0 0 —1 0
0 0 0 —1

(62)

3

I n (k„k,')=k, g [ui„(k, )ui „(k,')+v,„(k,)v, .„(k,')]
n=1

+X2[uI4(k )uI'~(k )+vI4(k )vl ~(k )]

(67)

1 0 0 0 1 0 0 0
0 —1 0

~2= 0 0
0 0 —1 0 0
0 I-"3 0 0 —1 0

0 0 0 —1 0 0 0 1

where the basis functions are

u,„=Ib«b« Icos&«,

vi, = Ibi b,„ l»n@l (68)

Then an arbitrary set of complex numbers I c, j,
1=1,2, 3,4, can be resolved into the linear combinations
of its SU(4) components jc ], m =0, 1,2, 3:

ci 0 0 0'
ui, (k, ) = u(3(k, ) = J, ( EI —J, ) +J,J2cos( k, s )

D

where n'= n + 1 (mod 4). The explicit expressions for u«
and vin are readily worked out:

0 c2

0 0

0 0 0 c4
m=0

0 0 ~ cc 0 2~ m~m.
3

(63) J, (cI J~ )+J—,J2cos(k, s)
uip(k, ) =

Dr
(69)

Kp= E3=0,

(4J +A)'

e =(4J —A)'

(64)

In particular, the SU(4) components of the band energies
are

Jz(Ei —Jf )+J
&
cos(k, s )

u14(k, ) =
1

JfJ2sin(k, s )
v&(k, ) =viz(k, ) = v&3(k, )=

I

J,sin(k, s )
v14(k, ) =

I

(70)

We can work out all pertinent results of the superconduc-
tivity problem by drawing an analogy with the three-
layer problem.

In case of pure intralayer pairing with all layers having
the same coupling constant kp, the interaction matrix ele-
ment has the expression

(k„kz)=log u»(k, )ui.„(k, ) . (65)

~pn 2 & ~in & ~2n

u3„=0 .
(66)

This is suScient to demonstrate that the matrix V ~ has
one eigenvalue A,p, and the corresponding eigenvector Ap
is independent of k, . It can also be shown that this is the
largest eigenvalue, and, as in the N=3 case, all other
eigenstates have negligible effects. Thus, the critical tem-
perature is given by Eq. (31) and the gap functions for all
bands are equal and isotropic. Furthermore, if we define
the gap functions by hl=hp/2 the Ginzburg-Landau
free energy will have exactly the same form as the three-
layer result in Eq. (33).

The interaction matrix element for pure interlayer
pairing is given by

where ui„= I b«(k, )
I

. As shown in the last section, the
nature of the gap function can be deduced entirely from
the SU(4) components of the basis functions ui„. The fol-
lowing results are readily deduced from the expressions
ofb

with

DI=4Ei(ei —2J ) . (71)

Since c4= —c, i and c.3= —c2, we deduce immediately that
u~„= —u4„, u2„= —u3„, and g&u«=0. The same rela-
tions hold for triplet basis functions vI„. Thus, when
transformed into SU(4) bases, we have u =v, =0 for
m =0 and 3. The surviving SU(4) components are

~ in 1n +~2n

"2n &1n &2n

(72)

and similar relations for u „, m =1,2. For the singlet
state the remaining basis functions have the further de-
generacy that u &=u 3, as can be found from Eq. (69).
Consequently, the Hilbert space for each m is three di-
mensional, and we only need to diagonalize a 6 X 6 matrix
f "to obtain T„and the dominant singlet gap function
u (k, ). The triplet basis functions vi„ for the same I are
proportional to each other. This enables us to diagonal-
ize a 2 X 2 matrix g '" and obtain T„and the dominant
triplet gap function v (k, ). The transformation to band
gap functions is done in complete analogy with the
three-layer problem. The Ginzburg-Landau free energy
has the same expression as in Eq. (53), including the
definitions for b„b„and b„. Numerical calculations
have revealed that T„~T„over the entire parameter
space. The equality signs holds only when Ji =J2, i.e.,
when the system reduces to the one layer model, as for
N =2,3. The gap functions are usually highly dispersive,
and may or may not have nodes depending on the various
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It follows that if both interactions are present, they do
not help each other to increase the critical temperature of
the system. The Ginzburg-Landau free energy for such a
system is given by Eq. (53), so the competition and coex-
istence of the different order parameters follow the same
pattern as the two- and three-layer problems.

