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Momentum dependence of local fields in solids
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We report measurements of microscopic local fields in four polycrystalline solids obtained in two
different manners. In N,, Ehe local field shows a striking increase with momentum out to our maximum
measured value of 1.1 A ', while in O, the local field increases at low momentum and reaches a max-

imum at 0.75 A .

In Ar, the dielectric constant, which is directly related to the local-field strength,

shows a sharp increase but reaches a maximum and begins to decrease at high momentum. In Kr, the
dielectric constant shows only a small increase before reaching a maximum. For the cubic cases, we find
reasonable agreement with point-dipole calculations. These results suggest that in many cubic materials,
the local-field strength near the Brillouin-zone boundary may be up to a factor of 4 stronger than the

Clausius-Mossotti value at the zone center.

INTRODUCTION

The existence of local-field effects, in which the field ex-
perienced at a particular atom differs from the macro-
scopic field due to induced dipoles on other atoms in the
system, has long been known. The original discussions,
based on considering metallic spheres embedded in a
dielectric medium, led to the familiar Clausius-Mossotti
and Lorentz-Lorenz relations over 100 years ago.'™*
Later density-dependent index-of-refraction measure-
ments on the rare-gas solids proved the validity of the
Clausius-Mossotti relation in cubic solids.’

More recently the possibility of momentum depen-
dence of local effective fields was addressed by Nagel and
Witten.® Their calculations, based on point dipoles on
the three cubic lattices, found a striking momentum
dependence of the local-field strength. The present au-
thors recently measured this effect in fcc N, and found a
large increase in the local-field strength with wave vec-
tors out to the zone boundary.’

Introduction of a wave-vector dependence is equivalent
to the introduction of a spatial dependence in the applied
electric field. Thus any system in which there is a large
electric-field gradient requires nonzero wave vectors to
describe the field. This is the case near an interface or
point defect. An electron that is localized in such a sys-
tem experiences the local field rather than the macro-
scopic field. Systems of current interest in which this is
the case include semiconductor nanostructures and defect
and dopant diffusion near surfaces.

In the present study we report in more detail our in-
elastic electron scattering (IES) measurements on solid
N,, Ar, Kr, and O,. The first three crystallize in the fcc
structure, while 8-O, is orthorhombic. In the cases of N,
and O,, we obtain the local-field factor by direct compar-
ison of our solid-state spectra to analogous spectra ob-
tained from the free molecules. For Ar and Kr, we base
our estimates of the local-field strength on assumptions
about the behavior of the valence excitons.

BACKGROUND

A dielectric material in the presence of an applied elec-
tric field develops a polarization field, P=YE, where Y is
the susceptibility. The field at a point inside a solid can
be thought of as a sum of the macroscopic field, the po-
larization field, and a contribution from the near neigh-
bors. In the zero wave-vector limit in a cubic or random
structure the sum of the contributions due to dipoles in-
duced on the near neighbors is zero. The internal field is
then the sum of the macroscopic field plus the polariza-
tion field, (47w /3)P=(4mw/3)xE,,, where E, is the local
field. This leads to an enhancement in the local field by a
factor of 1/[1—(4m/3)x] relative to the macroscopic ap-
plied field. Recalling the relationships between the sus-
ceptibility and the dielectric constant, e=1-+4my, and
the atomic or molecular polarizability, Y =na, where n is
the density and a is the polarizability, we arrive at the
Clausius-Mossotti relation:

4rna na
1—(47/3) )

An electric field with finite wave vector causes phases
of the dipole moments of the system to vary with posi-
tion. If this is the case, the contribution of the near-
neighbor atoms does not vanish even for cubic lattices.
Nagel and Witten® modified the Clausius-Mossotti rela-
tion by including a momentum-dependent local-field fac-
tor B(q):

e=1+ (1)

4rnalw)
1—B(ghnalw) ’

where g is the momentum and we have introduced a fre-
quency w. The local-field factor B (q) is related to the di-
pole sum:

elg,w)=1+ (2)
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j lR—fjl

(3)
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In this expression, R is the position of the atom at which
the dipole field is being evaluated, r; is the position of
another atom in the solid, q is the momentum, q is a unit
vector parallel to q, and the prime denotes excluding the
origin from the sum. B(q) can be calculated directly by
evaluating the sum over a cluster of sufficient size. The
results for the three principal axes of the fcc structure,
shown in Fig. 1, indicate an increase in B (q) by as much
as a factor of 3 with momentum for some crystal direc-
tions, and only a small increase or even a decrease in oth-
er cases. In all cases, the value of B(q) approaches the
zero-momentum value of 4m/3 as expected from the
Clausius-Mossotti relation. It must be noted that the size
of the local field depends on the local-field factor and the
susceptibility. Thus, large local fields are not only a re-
sult of a large B (q) but also of large polarizabilities and
high densities. Moreover, atoms or molecules with larger
polarizabilities also have larger radii, and would be ex-
pected to have behavior that deviates significantly from
the predictions of the point-dipole approximation.

