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Strained silicon: A dielectric-response calculation
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Strain-induced birefringence is calculated with crystalline silicon for pressure applied along the [001]
and [111]directions of the crystal. Results for the dielectric function and its change under hydrostatic
strain are also given. The results are calculated for photon energies in the range 0—3.25 eV, i.e., below
the direct band gap. We have made a fully-self-consistent Kohn-Sham local-density-approximation cal-
culation, in the pseudopotential, plane-wave scheme, with a self-energy correction in the form of a rigid
shift of the conduction bands of magnitude 5=0.9 eV. Agreement with experiment is very good in the
static limit, considering disagreements among the experimental values. Values of the photoelastic tensor
for [001] strain are p„p,t = ——0. 118 (theory) and —0. 111+0.005, —0. 127+0.005 (expt. ). For [111]
strain, we obtain p~ =—0.050 (theory) and —0.051+0.002, —0.051+0.002 [sic] (expt. ); for hydrostatic
distortions, p»+2p&2= —0.067 (theory) and —0.055+0.006, —0.070+0.008 (expt. ). For the static
dielectric constant, we obtain 10.9, compared to 11.7 and 11.4 (0 K) (expt. ). All experiments quoted are
at room temperature, except as noted. Above 2 eV, the calculation predicts less dispersion than seen by
the experiments. Thermal effects and electron-hole interactions are estimated to resolve some of the
discrepancies with experiment. The experimental data for [001] strains is not consistent with a single-

oscillator model, and is therefore suspect.

I. INTRODUCTION

When a cubic crystal is strained, the normally isotropic
dielectric tensor becomes anisotropic. For small distor-
tions, the linear relationship between the change in the
inverse dielectric function and the strains form the pho-
toelastic tensor. At least two groups have measured these
coefficients for strained silicon. Biegelsen has measured
the photoelastic coefficients for frequencies below the in-
direct band gap. ' Cardona and co-workers performed a
similar measurement and subsequently extended their
work to frequencies between the indirect and direct band
gaps. ' On the whole, these measurements are in agree-
ment. For the case of isotropic strain, the agreement
among the experiments is somewhat less satisfactory, as
reviewed in Ref. 5.

Semiempirical models of the optical properties of
strained silicon have been reviewed, ' but there has never
been a calculation using "first-principles" techniques to
our knowledge in silicon, or any other material; however,
a sophisticated calculation of the band gap in diamond
under [001] stress has been performed recently. The
purpose of the present paper is to present a calculation of
silicon under arbitrary anisotropic strains. In the past,
two of us have studied other optical properties of solids,
specifically the dielectric function of semiconductors '

and the nonlinear susceptibility for second-harmonic gen-

eration. Our approach (in both these works and the
present) is as follows: first, we perform a well-converged
Kohn-Sham local-density-approximation (LDA) calcula-
tion using plane waves and pseudopotentials to obtain a
ground-state potential. ' Second, in calculating optical
response, we use a modified Hamiltonian

HLDA+g p

where H& is the LDA Hamiltonian at a point k in the
Brillouin zone, 5& is an energy shift, and P,& is the pro-
jection operator onto the conduction bands at k. The
term hzP, & is sometimes called a "scissors" operator.
This energy shift represents a self-energy correction that
may be obtained through a many-body calculation in the
GS' approximation. " ' In practice, we do not include
the k dependence of the self-energy correction, which is
on the order of 0.1 eV for silicon. ' Generally, the self-
energy-corrected LDA has been quite successful in pre-
dicting optical properties of semiconductors, leading,
e.g., to disagreement with experimental value of the static
limit of the dielectric function e„of a few percent for
some six cases. ' Our interest in strained silicon arises
from the desire to test the range of applicability of this
approximation. Ultimate1y, our goal is the reliable pre-
diction of optical properties of semiconductors that have
not even been fabricated. Some of the problems we ad-
dress in strained silicon will arise later in studies of
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strained-semiconductor heterostructures.
Our theory has been presented extensively recently, so

it is omitted here. (However, we opted for finding virtual
levels through direct diagonalization as in Refs. 8 and 9
rather than the iterative solution of the inhomogeneous
Schrodinger equation. ) Briefiy, we are solving for the
dielectric function with local-field corrections using the
scheme presented by Adler' and Wiser, ' using the LDA
Hamiltonian modified by a self-energy correction in the
form of a scissors operator, as shown in Eq. (1).

