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An improved model for the structure of the alloy (GaAs),_,Ge,, is proposed. The phase diagram is
calculated using the Kikuchi approximation, with the interaction energies of nearest-neighbor atom
pairs computed by a universal-parameter tight-binding method. The Ge atoms are taken to be randomly
distributed in order to avoid phase segregation in the computation of the metastable phase diagram of
(GaAs),—,Ge,,. There is a metastable order-disorder transition point at x.=0.36, which agrees well
with experiment. The contribution of the order-disorder transition to band-gap bowing is also calculat-

ed.

I. INTRODUCTION

Metastable compounds of the form (4™BY),_ C¥
have been studied both experimentally and theoretical-
ly.! ¢ For small x, these alloys have a zinc-blende crystal
structure characteristic of III-V compounds, while for
large x, these alloys have diamond crystal structure
characteristic of group-IV elements. At a critical compo-
sition x,, the alloy undergoes an order-disorder transition
between the zinc-blende and diamond crystal structures.’

Anomalous V-shaped bowings of the direct band gap™’
€y as a function of composition x have been observed in
(GaAs),_,Ge,,. Several theoretical treatments>*¥~ 1
were proposed to model the order-disorder transition of
these materials and its effect on the electronic structure
of the alloy (GaAs),_,Ge,,. There has been some con-
troversy regarding the nature of the short-range order.
Newman and co-workers>* investigated the order-
disorder transition by thermodynamic methods, assuming
that the transition point is associated with the minimum
of the energy-gap versus composition curve. Koiller,
Davidovich, and Osério'® and Gu, Newman, and Fed-
der'® considered the correlation between first neighbors
to improve upon the mean-field theory of the order-
disorder transition in the alloys (4™BY),_ CIV using
the Kikuchi approximation. Another category of the
theoretical treatments assumed that there are no so-called
“wrong” Ga-Ga and As-As bonds. D’yakonov and
Raikh?® discussed the order-disorder transition in the con-
text of the site percolation model of Ga and As on the di-
amond crystal structure with the restriction that no Ga-
Ga or As-As nearest-neighbor pairs were allowed. The
value of x, is associated with the site percolation thresh-
old in the diamond lattice, x,=1—p.=0.57, which is
considerably higher than the experimental value. Still
other workers® 12 suggested a kinetic growth mechanism
for the phase transition under the assumptions that there
are no wrong bonds, and that the other interactions (be-
tween bonds Ga-As, Ge-Ge, As-Ge, and Ge-As) are tak-
en to be identical. Davidovich et al.!® analyzed the elec-
tronic energy of the alloy (GaAs),_, Ge,, as a function of
both the short-range and long-range orders. They found
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that the pair-interaction energies from their computation
is different from those determined by Gu, Newman, and
Fedders from extended x-ray-absorption fine structure
(EXAFS) data and leads to a higher transition tempera-
ture at x,=0.3 than the actual sample preparation tem-
perature. They thus proposed a more general growth
simulation.!* But there are some unknown parameters in
this growth model. Additionally, there is the unrealistic
assumption in both the thermodynamic and growth mod-
els that the Ge-Ga and Ge-As pairs, as well the Ga-Ga
and As-As pairs, are taken to have the same interaction
energies. In fact, Ge-As and Ge-Ga pairs are known to
have different interaction energies. Harrison and Kraut!’
have calculated the energies of substitution and solution
of semiconductors using a universal-parameter tight-
binding method. It can be seen from their results that the
interaction energies of As-Ge and Ga-Ge, as well as Ga-
Ga and As-As are clearly different. The relationship be-
tween cellular-automaton-based growth models and equi-
librium-thermodynamic models of the material structure
was explored by Bar-Yam, Kandel, and Domany.'® Re-
cently, Osério, Froyen, and Zunger'® performed first-
principles local-density total-energy calculations to ex-
tract pairwise energies and electrostatic interactions and
used the pair approximation of the cluster-variation
method to compute equilibrium phase diagrams. The re-
sulting phase diagram shows that phase separation is the
stable thermodynamic state at temperatures below the
melting point.