Results for polycrystalline structures, such as those we
have measured, can be approximated by calculating B (q)
in several directions and averaging the appropriate mea-
sured quantity. We have done this to allow comparison
to our measured data. For example, we have evaluated
B(q) in the [110], [320], [210], [310], [410], [510], and
[100] directions in the (100) plane. Four directions were
calculated for the (111) plane and 11 directions for the
(110) plane. The measured quantities (the dielectric con-
stant or field strength) were then calculated for each
direction and the appropriate average taken, assuming
that our samples had randomly oriented crystallites.

DATA ACQUISITION AND ANALYSIS

In inelastic electron scattering we measure the
response of the sample to the electric displacement vector
of the fast electrons. The cross section for inelastic
scattering is proportional to

d%o 1

dodQ "~ g2 "

_ 1
€(q,0)

4)

where fig is the momentum transfer and fiw is the energy
of the excitation. Using the Kramers-Kronig relation,
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FIG. 1. B(q) for three principal axes in the fcc structure.
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we can evaluate both the real and imaginary parts of the
dielectric function as a function of both momentum and
energy.

Data were measured using the IES accelerator de-
scribed in Ref. 8. Primary beam energy was 285 keV
with resolution 70-130 meV. Energy losses from 2 to 60
eV were covered using a precision programmable power
supply. Transverse momentum transfer was delivered by
high-voltage capac1tor plates. Momentum transfers of
0.07 to 1 3 A~ were covered with a resolution of 0.04 to
0.07A~

Thin- ﬁlm samples were condensed onto 50— 100-A car-
bon and 250-A aluminum substrates held at about 30 K
by a low-temperature sample mount described in Ref. 9.
Ultrapure gases flowed over the substrates at pressures of
107% to 3X107° Torr for 1-6 min, resulting in films
about 100-2000 A thick. Deposition rates and sample
thicknesses were varied. Background pressure in the
sample chamber was <107° Torr. The possibility of
contamination was investigated by leaving uncoated sub-
strates cold and measuring spectra until plating of back-
ground gases could be detected, a period of over a week.
Therefore, the substrates were warmed up every few days
and a fresh sample was deposited. The rare-gas solids
have band gaps larger than the atmospheric gases, and
we were not able to detect impurity signals in the band
gap of any of the Kr or Ar spectra, indicating that con-
tamination had not occurred in those samples. Results
reported here represent data obtained on at least three
samples of each gas. The order in which spectra were
measured was not systematic, that is, measurements did
not proceed from low momentum to high momentum or
vice versa. Diffraction measurements indicated polycrys-
talline samples with the following lattice parameters: N,,
5.65 A Ar, 4.73 A; Kr, 5.69 A, in agreement with accept-
ed values.'® O, results were difficult to interpret, but ap-
peared orthorhombic, indicating the S phase, which is
the stable phase at about 30 K.

Each measured spectrum is the sum of the sample and
substrate contributions. Since C and Al are both metals,
and the solid gases are wide-band-gap insulators, an esti-
mate of the substrate contribution can be obtained by
scaling the spectrum of the substrate below the absorp-
tion threshold of the sample. C and Al spectra were mea-
sured over broad energy ranges at the appropriate g
values for each measured sample spectrum. Spectra also
contain multiple-scattering events, in which a single fast
electron scatters more than once in the sample, and a ki-
nematic weighting factor, which is energy dependent.
These effects are removed using algorithms of Fields'!
and Livins, Aton, and Schnatterly.'> The amount of mul-
tiple scattering removed and the final scale of a spectrum
are determined using constraints on the low-frequency
dielectric constant and the oscillator strength sum rule.
Oscillator strengths of 10.4 electrons per molecule for N,,
12.5 for O,, and 8.5-9 electrons per atom for Ar and Kr
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were used in carrying out this analysis.!>* Low-

momentum dielectric constants were obtained from po-
larizability measurements for N, (Ref. 14) and from
solid-state measurements for O,, Ar, and Kr.> The deter-
mination of the dielectric constant at higher momenta is
discussed in the next section.