II. SYMMETRY CONSIDERATIONS

A cubic crystal is optically isotropic. When the crystal
is strained anisotropically, its symmetry is lowered, and
the crystal becomes birefringent. For a general strain,
the resulting dielectric tensor has three independent com-
ponents, i.e., it is biaxial. Certain particular strains
render the crystal optically uniaxial. Compression in the
[001] direction changes the crystal class from cubic to
tetragonal; for compression in the [ill] direction, it be-
comes trigonal. Both the tetragonal and trigonal crystal
classes are optically uniaxial; the directions are fixed by
the crystal geometry and are independent of the frequen-
cy of light passing through them. '

The change in the dielectric tensor due to strain is
often described by the photoelastic tensor p; kl,

&(1«;&)=p'~jkil ki (2)

p» p12 p12 0 0 0

p12 p11 p12 0 0 0

P12 P12

0 0
p» 0 0 0

0 p44 0 0 (3)

0 0 0 0 p44 0

where the strain is given by the ski', we use the Einstein-
summation convention in this paper. The strain is sym-
metric in its two indices; in the absence of magnetic fields
or absorption, the dielectric tensor (and its inverse) are
also symmetric. The tensor p,"kl is a fourth-rank tensor
that is symmetric in both pairs of symmetric indices. We
use a compressed notation for such a tensor. Specifically,
the index pairs are mapped: 11~1, 22~2, 33~3,
23, 32~4, 13,31~5, and 12,21~6. We refer to the re-
sulting set of six values as a "six-vector"; these index
pairs may be used for vector and matrix multiplications,
but do not have the coordinate-transformation properties
of a vector. We adopt the conventions of Grimsditch
et al. , p ~=p;~k&, where ij and kl correspond to a and p,
respectively, with similar relations for cr, 5(1«), and c,
but for m. and p relations such as (m;~k& =n ~, a,p= 1,2, 3)
and (2m; k& =n&, a,P=4., 5, 6) hold. The variables cr, c,
and ~ represent the stress, elastic-moduli, and piezo-
birefringence tensors, respectively. For silicon s point
group, Oh, such a tensor will have three independent
components. The tensor takes the form'

degeneracies) are p»+2p, 2 (1), p» —p, 2 (2), and p44 (3).
The eigenvector, i.e., the strain, corresponding to the first
eigenvector is a uniform compression. The eigenvectors
of strain for the second eigenvalue may be chosen to be a
compression along one Cartesian axis with a volume-
conserving expansion in the other two directions. For
the third eigenvalue, the eigenvectors may be viewed as a
contraction in a bonding direction with a volume-
conserving expansion in the orthogonal plane.

The piezobirefringence tensor m relates the changes in
the inverse dielectric function to stresses o.

kl via

~(1«r, ) ~;,kiack, 1

Experimentally, a stress is placed along the [001], [111],
or [110]direction, or applied hydrostatically, leading to a
measurement of certain linear combinations of com-
ponents of the piezobirefringence tensor. In our calcula-
tion, we model a strain in the [001] or [111]direction, or
a hydrostatic distortion. The elastic moduli, defined by
the relation

kl Cij kl Pij

may be used to relate the photoelastic tensor to the piezo-
birefringence tensor:

Pij kl ~ij mn Cmnkl

The tensors ~ and c have the same symmetry as p given
in Eq. (3). In practice, comparison to experiment is facili-
tated because we are only concerned with those linear
combinations of the tensor coefficients which are eigen-
values. Since, viewed as matrices, these are simultane-
ously diagonalizable, conversion from ~ to p involves a
single scalar multiplication. Explicitly,

p „1,+2p „22= ( m 1„,+2~„22 )(c1111+2c, 122 ),
P 1111 P 1122

—( %1111 %1122 )( C 1111 C 1122 )

P 1212
—%1212C1212

The strains we consider are uniform compression;
compression of the [001] direction only, leaving the other
directions fixed; and compression of the [111]direction
only, leaving the other directions fixed. (Our [001] and
[111]compressions are not eigenvectors of the matrix p in

Eq. (3) since they result in a change in volume. } From
uniform compression, we determine the linear combina-
tion p»+2p, 2. From the [001] compression, we deter-
mine both p» and p, 2, and hence p» —p» and

p»+2p, 2. From [ill] compression, we find p44 and

p»+2p, 2. The three ways of determining p»+2p12
represent an internal consistency check, as discussed
below.