It is thus more reasonable to treat the problem, based
on the calculated energies. Since we are primarily in-
terested in the alloy (GaAs),_,Ge,, within the phase-
separation region where the thermodynamic ground state
of the system corresponds to a complete segregation of
Ge atoms from the GaAs compound, we must have a
method of dealing with the nonequilibrium nature of the
alloy. Experimentally, phase separation can be inhibited
if the crystal is quickly quenched in the highly mixed (due
to secondary-ion bombardment) state. In order to elimi-
nate phase separation, we assume that the Ge atoms are
randomly distributed, instead of being segregated as is
the case for phase separation. We thus take the same
starting point as in the growth model. In the calculation
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of the phase diagram of the alloy, we use results from
Ref. 17 for the interaction energies of the nearest-
neighbor pairs, instead of energies extracted from experi-
mental data. Thus, our approach is of the first principle
type.

In this paper we extend the thermodynamic approach
to study the metastable phases of the alloy
(GaAs), —, Ge,, by taking into account the random distri-
bution of the Ge atoms. The energy gap of the alloy is
computed in the correlated virtual-crystal approxima-
tion.?> The methods are described in Secs. II and III. In
Sec. IV we show the calculated results of the structure
and the electronic properties of the alloy (GaAs),_,Ge,,.
We summarize our results in Sec. V.

II. METHOD

In this section we describe the methods used to deter-
mine the structure of the alloy (GaAs),_,Ge,,. We use
the Kikuchi approximation®! with oriented-pair probabil-
ities P;; to include correlations. Because we are interest-
ed in the calculation both of an equilibrium phase dia-
gram for (GaAs),_,Ge,, alloy and the metastable phase
diagram, we have two versions of the Kikuchi approxi-
mation for the (GaAs),_,Ge,, alloy: one (described in
Sec. II B) that uses the grand-canonical potential to cal-
culate the phase diagram, and another (described in Sec.
I1 C) that uses the Helmholtz free energy with the condi-
tion of a random distribution of the Ge atoms within the
metastable phase region.

A. The pair interaction energies of the alloy

The alloy (GaAs),_,Ge,, is modeled as a lattice gas,
that is, an ideal zinc-blende crystal structure is divided
into nominal cation and anion sites, and each site is as-
sumed to be simply occupied by a Ga, As, or Ge atom.
We use a notation similar to that of Ref. 15. Ga atoms
are labeled “1,” As atoms are labeled ““2,” and Ge atoms
are labeled ““3.” The probability that an atom i occupies
a cation or anion site is represented by P{ and P/, respec-
tively, and the oriented-pair probability that an atom i on
a cation site is bonded to an atom j on an anion site is
represented by P;;.
The oriented-pair probabilities obey the sum rules

3 Py=Pf (1

and

S P;=Pf @)

J

which are statements of the conservation of probability.
In the oriented-pair-probability notation, the energy of
the alloy is given by

E=ZN 3 E;P; , (3)
ij
where Z =4 is the coordination number, N is the number

of sites in a sublattice, and the energies E;;=E; are the
interaction energies of nearest-neighbor pairs.
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The determination of the interaction energies E;; to-
gether by theory and by experiment proves to be difficult.
Recently, there have been some estimates for
AMBM ¢Vand AM™MBY__ CY semiconductor alloys??~%°
and (A™BY),_ . CY semiconductor alloys.!” There also
exist some microscopic quantum-mechanical theories for
the isolated case of individual impurities.?®"2° Most of
these theories use a Green’s function to represent the
crystalline environment. Harrison and Kraut!? calculat-
ed the cohesive energies of elemental and compound
semiconductors and the energies of substitution in semi-
conductors. Their technique is a tight-binding theory
based on a universal parameter, and on individual bond
energies with corrections (called metallization) due to
coupling with neighbors. The universal-parameter tight-
binding method did not depend on the lattice periodicity
and is, therefore, directly applicable to our case, i.e., the
total energy of systems with pair interactions.

In the universal-parameter tight-binding method,'’ the
interaction energies of nearest-neighbor atom pairs can
be determined step by step by assembling free atoms into
a bonded solid. The energy per bond is the sum of four
terms: (1) the promotion energy to form sp* hybrids; (2) a
bond formation energy between hybrids; (3) an overlap
repulsive energy from the nonorthogonality of the two
hybrids; and (4) a coupling energy of bonds to neighbor-
ing antibonds. We do not consider lattice relaxation in
the alloy (GaAs),_,Ge,,, which is unimportant because
of the small differences between the bond lengths of
GaAs and the bond lengths of Ge. Thus we can obtain
the interaction energies of nearest-neighbor pairs:
E, =0.075 eV, E;;=—2.09 eV, E;;=—1.29 eV,
E,,=—3.66eV, E,;=—2.86eV,and E;;=—2.29 eV.