Higher-momentum spectra also contain thermal-diffuse
scattering, a type of multiple scattering in which a fast
electron scatters quasielastically at high momentum from
a phonon, then inelastically from a low-momentum elec-
tronic excitation. In the case of the rare-gas solids, the
energies of the fundamental exciton peaks increase with
momentum at a high enough rate that we can detect
thermal-diffuse scattering in the data. These contribu-
tions can be subtracted using a method similar to the sub-
strate subtraction. In the case of N, and O,, however,
the excitations are molecular in nature, and thus non-
dispersive. We therefore estimate the maximum momen-
tum at which the contribution of thermal-diffuse scatter-
ing remains small enough to be ignored based on previous
measurements on solids of similar molecular weight, and
have limited our study to less than about 1.1 Al

DETERMINATION OF LOCAL FIELDS

The most direct way to evaluate the local-field strength
is a comparison of the intensities of appropriate spectral
features between the gas phase, in which local fields are
negligible, and the solid state. This requires that, in the
energy range covered, the only differences between the
gas phase and solid state be the local fields. N, provides
such a comparison. The Lyman-Birge-Hopfield transi-
tion, the a ng<—X 12; molecular excitation, centered
around 9.1 eV, is an electric quadrupole transition in
both the gas and the cubic solid, and thus, being dipole
forbidden, exhibits a striking increase in intensity with in-
creasing momentum. It is spatially localized and also iso-
lated in energy from other transitions. The momentum-
dependent behavior in the free molecule is well docu-
mented in the literature,’”” 7 and so provides a good
gas-phase comparison for our data. We have evaluated ¢,
spectra using a Kramers-Kronig analysis of our measured
data. Figure 2 shows our results for several momentum
values.

The gas-phase IES cross section is related to the imagi-
nary part of the molecular polarizability.”® Gas-phase
measurements are reported in terms of the generalized os-
cillator strength, f(q), as a function of momentum.3 ™17
Since in the gas we have €,~1, we can compare gas-
phase results directly to our momentum-dependent oscil-
lator strengths obtained from ¢,:

Nlg)=—25 [ weg oo, (6)
‘ITCl)p Dex

where N is the oscillator strength, w, is an effective
plasma frequency, and the integral is over the contribu-
tion of the transition. We can evaluate the square of the
electric-field enhancement directly from the oscillator
strength ratio:
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Due to weak magnetic dipole transitions above 9.5 eV, we
have evaluated our oscillator strengths by fitting a series
of seven Gaussians to the lowest vibrational levels for
each of our spectra. We have evaluated the oscillator
strength of the entire transition based on the contribu-
tions of the three most intense peaks, assuming a Poisson
distribution.

Our oscillator strengths obtained from €, are strongly
dependent on the assumption of the low-frequency dielec-
tric constant, which is in turn dependent on our assump-
tion of B(g). For the same raw spectrum a larger input
value of €,(q,0) shifts oscillator strength to lower energies
in €, For this reason we have used an iterative pro-
cedure to determine B(q). For each spectrum we have
assumed an input value of B(g), and used the molecular
polarizability and Eq. (2) to obtain €,(q,0). We go
through our analysis procedure to obtain €,(q,w), N g(q),
and an output value of B(g) based on comparison with
the data in Ref. 15. The procedure is iterated until the
input and output values of B (q) are the same.

The oscillator strengths obtained from this procedure
are shown in Fig. 3, along with the data of Ref. 15. The
strengths obtained for the solid are higher at every ¢
value. In addition, the solid state and free molecule
strengths exhibit a different behavior with momentum.
The gas-phase strength initially increases quadratically
with momentum, as would be expected from the matrix
element, then eventually increases less than quadratically.
In the solid, however, the initial increase is also approxi-
mately quadratic, but at intermediate momentum, the in-
crease is more than quadratic, indicating that some pro-
cess is enhancing the transition in the solid. The solid-
state oscillator strength does not extrapolate to zero at
zero momentum, suggesting that some additional oscilla-
tor strength due to odd-parity phonon coupling or disor-
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FIG. 3. Oscillator strengths of N, for the free molecule
(squares, Ref. 15) and the cubic solid (triangles).

der, which introduces some dipole character to the tran-
sition, is present.!” This admixture should be momentum
independent. Therefore we have subtracted 0.0088 elec-
tron from our data to evaluate B (g). The value of 0.0088
was chosen to allow the local-field factor to extrapolate
smoothly to the known value of 47/3 at ¢=0. The
values of the square of the local-field enhancement ob-
tained from the oscillator strength ratios and our calcu-
lated averages for the three planes in the fcc structure are
shown in Fig. 4.