To determine these photoelastic constants, we calcu-
late the dielectric functions under different strains. Un-
der hydrostatic strain,

0 0

This matrix may

0 0 0 p44

be diagonalized. The eigenvalues (and

[1M]= (1,1, 1,0,0,0)
a

where 5a is the change in lattice constant and the super-
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p»+2pI2 can be determined from the difference between
the strained and unstrained dielectric constant 5[1/e],
using

r

p»+2p
5[1/e] = 0

a
+2p, 2

0 p»+2pI2

(10)

Under a strain in [001]direction,

[p]= (0,0, 1,0,0,0)
a

the difference of the dielectric matrix becomes

pI2
5a5[1/e] = 0 p, z 0
a

p»

(12)

The other element in the photoelastic matrix p44 can be
determined by changing the length in the [111]direction
by 51, i.e., by the strain

[p]=——(1, 1, 1,2, 2, 2)
1 5l z.

The factor 2 involved in the formula comes from the
definition stated above. Again, from the definition of the
photoelastic constant,

p»+2p, z
1 5l5[1/e] =—— 2p 44 2pm

p»+2p &z

(14)

script T is the transpose symbol. The symbol "[ ]"
denotes a "six-vector. " Using the definition of the pho-
toelastic constant,

5[1«]=[pl[I ]

5a T(811+ F12»P11+2P12p»l&+21120»» 0» 0)
a

The [111]strain permits an internal degree of freedom,
often denoted by g. Under a [111]strain, the bond length
between two silicon atoms joined in the [111]direction
may vary, but the direction will be unchanged. As indi-
cated in Table I, (=0 indicates the atoms connected
along [111] are shifted uniformly with the strain, and
g=l indicates this pair of atoms retains its unstressed
bond length. These two points suffice to define a scale for
the final bond position, but we refer the reader elsewhere
for a mathematical definition. '

III. RESULTS

We have calculated the various independent com-
ponents of the photoelastic tensor using the method de-
scribed in the preceding sections. Our default parameters
are given in Table II; that is, these conditions are used ex-
cept when we explicitly state they are varied in a sensi-
tivity test. Compared to a previous study by some of us,
we have increased the plane-wave energy cutoff from 9
hartrees to 10 hartrees, used the experimental lattice con-
stant at 300 K rather than 0 K, and corrected a small,
previously reported programming error which shifts the
calculated dielectric function by about —2% upon
correction.

Our results for silicon under hydrostatic strain are
plotted in Fig. 1. There have been a number of measure-
ments of this quantity, as collected by Ref. 5, for exam-

ple; here we only present two that we believe to be au-
thoritative. Their static limits are almost in agreement
with each other: for p» +2p, 2, Biegelsen gives a value of
—0.055+0.006 compared to Yet ter's —0.070+0.008.
The present study predicts —0.062, which is in marginal
agreement with the both values. The calculated frequen-
cy dependence is a reasonable description of the experi-
mental data. We are not aware of data in the region
above the indirect band gap, so the test of frequency
dependence is not particularly stringent in this case.

In Fig. 2 the calculated photoelastic-tensor component

p~&
—

p&2 is given for strain in the [001] direction. Below
the indirect band gap, our calculated values are between
the two data sets. While this indicates our theory is
reasonable, it gives no support for either set of measure-

TABLE I. Characteristics of special values of the parameter g, which describes the bond length
along the [111]direction under strain in the [111] direction. For the unstressed system, the bond
lengths along [11 1], [ 1 1 1 ], [ 1 1 1], and [11 1] are all equal, but with stress along [11 1] there are two dis-
tinct values for the bond lengths: [111)and the others. Similarly, in the unstressed case, there is one
value for the bond angle, but under [ill] strain there are two distinct values for the bond angles.
(When the phrase "under compression" appears, under expansion the sign of the indicated phenomenon
is reversed. }

1

3) 1

3

0
2
3

2
3

1

Remark

all bond angles equal

[ill] [ill] angle less than [ill] [ill] angle under compression
change in [ill] is proportional to overall change in [ill] direction
[ill] bond shorter than other bonds under compression
all bond lengths equal

[111]bond longer than other bonds under compression
modified [11 1] bond length equals uncompressed [11 1] bond length
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TABLE II. Default parameters for calculation in this paper. Only the changes from these values

will be noted in the other tables and the figures. The "equivalent number of k points" refers to the
number of integration points [or "special points" (Ref. 231] in the irreducible Brillouin zone of the dia-

mond structure; see Table VII for more information. Photoelastic-tensor components were found using
the indicated finite-difference scheme.