1.5
I-z
8
z 10

0.5

0
~/~m~

FIG. 7. The density of states of a four-layer model whose gap
functions are all nodeless.

parameters. Like the three-layer system, the density of
states generally has complex structure. In Fig. 7 we show
the DOS of a four-layer system for which the singlet gap
functions are all nodeless. A minimum gap is seen
around the zero-energy point. When the gap functions of
some bands have nodes, the DOS rises linearly around
the zero-energy point, as illustrated in Fig. 8.

We have shown that the intralayer order parameter be-
longs to the m =0 representation of the SU(4) group, but
the interlayer ones belong to the m =1,2 representations.

V. YBa2Cu307 ~ AS A THREE-LAYER SYSTEM

The unit of cell of Y 1:2:3has two Cu02 layers inter-
vened by a CuO chain. There has always been the ques-
tion whether the chain electrons are an integral part of
the superconducting system because pairs of electrons
can hop between the planes through the chain. In this
section we carry out an analysis of this problem regard-
ing the unit cell as a three-layer system, where the middle
layer has a different two-dimensional band structure from
the two other layers. It will be shown that, for band pa-
rameters representative of Y 1:2:3,hopping between the
layers creates a pair of bands mainly associated with the
planes and a third band mainly associated with the
chains. For intralayer pairing the plane bands and the
chain band form two separate superconducting systems.
The interlayer pairing problem reduces to a two-band
problem discussed in Refs. 1 and 2. The chain band is
not superconducting although it participates in the inter-
layer hopping, and this may explain both the linear

specific heat below T„and the non-zero tunneling
current in the center of the gap.

The band Hamiltonian for a general three-layer system
is given by

H11= g go„(k)gt„(k)g „(k)
jnkcr

+X lJ14,'1.«W', 2.«)+J24J2 «)WJ3 «)
jko

2.0

1.5

0.5

l I

X,g/X, g = 0.1, Jp/Jg = 0.8

+J3fj~3 (k)QJ+11 (k)], (73)

The two-dimensional band energies for the three layers
are denoted by go„(k), and the interlayer hopping con-
stants are J„. The layer n =2 is distinct from the other
two layers, so we will set go2(k)A(o, (k)=(Q3(k) and
J

&

=J2 at the end of the calculation. The band Hamil-
tonian is diagonalized by the same set of transformations
in Eqs. (2) and (4). The band energies g&(k), I =1,2, 3,
and the transformation matrix elements bl„(k) are solved
from the eigenvalue problem

ik d —ik d'

Col fl 1 3 bi 1 ()—ik d —ik d
J le (02 kl J2e bl2

ikd' —ikd ~ b 0

0
~»max

FIG. 8. The density of states of a four-layer model whose gap
functions have nodes.

J3(pi po3) 2J1J2J3cos(k,s) =0 . (7&)

This cubic equation has three real roots, which are the

The condition that the above equations have nonzero
solutions for [bl„ I 1s

koi )(ki —ko2)(ki —
ko3)

—J1(ki —41)—J2((i —
ko2)
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energies of the three bands. The elements of the transfor-
mation matrix are functions of k =(k, k, ). They have the
same expressions as in Eqs. (12) and (14) but with

Ibr. I'=a. /X a.
n'

where

(76)

402)(ki 403)—J2 (77)

JzJ3sin(k, s)
tang„=

(g&
—

gv3)J, +J2J3cos(k, s )
(78)

and two other expressions obtained by cyclically permut-
ing the layer indices. The sum rules in Eqs. (17) and (18)
continue to hold.