We have used an identical procedure for O,. In the
free molecule, the Schumann-Runge transition
B33, «X?3; is dipole allowed, and its oscillator
strength decreases with momentum for the free mole-
cule.® In the molecule the Schumann-Runge transition
has very little vibrational structure and appears as a
broad peak more than 1 eV wide and centered at
8.45-8.75 eV.?® We have used two Gaussians to fit our
data, which include a solid-state transition at 7.4 eV and
the Schumann-Runge transition at 8.8 eV. The resulting
local-field enhancement obtained from comparison of our
data to those in Ref. 20 is shown in Fig. 5. It must be
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FIG. 4. Local-field field strength as a function of momentum
for N, (squares) with averages for three crystal planes as de-
scribed in the text: solid line, (100) plane; dashed line, (110)
plane; dotted line, (111) plane.
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FIG. 5. Local-field strength in solid O,.

noted that €, is varying by 10-30 % in the energy range
of the transition, and we have used an average value of €,
to obtain our assumed value of na (@, ). This leads to
small uncertainties at low g, where the variation is about
10%, but to larger uncertainties at high g, where the vari-
ation is larger.

Since Ar and Kr have complicated excitonic behavior
not present in the gas phase, direct comparison to the
spectra of the free atoms cannot be made. Therefore we
have had to make some assumptions about the
momentum-dependent excitonic behavior. Both Ar and
Kr have localized valence bands of p character and ex-
tended conduction bands of s character at the I" point,
where the absorption threshold is.?!

In the case of Ar, we base our assumptions on the os-
cillator strengths and spin-orbit splitting of the p;,, and
P1,, excitons. In Im(—1/¢) the ratio of the oscillator
strength of the exciton arising from the p;,, band to that
of the p, ,, band is about 0.05, and the spin-orbit splitting
is 0.6 eV. In the free atom the oscillator strengths of the
transitions are about equal, while the spin-orbit splitting
is 0.2 eV.?? While a small difference in behavior between
the free atom and the solid is expected, differences such
as these are unusual. On the other hand, if we examine
the behavior of €, in the solid at low g, we find a spin-
orbit splitting of 0.19 eV and an oscillator strength ratio
of about unity, in agreement with optical experi-
ments.?>?* Therefore, the difference in behavior is due to
the values of €, in the region of the transition. The inten-
sity ratio between the p,,, and p;,, excitons changes rap-
idly with the values of €, in this energy range. Because
the structure is so sharp, it is affected strongly by the as-
sumed value of €e(w=0) through the Kramers-Kronig re-
lation, thus the assumed value of B (q), which contributes
to the value of €,(0), changes both the oscillator strength
ratio and spin-orbit splitting in the transition. Therefore,
we have varied B(q) for each g value until the strength
ratio and spin-orbit splitting are about equal to our low-
momentum results, which are consistent with optical
measurements.?? Figure 6 shows €, spectra obtained at
q=0.4 A! assuming three different input values of
B(q). As can be seen, the resulting €, spectrum is very
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FIG. 6. €, spectra of Ar in 1the energy region near the funda-
mental exciton at g =0.4 A , assuming different B(q) values:
6.0, dashed line; 6.5, solid line; and 7.0, dotted line.

sensitive to our choice of €,(¢,0). The results for €,(g,0)
are presented in Fig. 7.

We have used similar assumptions to obtain B(q) for
solid Kr. Although €, in the region of the 4p excitons is
not nearly as rapidly varying as in solid Ar, the behavior
of the p;,, exciton peak in €, is strongly dependent on
our choice of €,(w—0). To evaluate B(q), we have as-
sumed that the oscillator strength ratio remains constant
as in the case of Ar, however in Kr, we found a low-gq os-
cillator strength ratio in €, of about 1.3. This is a little
higher than the value of 1.1 found in reflectivity experi-
ments.”>?* Values of €,(g,0) obtained in this manner are
shown in Fig. 8.