Plane-wave energy cutoff
Self-energy correction 6
Equivalent number of lt points
Lattice constant
Bands retained
Finite differences
Pseudopotential
Exchange-correlation potential
Core corrections

10 hartrees
0.9 eV
60
10.2646 bohr (300-K expt. )

hydrostatic, 250; [001], 100; [ill], 70
at lattice constants of +1% of nominal
Hamann, ' separable
Ceperley and Alder, ' Teter
none

'Reference 31.
Reference 32.

'Reference 33.
Reference 34.

ments over the other. Above the indirect band gap, our
calculated dispersion is less than half that of the experi-
ment. As discussed below, this may be due to a combina-
tion of thermal effects, particle-hole interactions, and er-
rors in the experiments beyond the reported uncertain-
ties.

The third independent component of the photoelastic
tensor p~ is given for stress in the [111]direction. As
discussed in Sec. II and Table I, the variable g is a mea-
sure of the relaxation of the [111]bond under stress. The
value (=0.53 is predicted by two independent LDA
total-energy calculations; ' and a semiempirical mod-
el. z2 The value (=0.53 is made plausible by noting that
g= —,'if the bond energy were totally determined by bond
lengths alone, and g= —

—,
' if determined by bond-angle

energies alone. The value suggested by the LDA calcula-
tions is about —,

' of the way from the "bond-length-only"
value to the "bond-angle-only" value, indicating bond
lengths dominate the energetics, but bond angles play a
significant role.

Both measurements' of p44 happen to have the identi-
cal value of —0.051+0.002, which is in agreement with

0.15

0.12

Si, [001] Strain
OOOOO OO

«e ll:.~

our calculated value of —0.050. As seen in Fig. 3, our
calculation gives an excellent account of the low-
frequency behavior, but does less well with the disper-
sion. Although particle-hole interactions and thermal
effects may account for this problem, as we proposed for
the [001] strain, we have no evidence that this is the case.
At first glance, it appears that a smaller value of g might
fit the data, but it does not appear possible to obtain good
agreement above the band gap without destroying the al-
ready good agreement in the static limit. Figure 4 illus-
trates that p44 is approximately a linear function of g in
the frequency range of interest.

There may be problems with the measurement. Refer-
ence 4 was a refinement of Ref. 3. The remeasurement al-
lowed them to take into account effects of optical absorp-
tion above the band gap on their reported values because
of an inconsistency between the earlier measurements

0.5

0 4

Si, Hydrostatic Strain

0.09
G4
I

+ 0.06 0

Theory
Expt. (Ref. 1)

Expt. (Ref. 2)
Expt. (Ref. 4)

~ Theory
Expt. + (Ref. t) (Ref. 58)

0.03

0.1

0.5 1 1.5 2 2.5
Photon Energy (eV}

3.5

0.5 1 1.5 2 2.5
Photon Energy (ev)

3.5

FIG. 1. Photoelastic coefficient p»+2p» as a function of
photon energy for silicon under hydrostatic strain, compared to
experimental data from Biegelsen {Ref. 1) and Vetter (Ref. 38).

FIG. 2. Photoelastic coefficient p» —p» as a function of pho-
ton energy for silicon under a strain in the [001] direction. Ex-
perimental data are from Biegelsen (Ref. 1) and from Cardona
and co-workers below (Ref. 2) and above (Ref. 4) the indirect
band gap. As discussed in the text, by our estimate, thermal
effects and electron-hole interactions should account for some
of the difference between our calculation and experiment at the
higher frequencies, but cannot reproduce the dispersion.
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0.18

0.15

0.1 2

0.06

Expt. g (Ref. I)
a (=0

(=0.53
(=0.8

o(Ref. 2)

Qgg g O ~0~

I I i

Si, [111]Strain
/

~(Ref. 4)y

TABLE III. The photoelastic coefficient of hydrostatic
strain, p»+2p», calculated from various strains. (See Sec. II
for a discussion of how these values are obtained. ) The variable

g only applies to [111]strain, with (=0.53 being our estimate of
the experimental value. Agreement at the 2% level is achieved
between all cases, except [111]strain with (=0.