We expect the electronic energy levels in the chain to
be quite different from the two-dimensional band energies
in the planes, at least over most of the two-dimensional
Brillouin zone. In particular, if

Ikon kozl +max(Ji Jz J3) (79)

we can factorize the equation for g approximately to ob-
tain

and two other expressions obtained by cyclically permut-
ing the layer indices. The new expressions for the phase
angles are

1 and 2 for the two-layer system except that one of the
hopping integrals is renormalized by the factor g. This
factor is dependent on k, but for simplicity we will ap-
proximate it by its average over the Fermi circle of the
plane bands. Thus, the band problem of this three-layer
system maps onto that of the two-layer system plus a
separate chain band. The condition in Eq. (79) implies

~e will label the + bands by 1,2 and the chain
band by 3.

The model band structure compares quite well qualita-
tively with the calculated bands, which consist of a pair
of nearly one-dimensional bands associated with the
chain and two two-dimensional (2D) bands that cross the
Fermi level. ' The chain band splits into two because
the chain is populated by two atomic species, Cu and O.
With oxygen deficiency as low as 0.1, the lower chain
band is entirely filled and the upper one entirely empty.
Thus, over the 2D Fermi surface of the planes, go, and

go&, differ by amounts measured in eV. The dispersion of
the plane bands in the c direction is much smaller, so the
condition in Eq. (79) holds.

The intraband pairing matrix elements are given in Eq.
(20). The following results are quite easy to establish by
using the results in Eqs. (76) and (77):

Ib»l'=Ibt, l'=-,'+«e),
Ib„l'=o (g),

((k ) —gp2 2J~ +2( J3cos(k, s ) (80) for l = 1,2 and

which is a one-dimensional band associated with the
chain, and

(g —
go, )

—2J ) (g —
go) )—J3 —2J',J3cos(k, s ) =0,

whose solutions are

(81)

g(k)=gv)+ J)+E~(k ) (82)

In the above equations we have used the following short-
hand notations (=J~/(go, go2) J] =gJ] and

s~= [JP +J3+2J',J3cos(k, s ) ]'~ (83)

The pair of bands are the same as those obtained in Refs.

Ib3II = lb331'=o(0)

Ib»l'=1+ o(g) . (84)

Neglecting quantities of the order of g, we find that
V&&. =2(A,O, +A,02), for l, l'=I, 2, V33 AQ3 All other ma-

trix elements vanish. Hence, the plane and chain bands
completely decouple into two superconducting systems.
The gap functions of the plane bands are isotropic, so this
model cannot explain the observed gap anisotropy.

We also generalize the interlayer pairing interaction by
adding a new term to the interaction Hamiltonian in Eq.
(3). The term is

k4
y y y [y, $ (k)$, 3 ( —k)qJ3~ (

—
k')/JAN (k')+H c ] t

j ko k'o'
(85)

which represents a pairing interaction between the Cu02
layers within the same unit cell mediated directly
through the O(4) and Cu(1) link without involving chain
electrons. The expression for P&&. in Eq. (34) also acquires
an added term:

In the Appendix we have worked out the explicit expres-
sions for u&„and vt„ in Eqs. (A3) and (A4). In the limit of
Eq. (79), we can show that, to the zeroth order in g, the
only surviving basis functions are

A4[u(4(k, )u(4(k,')+ v(4(k, )v( 4(k,')],
where

u,4=
I b&,b~3I cos(k, s P,3), —

i4v=1 tabb, 1»3( n, k—s &~3) .