We can also use the well-known three-component spin
model of Blume, Emery, and Griffiths*® to represent E:

E=J3S,S,—K 3 SS}+L 3 (S2S;+S,57) . @
ij iJ ij

From the universal-parameter tight-binding theory, we

find

4J =E, +E,,—2E;,=0.595 ¢V,
4K=—E, —E,,—2E,—4E;; +4(E; +E,;)
=0.325 eV,
and
4L =(E,,—E)+2E,;;—E;;)=0.595 eV .

The three components of the spin S; represent the occu-
pation of one of the types of atoms on site i: S;= +1 for
a Ga atom, S; =0 for a Ge atom, and S;=—1 for an As
atom. We note that in Ref. 15, L is taken to be zero,
while we have L =0.149 eV, and, therefore, the occupan-
cies of Ge atoms on the two sublattices are different.

B. The Kikuchi approximation

We use the Kikuchi approximation®' to compute the
phase diagram in the pair-correlation approximation.
The equilibrium state of the system is derived by
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minimizing the grand-canonical potential G defined as

3
G=E—TS— 3 uN,

i=1
=E —TS —uNx +const , (5)

where the combined chemical potential u is given by

B=2p3— 1y~ (6)

and u; is the chemical potential of species i, E is the ener-
gy defined by Eq. (3), T is the absolute temperature, and S
is the configurational entropy given by

S=NkB ’_ZEPUIHPU-"‘(Z—l)zpialnP,‘a ’ (7)

i,j i,a
where kjp is Boltzmann’s constant. The grand-canonical
potential G also depends parametrically on the oriented-
pair probabilities P;;, which are determined by minimiza-
tion of G. Quantities such as the order parameter M and
the composition x of the alloy (GaAs),_,Ge,, are deter-
mined from the oriented-pair probabilities P;;. The order
parameter M, in fact, depends on the site probabilities
Pf,

M=(m,+m,;)/2 (8)
with

m,=P{—P§ 9)
and

m,=P5—P§ . (10)

The composition x is written in terms of P;; by using a
quantity a;; that simply counts the number of Ge atoms
in a bond,

x=3¥a;P; (11)
i’j
with
a;=>—1)i—=2)2+(G -1 —2)/2. (12)

Following Kikuchi, the normalization condition for the
oriented-pair probabilities P;;

SP;=1 (13)
bLj

is used as a constraint for Lagrange’s method of undeter-
mined multipliers. Since the Ga and As atoms have the
same composition, we have another constraint:

P{+P{=P;+P] (14)
or written in terms of P;;
2 (by—c;)P;=0, (15)
ij
where
b;=1(3—02—-D+33-)2=)), (16)

ey ==l —1)+(B—j—1) . 17
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We note that the constraint Eq. (15) is an extension
beyond Ref. 15, where L was taken to be zero. After in-
troduction of the Lagrange multipliers A, and A, associat-
ed with constraints (13) and (15), the minimization of G
yields the following system of nonlinear algebraic equa-
tions:

—(pcpa)3/4 A 1
P;;=(P{P})""exp 7+7)»2(b,~j—c,-j)

+ 8, —pE, |, (18)

with B=(kzT) ™!, where the undetermined multipliers A,
and A, are found by using the constraint Egs. (13) and
(15). Combining Egs. (13) and (14), we find

(PfP{) *exp[ —BE;; +1Bua; + 1A,(b;; —c;;)]

py;= cpay3/a | 1 .
> (PfPfY%expl —BE;; + +Bua;; + 1Ay(b; —c;;)]
i’j

(19)

Equation (19) is the basis of the natural-iteration calcula-
tion described by Kikuchi. Starting with given values of
@ and T, we guess initial values of the on-site probabili-
ties P;; are then calculated using Eq. (19). New on-site
probabilities P are found from Egs. (1) and (2). In every
iteration we use the Newton-Raphson method to com-
pute the Lagrange multiplier A;. The procedure is con-
tinued until the difference between the previous values
and newly determined values of the probabilities P are

small. In this way, the phase diagram is found.