Photon energy (eV)
0 2.75 3.25

0.03

0.5 1 1.5 2 2.5
Photon Energy (eV)

3.5

Hydrostatic strain
[001] strain
[111] strain 0

0.53
0.80

—0.062
—0.061
—0.236
—0.063
—0.063

—0.206
—0.203
—0.294
—0.208
—0.208

—0.404
—0.401
—0.432
—0.410
—0.402

FIG. 3. Photoelastic coefficient p~ as a function of photon
energy for silicon under a strain in the [111]direction. Sources
for the experimental data are the same as in Fig. 2. The internal
relaxation parameter g is defined in Sec. II and described in

Table I. /=0. 53 is predicted by LDA total-energy calculations
(Refs. 21 and 22); )=0 is the value without internal relaxation
of the [111]bond; (=0.8 is an arbitrary third value. As dis-

cussed in the text, by our estimate, thermal effects and electron-
hole interactions apparently will not account for the difference
between our calculation and the experiment at higher frequen-
cies.

0.18

0.15

I I

Si, [111] Strain

0.12

o. Q.09
I

a=3.25 eV

co=2.75 eV

co=0 eV

(Ref. 3) and certain Raman-scattering data. Reference 4
gave a downward revision of the magnitude of p44 that
was about twice the earlier error estimate, and the revised
error estimate was increased by about —,'. Nevertheless,
these authors concluded that even the revised values were
not consistent with the Raman-scattering data.

We may gain a qualitative understanding of the behav-
ior of the piezobirefringence coefficients. Imagine a two-
level model, with an occupied bonding orbital and an
unoccupied antibonding orbital. If the bond length is
shortened, the energy splitting of the two levels will in-
crease, and hence the polarizability in the direction of the
bond will decrease. Perpendicular to the bond there will
be little effect: our calculation indicates that the magni-
tude of the shift in dielectric function for the component
parallel to the strain direction is some 6 times larger for

the [001] strain and 16 times larger for the [111]strain
than for the perpendicular component. These simple
ideas also account for the g dependence of the coefficient
p44. The [111]bond-length change is less for larger g (up
to 1). To the extent that the [111]bond dominates the
changes in the polarizability, a larger value of g iinplies
less change in the polarizability, and, hence, a smaller p44
than the result given by the purely kinematic distortion,
(=0. For hydrostatic compression, one expects, and
finds, a decrease in polarizability with decreased lattice
constant. However, at large pressures, silicon becomes
metallic, so this simple picture necessarily breaks down.

A. Sensitivities

We noted in Sec. II that the photoelastic coefficient as-
sociated with hydrostatic strain, p» +2p &z, may be calcu-
lated by applying a hydrostatic strain, a [001] strain, or a
[111]strain. In principle, these values should be equal.
We calculated p»+2p&z using the three different distor-
tions; in the case of the [111]strain, we used three values
of g. As seen in Table III, we find the various methods
yield agreement at three photon energies within 2%, ex-
cept for the unphysical case of (=0. (Why )=0.80,
which is also unphysical, remains well behaved remains a

TABLE IV. The effect of lattice constant on the dielectric
function and photoelastic tensor at three photon energies. The
LDA lattice constant, obtained by minimizing the total energy
in the LDA, is aLDA =10.1733 bohrs. The experimental lattice
constant is a, pt 10.2646 bohrs. As the band gap is ap-
proached, the sensitivity to lattice constant increases; see, in
particular, p» —p».