(86)

(87)

u f3 u23 [J,+J', c so(k, s )]/2sj

v» v&3 Jcsin(k, s )/2s~,

u &4= —
u24 —[J& +J3cos(k,s)]/2s~,

v, 4
= —

v~4 =J3sin(k, s )/2sj

(88)
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bridization. The Bi-0 band is described by the one-layer
model, while the Cu-0 bands form a two-layer system.
Each set would have its own T, and order parameter,
which we denote by T,„and 6„ for n =1,2. The effects
of band hybridization can be studied in the same way out-
lined in Sec. III for identical layers. The crucial quantity
is the pairing matrix element V&/(k, k'). When I and I'
refer to different sets of bands, we find by following the
same kind of argument presented in Sec. V that V&&. is

negligible except over the small region of BZ where the
bands hybridize. It can be seen in Eq. (29) that this gives
rise to linear as well as higher-order mixing of parameters
of the two bands. The linear mixing term is limited to or-
der parameters of the same symmetry. For reasons to be
discussed later, we will limit ourselves to interlayer pair-
ing and will retain only the order parameters for the sing-
let states.

The Ginzburg-Landau free energy of the coupled-band
system has the form

F, F„=——N, (0)l&, l'ln +—biNi(0)1~ii
cl

FIG. 9. The density of states of the two-layer interlayer in-
teraction model discussed in Refs. 1 and 2.

+Nq(0) I&zl'» +—bzNp(o) I ~pl'
c2

where e~ is in Eq. (83). We have retained the renormal-
ized hopping integral J

&
although it contains the factor g

because otherwise the system would not be three dimen-
sional. When we put these results into Eq. (34) we im-
mediately obtain V3&=0, which implies that there is no
net pairing interaction in the chain. The basis functions
u&„,v&„ for 1=1,2 and n =3,4 are identical in form to
those for the two-layer model. ' Thus, we have mapped
the problem onto the now familiar two-layer problem
plus a nonsuperconducting chain band. A typical
density-of-states curve for the two-layer model is shown
in Fig. 9. If we add a uniform background to represent
the contribution of the chain band, we obtain a rather
realistic looking tunneling characteristic for Y 1:2:3. The
presence of normal chain electrons may also explain the
linear specific heat in the superconducting state. Our re-
sult that the chain and plane electrons form two indepen-
dent Fermi fluids may give some justification to the re-
cent effort by Schlesinger and Collins who analyzed the
temperature dependence of the energy gap of Y 1:2:3on
the basis of a two-fluid model. '

VI. Bi&SrzCaCuzO8 AS A THREE-LAYER PROBLEM

The unit cell of Bi 2:2:1:2consists of two BiO layers
and two CuOz layers. The band calculation for this sys-
tem predicts two bands apiece for Cu-0 and Bi-0 layers,
and the four hybridize where they cross such that two
Cu-O bands and one Bi-0 band cross the Fermi level. "
This makes the material an effective three-layer system,
with the two BiO layers counted as one. Over most of
the Brillouin zone (BZ) the Bi-0 and Cu-0 bands are well
separated. By the same principle discussed in the last
section, the two sets of bands form two separate super-
conducting systems, provided that we ignore band hy-

—2cN „(0)Re(h;6, ) (89)

In the above equation, N„(0), n =1,2 are the normal-
state density of states of the two sets of bands, b„differ
from bc in Eq. (33) by numerical factors of the order uni-

ty, N&z(0)=[N&(0)Nz(0)]', and c is a small number,
which we use to parametrize the hybridization. The eval-
uation of the parameters b„and c requires complicated
calculations, but for the present discussion their precise
values are unimportant. It is easy to see from Eq. (89)
that the free energy is phase minimized when the two 5's
are in phase, so we will choose them as real.

The critical temperature of the coupled system is ob-
tained by diagonalizing the quadratic part of the free en-
ergy. This gives, for T, &

sufficiently close to T,z, that

T, =—,
'

[ T„+T,zk [(T„T,z) +4c T«T—,z]' (90)

and

h~( T)=c [N, (0)/'N~(0) ]'~ T,~h, ( T)I( T„—T,z)

«h, (T) . (91)

Both gaps emerge at the same critical temperature T, .
For T (T„, the larger gap 5,( T) has nearly the same ex-

We denote the "+"solution by T„whose value is larger
than the larger one of T,„,and the minus solution by T„,
whose value is smaller than the smaller one of T,„. We
do not know which band has the higher T, . We will as-
sume T„&T,~ and h&&hz and investigate the conse-
quences. In the range T„(T & T„ the gaps of the two
systems are given by