C. The modified Kikuchi approximation

Since we are primarily interested in the alloy
(GaAs),_,Ge,, within the phase-separation region, we
must modify the Kikuchi approximation in order to
study metastable phases. Following Ref. 15, the
Helmholtz free energy is used

F=E-—-TS (20)

instead of the grand-canonical potential, Eq. (5). The free
energy of the alloy is given by

F=N|Z EE,-J-P,-]- +ZkBT2P,»jlnP,-j
i,j iJj

—(Z—1kzT S PInP? | . 1)

i,a

Ge atoms are taken to be randomly distributed in order
to study the metastable region. There are thus three con-
straint equations to represent the random distribution of
Ge atoms,

2P3j=x ’ (22)
J

2 P;i;=x , (23)
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and
P, =PS5P5 . (24)

In Ref. 15, only constraints (22) and (23) are used. That
is, one uses the constraints of composition x instead of
the chemical potential u; by simply choosing not to
search for phase separation regions. Both the Ge atoms
still tend to segregate, which is reflected in pair probabili-
ties. Therefore, we add another constraint (24) which as-
sumes that the Ge atoms to be randomly distributed. In

terms of P,~j, we have
Ed,-jP,-j—x=0 s (25)
Lj
S ePi—x=0, (26)
ij
S fyPy—x*=0, 27
ij

where
d;=>i—-1li—2)/2, (28)
e;=(j—1(j—2)/2, (29)
fi=G =10 =10 —=2)(j—2)/4. (30)

We then introduce five undetermined multipliers: A, A,,
A3, Ay and As. Minimizing the free energy with respect

to P;;, we find
A A
P,;=(PtP?*exp | —BE;+ —21 + 72(1),.,. =
A Ay As

The undetermined multipliers A, A,, A;, A4, and A5 are
calculated by using constraints (13), (15), (26), (27), and
(28). For fixed values of temperature and composition Xx,
Eq. (31) forms the basis of Kikuchi’s natural-iteration cal-
culation. For each iteration we use the method of
steepest descent to determine the undetermined Lagrange
multipliers.

III. THE CORRELATED VIRTUAL-CRYSTAL
APPROXIMATION

We wuse the correlated virtual-crystal approxima-
tion'>!5 (CVCA) based on the Kikuchi approximation
and the Vogl empirical tight-binding theory?! to find the
band gap of the alloy (GaAs),_,Ge,,.

Virtual-crystal approximation?® (VCA) simply esti-
mates the curvature of the band gap of an alloy by
averaging the band-structure parameters, such as on-site
energies or off-diagonal matrix elements from the tight-
binding approximation. When the alloy undergoes an
order-disorder transition between two different crystal-
line types, its long-range order is modified, necessitating a
change in the standard VCA. In the Newman-Dow* ap-
proximation, called there the mean-field VCA (MFVCA),
the change in long-range order is handled through mean-
field theory, with the band-structure parameters estimat-
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ed by replacing the alloy with virtual cations and anions
of the form

Ga(y—x + m2A8(1—x — ) 2Gx

and

Ga—x — ) 2AS8(1—x +m)2G€x >

respectively. Koiller, Davidovich, and Osério!® im-

proved upon this MFVCA by adding correlation. Their
correlated VCA (CVCA) weights statistically (using on-
site probabilities P;* and oriented-pair probabilities P;;)
the band-structure parameters of their host compounds
GaAs and Ge. Gu, Newman, and Fedders' gave an al-
ternative approach. In our calculations, the band-
structure parameters are estimated using the correlated
VCA methods given in Ref. 15 and approximations made
by Vogl, Hjalmarson, and Dow in their empirical tight-
binding model and their “universal” model for III-V
compounds and group-IV elemental semiconductors.>!

IV. RESULTS

In Fig. 1 we present the calculated phase diagram,
which is qualitatively equivalent to the ones presented in
Ref. 15. Our results are also similar to those of Osdrio,
Froyen, and Zunger,! except that they have excluded
As-As and Ga-Ga bonds. In the calculated phase dia-
gram there are three regions: (1) ordered (zinc-blende)
phase; (2) disordered (diamond) phase; and (3) phase sepa-
ration. We study only those features of the phase dia-
grams of the alloy (GaAs),_,Ge,, that occur below the
melting temperature. In Fig. 1 it can be seen that the
order-disorder transition line is rather high; the lowest
point where the order-disorder transition line intersects
the phase-separation boundary is 0.26 eV, which is higher
than the melting point. Therefore this feature of the
phase diagram probably cannot be observed experimen-
tally. Since we use the calculated interaction energies of
the nearest-neighbor pair to compute the phase diagram,