Photon energy (eV)
0 2.75 3.25

0.06

0.03

0.00
0.0 0.2 0.4 0.6 0.8

p11+2p 12

P11 P 12

aLDA

aexpt

a LDA

aexpt

aLDA

aexpt

10.88
10.94

—0.041
—0.062

—0.1193
—0.1184

16.26
16.71

—0.165
—0.206

—0.098
—0.087

21.66
23.17

—0.279
—0.404

—0.067
—0.017

FIG. 4. Photoelastic coefficient p44 as a function of the inter-
nal shift g for three photon energies. p44 is seen to be roughly
linear in g at all frequencies.

a LDA

aexpt

—0.045
—0.050

—0.045
—0.051

—0.045
—0.051
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TABLE V. The effect of the self-energy parameter 6, on the
dielectric function and photoelastic tensor at two photon ener-
gies. As the band gap is approached, the sensitivity to 6 in-
creases. The omitted values are too singular to be evaluated ac-
curately in our integration scheme; cu =3.25 eV and 6=0.7 eV
also leads to unreliable values. 5=0 is the LDA.

Photon energy (eV)
0 2.75

p» +2p]z

p11 p12

p44

0
0.7
0.9

0
0.7
0.9

0
0.7
0.9

0
0.7
0.9

13.2
11.4
10.9

—0.085
—0.067
—0.062

—0.105
—0.115
—0.118

—0.0459
—0.0489
—0.0497

18.6
16.7

—0.249
—0.206

—0.073
—0.087

—0.0500
—0.0506

minor mystery. ) This numerical agreement provides a
limit on our overall accuracy, and is a verification of our
code.

The sensitiuity to the lattice constant of the calculation
is studied in Table IV. For e, p» —p, 2, and p44 the
lattice-constant dependence is moderate, but, for
p»+2p&2, the lattice-constant dependence is quite large,
varying by up to 50% for a change of less than 1% in the
lattice constant. Typically, properties become very sensi-
tive just below the direct band gap, which occurs at 3.58
eV in our calculation. In Table IV this enhanced sensi-
tivity occurs for e and p» —p, 2 for the 3.25-eV photon
energy; indeed, the p» —p, 2 value is so sensitive that we
feel it is unreliable. It is unfortunate that the property
p»+2p&2 is so sensitive to the lattice constant —for a
novel material, the geometry would not be known in ad-
vance; if the LDA total-energy method is used to deter-
mine the geometries, this might be the largest source of
error in the calculation. A similar issue arose in the case
of the nonlinear susceptibility for second-harmonic gen-
eration. '

TABLE VI. Direct band gap of silicon for various condi-
tions. The direct band gap occurs at I .

Source

Present work
Present work
Present work
Expt. '
Expt b

Expt. '
Expt. '

'Reference 35.
Reference 36.

'Reference 37.

Condition

LDA
6=0.7 eV
6=0.9 eV
300 K
0 K
4 K
shift, 4—190 K

Direct band gap

2.68 eV
3.38 eV
3.58 eV
3.45 eV
3.35 eV
3.4 eV
—50 meV

The sensitiuity to changes in self-energy correction 6 is
given in Table V. On a priori grounds we prefer the value
of 6=0.9 eV, indicated by the GS' calculation of Zhu
and co-workers' that used a 9-hartree plane-wave energy
cutoff, to 6=0.7 eV, which is suggested by two earlier
G8' calculations that employed energy cutoffs of 6.25
hartrees (Ref. 13) and 6.5 hartrees. ' As illustrated in
Table VI, 5=0.7 eV happens to make our eigenvalue-
difference estimate of the direct band gap nearly equal to
the experimental value. So we chose 6=0.7 eV as a
reasonable comparison value; some LDA results, i.e.,
5=0, are also given. As illustrated in Table V, in the
static limit an adjustment of 6 by 0.2 eV has a rather
modest effect (less then 10%) on the photoelastic-tensor
components and e. Near the direct band gap, the sensi-
tivity increases in most cases. The k dependence of the
scissors operator is estimated to about 0.1 eV for Si. '

Such a variation is certainly negligible for static proper-
ties, although may play a minor role in obtaining quanti-
tative agreement near the band edge, i.e., for photon en-
ergies above (say) 3 eV.