6, , ( )=T[( , T—T)lb) T, ]'
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FIG. 10. Schematic representation of the temperature depen-
dence of the two gaps of the coupled one-layer and two-layer
model for Bi 2:2:1:2. The inner gap extrapolates to zero at T„
but actually vanishes at T, . -3 0

~~~max

pression, but the smaller gap b,2(T) grows rapidly with
decreasing temperature according to

h2( T)= [(T„—T) Ib2 T„]'~ (92)

The temperature dependence of the two gaps is shown
qualitatively in Fig. 10.

The two coupled gap problem discussed here is iso-
morphic to the two-band problem investigated by Suhl,
Matthias, and Walker. ' What the authors of Ref. 12
had in mind is a transition metal with overlapping s and d
bands. In reality the s-d hybridization matrix element is
of the order of 1 eV, which is much higher than T, . This
has the effect of raising T, &

significantly and suppressing
T,2 entirely. There is only one gap, which is shared by
the strongly hybridized bands. The weak coupling case
predicted in Ref. 12 and this paper have a better chance
to be realized in layered systems because the bands are in-
herently weakly coupled.

The existence of two gaps and their distinct depen-
dence on temperature may have been seen by tunneling
measurements on cleaved ab planes of Bi 2:2:1:2. On
three different samples with T, 90 K, Tao et al. ' re-
ported T„.=80, 7, and 58 K, respectively, and the tem-
perature dependence of the inner gap has the shape given
by the BCS theory. Between T„and T, a small peak is
seen at zero bias, which can be interpreted as the un-
resolved feature due to the small residual inner gap. In
Fig. 11 we show a simulated tunneling characteristic of
our two-layer plus one-layer model. The best fit to the
experimental curve requires the larger gap to have a node
and the smaller gap to have relatively weak k, depen-
dence. This would indicate the presence of interlayer
pairing and that the larger gap belongs to the Bi-O layer
because the interlayer singlet gap function of the one-
layer model always has a node. This assignment of the
relative sizes of the Cu-0 and Bi-0 band gaps is in agree-
ment with the recent photoemission result. ' The ex-
istence of a node also gives a natural explanation why the

FIG. 11. Theoretical curve for the tunneling characteristic
for the three-layer model for Bi 2:2:1:2described in the text.
The curve is broadened by a width parameter I =0.086,„ to
simulate all smearing effects.

energy gap of Pb, which makes the counter electrode, is
seen in some of the samples at sufficiently low tempera-
tures.

The fitting parameters indicate that the band with the
inner gap has only 30% of the total DOS, whereas band
calculation shows that the Cu-0 bands have much larger
DOS than the Bi-0 band. A plausible reason for this
discrepancy is that the topmost surface of the crystal is
known to be a Bi layer, so most of the tunneling current
is contributed by electrons from this layer. The smaller
contribution from the electrons in the Cu02 layers
renders their gap feature much weaker.

VII. SUMMARY AND DISCUSSION

In this paper we have analyzed the effects of intralayer
and interlayer pairing in three- and four-layer models
with identical layers and two three-layer models each
with one distinct layer. In every case there are X energy
bands, each has its own gap function. If the N conduct-
ing layers are identical, we have shown that intralayer
pairing results in equal and isotropic gap functions for all
bands, but interlayer pairing gives rise to different and
anisotropic gap functions. The two types of pairing in-
teractions do not help each other to boost the critical
temperature of the system. The CuO chain layer in Y
1:2:3presents a distinct middle layer in a three-layer sys-
tem. It is shown that the chain band is well separated
from the plane bands, and in the case of interlayer pair-