0.5
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kpT(eV)
0.3

0.2

1 1 1 i
0.0 0.2 0.4 0.6 0.8 1.0

GaA Ge
s X

FIG. 1. The phase diagram of temperature vs composition x
for (GaAs),_,Ge,,.
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there is no unknown parameter. In the previous model,'®
the Ge atoms have the same interaction energies with Ga
and As atoms and, therefore, have the same occupancies
in the nominal cation and anion sites. In our case, the in-
teraction energies of Ge atom with Ga and As atoms are
different, and Ge atoms thus have different occupancies
in the nominal cation sites and the nominal anion sites.
The order parameters m,; and m, are also different, with
m being larger than m,. It can be seen from the calcu-
lated pair-correlated probabilities P;; that the Ge atoms
preferentially form pairs with Ga atoms rather than with
As atoms. Since the experimental sample preparation
temperature is lower than 1000 K, for most composition
X, it is in the phase-separation region. Therefore, for our
analysis the most useful information is contained in the
metastable phase diagram shown in Fig. 2. It can be seen
from Fig. 2 that the critical composition x, at the sample
preparation temperature is about 0.36, while experimen-
tally it is about 0.3.> Considering that there is no adjust-
able parameter, the fit between the theory and the experi-
ment is rather good. The results of the computation of
the oriented-pair correlation P;; show that the number of
As-As and Ga-Ga nearest-neighbor pairs is very small.
Therefore, our results are also qualitatively compatible
with the growth model which assumed that there are no
As-As and Ga-Ga nearest-neighbor pairs. One
significant advantage of our model is that we have adopt-
ed the less stringent assumption that the Ge atoms are
randomly distributed, which is reasonable because experi-
mentally the sample is quickly quenched in the highly
mixed state to avoid phase separation (Ge segregation).
In Ref. 15, there is a continuation of the critical line
within the phase-separation region in the phase diagram
which is computed by minimizing the Helmholtz free en-
ergy rather than the grand-canonical potential, but there
only constraints (22) and (23) have been imposed. Since
in that calculation the Ge atoms still tend to segregate,
the phase-separation boundary is thus only implicitly
eliminated and the calculated oriented-pair coordination
P;; still describes the phase separation. The continuation
of the order-disorder transition line in the phase-
separation regions describes the boundary between two
different phase-separation regions, which corresponds to
two types of instabilities: one is the disorder spinodal and

0.5

ke T
(eV)

1
00 0.2 0.4 0.6 0.8 1.0
AsGa Ge

FIG. 2. The metastable phase diagram of temperature vs
composition x for (GaAs),_, Ge,,.
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FIG. 3. Conduction-band edges as functions of x relative to
the valence-band maximum at the I point of the Brillouin zone
for (GaAs), _,Ge,,.

the other is the zinc-blende ordering spinodal. Two
different decomposition mechanisms are thus expected
from the solid solution in different composition regions.

Following the methods outlined in Sec. IV, we have
calculated the bowing of the band gap of (GaAs), _,Ge,,
with the calculated oriented-pair correlation P;;. A V-
shaped bowing is again found in qualitative agreement
with the results of the previous theory!® and also in
agreement with experimental results. The band gap of
the alloy (GaAs),_,Ge,, is direct for x <0.75, and be-
comes indirect at point L [k=m(1,1,1)/a_] for x Z0.75.
(See Fig. 3.)

V. SUMMARY AND DISCUSSION

We have presented an improved model for the struc-
ture of the alloy (GaAs),_,Ge,,. Using the interaction
energies of the nearest-neighbor atom pairs computed by
the universal-parameter tight-binding method, we have
calculated the phase diagram based on the Kikuchi ap-
proximation. We have also computed the metastable
phase diagram of the alloy (GaAs),_,Ge,,. The non-
equilibrium nature of the alloy is accounted for by ex-
cluding thermodynamic states corresponding to phase
separation, which cannot be achieved during the growth
process. The Ge atoms are taken to be randomly distri-
buted in order to avoid phase segregation. There is a
metastable order-disorder transition point at x,=0.36.
The calculated value of x, gives an excellent fit to the ex-
perimental value. Since there is no adjustable parameter,
our computation is of the first-principles type. Our ap-
proach also gives a united picture for both the thermo-
dynamic model and the growth model. We have also cal-
culated the contribution of the order-disorder transition
to band-gap bowing.
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