Next, consider the sensitiuity to the number of k points
included in our Brillouin-zone quadratures. As detailed
in Table VII, the strains lower the symmetry of the crys-
tal, and hence increase the size of the irreducible Bril-
louin zone. We obtain agreement to no worse than 1

microhartree, and possibly much better, in eigenvalues
when the different symmetries are used (i.e., when we al-
low "accidental degeneracies") in the calculation of the

TABLE VII. Special-k-point sets for various symmetries. Each column represents an identical set of
k points for the unstressed crystal. X,„refers to the number of useful point-group operations; as our

program includes time-reversal symmetry automatically, we present the number of group elements used

explicitly by our program: This will be half the number of elements in the point group if T is a sub-

group of the point group. All indicated group operations are symmorphic. N„, refers to the number

of atoms in the unit cell, for the cells we have chosen. In the first three lines, XI,» refers to the number

of integration points in the irreducible Brillouin zone. In the final two lines, Nk~, represents the linear

and volume densities of integration points in the Brillouin zone, respectively.

Condition

Undistorted
[001] strain
[111] strain

Linear density
Volume density

Point group

(Oh@ T)/T
(D2d T)/T
(C,.e T)/T

2~/a
(2~/a)

Nsym

24
8

6

N„,
28
36
91
6

216

Nkpt

60
80

204
8

512
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TABLE VIII. The effect of Nkpf the number of integration points in the irreducible Brillouin zone,
on the dielectric function and photoelastic tensor at three photon energies. The lattice constants are
given in the caption of Table IV. As noted in Table VII, the quadratures using 28, 36, and 91 integra-
tion points in the irreducible Brillouin zone —the odd lines in the table —represent equivalent integra-
tions in the full Brillouin zone. Similarly, the quadratures using 60, 80, and 204 integration points-
the even lines in the table —are also equivalent. The sensitivity to the Nk~, is not expected to vary

strongly with the lattice constant.

111+2P12

111 P12

&LOA

~LOA

~LOA

+expt

28
60

28
60

36
80

91
204

10.95
10.88

—0.046
—0.041

—0.113
—0.119

—0.047
—0.050

Photon energy (eV)
2.75

16.47
16.26

—0.180
—0.165

—0.083
—0.098

—0.046
—0.051

3.25

22. 15
21.66

—0.337
—0.279

—0.028
—0.067

—0.041
—0.051

unstrained crystal. Table VIII illustrates the effect of in-
creasing the density of integration points in the full Bril-
louin zone by a factor of about 2.4, i.e., going from what
is usually known as "28 special points" to "60 special
points. " In the static limit, values change by 1 —10'%7', at
higher frequencies the quantities become more sensitive
to the number of special points. In particular, the varia-
tion in p» —

p&2 at 3.25 eV is so large as to render this
value unreliable (and it is not reported in Fig. 2). We ex-
pect a greater variation in all integrated quantities for
photon energies approaching the direct band gap. For
this photon energy and above, the integrand becomes
singular, and therefore is either slowly convergent or re-
quires sophisticated integration methods.

We did not test the sensitivity of the predictions of this
study to the energy cutoff in our plane-wave basis. How-
ever, earlier work by our group indicated that e is con-
verged to a few parts in 10 in the case of GaAs for a 10-
hartree cutoff. The convergence in silicon is expected to
be somewhat more forgiving, leading to a relative uncer-
tainty of perhaps 10,or 0.01 in absolute numbers. We
regarded this value as small enough not to warrant a de-
tailed test.

Overall, we believe the static values we present are ac-
curate within the model to a few percent, and those at
photon energies of up to 2.75 eV are accurate to 20%%uo.

B. Thermal effects and particle-hole interactions

0.12

0.10

I

f 008

I I

Si, No Strain
Expt. 100 K (Ref. 24)
Expt. 300 K (Ref. 24)

nes)

0.06

region in which values are known at several tempera-
tures. Extrapolating the two experimental curves to zero
temperature will give a value nearly coincident with our
5=0.7 eV curve both in the static limit (where both ex-
periment at 0 K and b, =0.7 eV lead to @=11.4) and the
slope. A value of 5 near 0.6 eV would be coincident with
the 300-K line. Hence, the thermal shift from 0 to 300 K
is roughly equivalent to subtracting 0.1 eV from the band
gap. Such an observation is consistent with experimental
observation of a shift of —50 rneV in the direct band gap
as the temperature is raised from 4 to 190 K, as presented
in Table VI.

An estimate of the effect of a —0. 1-eV shift in the band
gap may be obtained using the data in Table V. For
p&2

—p», a reduction of about 0.007 is expected at 2.75
eV photon energy, which is much smaller than the
0.03—0.05 reduction required to obtain agreement with

To address the discrepancies between our predictions
and the measured dispersion of p» —

p&2 and p44 from
about 1.5—2.75 eV, we consider thermal effects and
particle-hole interactions.