ing, the chain band is not superconducting although it
participates actively in electron motion along the c direc-
tion. The gap functions of the plane bands are equal in
magnitude. In the case of intralayer pairing they are iso-
tropic and have the same sign, but for interlayer pairing
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they are anisotropic and have the opposite sign. In Bi
2:2:1:2the two BiO layers act like one distinct layer in
addition to the two CuOz layers. The hybridization of
the energy bands of these two sets of layered systems re-
sults in linear mixing of their superconducting order pa-
rameters. The recent tunneling data can be well de-
scribed by this model.

We can extend the calculation to models with more
than four identical layers in a unit cell. The symmetry of
the N-layer problem is SU(N), and the results are qualita-
tively the same as systems with two to four layers in a
unit cell.
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vl4=(gi —
g2)J3sin(k, s ) g gl„

(A4)

The fact that gi for 1=1,2, 3 are roots of the cubic
equation allows us to equate the left-hand side of Eq. (75)
with the product (g —

gi )(g —gz)( f—$3) for arbitrary
values of f Di.fferentiating both quantities with respect
to g and setting g=g„we obtain

Xgi. =(Fi—fz)(Fi —
F~) . (A5)

The same proof applies to two similar relations for gi„,
I =2 and 3. This puts the denominators in Eqs. (A3) and
(A4) in closed forms, e.g.,

The expressions for u&„,v&„ for n =2,3 are obtained from
cyclically permuting the layer indices. In case all g„are
equal, the above expressions reduce to Eq. (37). In a simi-

lar manner, the quantities ul4 and vI4 introduced in Eq.
(86) are found to be

ui4= [J,J2+ (gi —g2)J3cos(k,s ) ] gg«,

APPENDIX

[(kl 003)Ji +J2J3cos(kis ) ]
u 1 1 (k) =

(Fi —kZ) Fi
—

F3
(A6}

In this Appendix we will first derive explicit expres-
sions for [ul„] and [v«] for interlayer pairing in the gen-

eral three-layer model and then show that the following
sum rules are satisfied:

y ui„=y v,„=o,
I I

(Al)

for n =1,2, 3. We begin by calculating cos(t l„and sin/i„
in the definition of ul„and vl„ in Eq. (35), given that
tan(()l„has the expression in Eq. (78) and others obtained
by cyclically permuting the layer indices. The sum of
squares of the numerator and the denominator of Eq. (78)
gives

(J2J3»nk, s )'+ [(gi (03)Ji+J2J3cos(k S ) ]

(kl (03) Jl +(kl 403)2J1J2J3cos(kzs)+J2J3

(A2)

J2J3sin(k, s )
v, i(k)=

(ki —kz)(ki —ks)

and similar expressions for other values of I and n. These
are used in Sec. V to derive the transformation
coefficients in Eqs. (87).

The following identities involving three arbitrary real
or complex numbers a, b, c are readily established by
direct verification:

1 + 1 + 1 —:0,
(a b)(a —c) —(b a)(b —c)— (c —a }(c b)—

(A7)

a + b + c
(a —b)(a —c) (b a}(b —c) —(c —a)(c b)—

(A8)

Since gl is a root of the cubic equation in Eq. (75), we can
solve for 2J,J2J3cos(k, s) and substitute the result into
the right-hand side of Eq. (A2). After some algebra we
reduce the resulting expressions into the product gl&glq,
where gl„are defined in Eq. (77). It then follows by put-
ting cos(I}l„and sing« into Eq. (35) that

uli [(gl $3)J]+J2J3cos(k, s )] gg«

We put in gi with I = 1,2, 3 for a, b, c in the above equa-
tions. We then multiply Eq. (A7) by J2J3cos(k, s ) —(03J,
and Eq. (A8) by J, and add the results. This enables us
to prove that

yu„(k)=O.
I

and

vli =J2J3sin(k, s } g gl„

(A3)
In a similar manner, we multiply Eq. (A7) by
J2J3sin(k, s ) to obtain the result

yv„(k)=O.
I
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The proof for other values of n follows.
Incidentally, the sum rule in Eq. (17), namely,

(A9)

can also be established in the same way using the addi-
tional identity

2 2 2a b c
(a b—)(a —c) (b a)—(b c—) (c —a)(c b )
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