Although the photoelastic-tensor coefficients have only
been measured at room temperature, temperature depen-
dence of e(co) is available. ' We plot in Fig. 5 the
dielectric function below the gap in a particular combina-
tion that is known to give a straight line throughout near-
ly the entire subband-gap regime. (The function is well
described by a single-oscillator model, as discussed in
subsection C.) In Fig. 6 an expanded view is given of the

0.04
3 6 9

Photon Energy Squared [(eV) ]
12

FICx. 5. Dielectric function of unstrained silicon in the com-
bination [eico) —1] ' as a function of the square of photon ener-

gy, for 0&~ ~ 10 eV . Such a plot is usually nearly linear for
semiconductors below their direct band gaps (Ref. 26), which
occurs for co =11.6 eV in silicon. Experimental values are
given for 100 K (Ref. 24) and 300 K (Refs. 24 and 25). The box
bounded by the three dotted lines and the ordinate is expanded
in Fig. 6.
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theory, but the absorptions considerably complicate the
measurements. The failure of the data, particularly for
[001] strain, to obey the single-oscillator model suggests
that these data may not be valid.

Wemple and DiDomenico have considered an alternate
extension, leading to the conclusion that a plot of
p/(1 —1/e) against co will lie on a straight line. We
do not present these plots; however, their analysis leads
to substantially the same conclusion: a well-defined in-
consistency for the low- and high-frequency measure-
ments of p» —p, 2 and an ambiguous result for the p~.
Our calculated values obey the single-oscillator model
(i.e., fall on a straight line) for this plot as well.

IV. CONCLUSIONS
FIG. 8. Photoelastic coefficient and dielectric function plot-

ted in the combination —1/[p44[e(e)l] ] as suggested by the
single-oscillator model. The single-oscillator model suggests
that these data should fall on a straight line. The low-frequency
data of Higginbotham et al. (Ref. 2) and the higher-frequency
data of Grimsditch et al. (Ref. 4) are in marginal agreement
with a single-oscillator model.

~(1)~(1)
( )

r (2)~(2)
( )J LJ J J V

(~~ & ~~~ & ]

No N2 2
(18)

By the definition of the photoelastic tensor in Eq. (2), the
combination pe(co) is proportional to the left-hand side
of Eq. (18): The single-oscillator model predicts a linear-

pio«f I/[p [e(co)]'] against co'.
We show such plots for the [001] strain in Fig. 7 and

for [111]strain in Fig. 8. The single-oscillator model is
obeyed by the theory in both plots. For the [001] strain,
the low-frequency measurements are in accord with the
single-oscillator model, but for the values above the in-
direct band gap the data obey a substantial deviation.
For the [111]direction the low- and high-frequency mea-
surements show a marginal disagreement with the single-
oscillator model, primarily in the form of a misalignment
of the low- and high-frequency data. A decrease in the
high-frequency value ofp44 would improve the agreement
with the single-oscillator model, as well as agreement
with our calculation. Noise in the slope of the low-
frequency data for the [111]direction make it a less reli-
able predictor of the high-frequency regime than for the
[001] case. The indirect band gap plays no role in our

We have calculated all independent components of the
photoelastic tensor of silicon using the Kohn-Sham
local-density approximation (LDA) with a self-energy
correction in the form of a "scissors operator, "as well as
the ordinary dielectric function. This work is an exten-
sion of previous successful calculations of the dielectric
function and nonlinear susceptibility for second-
harmonic generation of semiconductors.

We achieve good agreement with all components for
low frequencies. It is necessary to use the experimental
lattice constant (rather than that predicted by minimizing
the LDA total energy) to achieve this agreement in the
case of the components associated with hydrostatic
compression.

We omit thermal effects and electron-hole interactions
in the calculation. While we estimate that these effects
are probably sufficient to bring the calculated dielectric
function into agreement with experiment, the agreement
for the piezobirefringence coefficients may be improved
only to a limited extent. Consideration of a single-
oscillator model indicates that the measured values below
and above the indirect band gap may not be consistent
with each other, particularly for strains applied in the
[001]direction.
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