Uncertainties arise in all of the steps in our data
analysis. In each solid uncertainties are present due to
substrate subtraction, multiple-scattering removal, and
the Kramers-Kronig analysis. The latter two are espe-
cially uncertain at high momentum. In N, most of the
uncertainty at low momentum is due to odd-parity pho-
nons, disorder, and substrate subtraction. At higher
momentum, where the Schumann-Runge transition has
increased in intensity, these become smaller. In the
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FIG. 7. €(q,0) in solid Ar (squares) with averages for the
three crystal planes; notation as in Fig. 4.

q(A™

FIG. 8. €/(q,0) in solid Kr (squares) with averages for the
three crystal planes; notation as in Fig. 4. Chain lines are for
the (110) plane with form factors as described in the text.

high-momentum region in both N, and O,, the greatest
uncertainties are in our analysis procedures and the fact
that €, in the region of the transitions studied is varying
by as much as 10% in N, and 30% in O,. In Ar the
dominant contribution to uncertainty is thermal-diffuse
scattering, which must be removed from the higher-
momentum spectra. This, coupled with the weakness of
the p3,, exciton in the energy-loss spectrum, introduces
large uncertainties at intermediate to high momentum.
The Kr €, spectrum is much less sensitive to the value of
€,(g,0), so the dominant source of uncertainty is simply
determining this value precisely. We have included error
bars in our figures based on these considerations.

DISCUSSION

Results for the four different materials obtained using
different methods of evaluating B (q) are fairly different.
All of our samples showed diffraction rings of each prin-
cipal axis direction, thus we may expect our data to be
well described by an average over orientation, however
none of our results for the three cubic solids are described
particularly well by simple averages over orientation.
The N, data follow all three of the plane averages well
until high momentum, where the data are greater than
any of the averages. At high momentum the data follow
the results for several directions in the (100) plane, how-
ever, indicating possibly some preferential orientation.
The data for Ar become highly uncertain as g is in-
creased, as discussed above.

The calculations were made for point dipoles. In real
solids the sizes of the atoms or molecules can have a large
effect on the local field. Thus we may expect a larger
atom such as Kr to have behavior which deviates
significantly from the calculations. In Fig. 7 we show
dashed lines which include a Lorentzian form factor in
alg), which approximates the deviation from the point-
dipole approximation. The form factor we have used is
F(q)=1/(14+aq?r3), where r, is the atomic or molecular
radius and a is a constant. In Fig. 7 we have included
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curves for a =0.1 and 0.05 for ¢ in the 110 direction.

Momentum-dependent measurements are sensitive to
the degree of localization of transitions we have used to
determine the local fields. The transitions in N, and O,
are nondispersive, and thus extremely localized. In the
rare-gas solids, however, the excitons disperse measur-
ably, indicating that they are more extended. It is the
variation with g of €, which we are using in this case to
probe the local field. What counts then is the degree of
localization of the valence electrons which largely deter-
mine €;. The more extended exciton states are simply be-
ing used as a probe, allowing us to evaluate €,(q).

For primitive cubic lattices such as these, B(q) is
periodic in the reciprocal lattice when g is oriented along
a high-symmetry direction. For other directions of q,
B(q) has no apparent simple periodicity. In every case
there is an upper limit to the value of B(q), given by
B(g)na(q)<1. For example, in N, this requires
B(q) <18, a condition met by our evaluations and mea-
surements.

As mentioned earlier, the magnitude of the local-field
enhancement is related to both B (q) and the susceptibili-
ty. The susceptibilities of the materials we have mea-
sured vary between 0.043 for Ar and 0.055 for N, and
Kr, and the maximum local-field factors vary from 7 for
Kr to 13.5 for Ar. The ratio of the local field to the mac-
roscopic field is 1/[1—B(g)na]. To find the magnitude
of this effect, we have evaluated this for each solid. The
largest effect is in N,, in which the local-field enhance-
ment near the zone boundary is a factor of about 3
greater than the macroscopic field. In Kr, on the other
hand, the enhancement is only 1.6 over the macroscopic
field. The results for Ar and O, are between these results.

Perhaps a more familiar way to think of fields is in real
space. The present results can be expressed in real space
by a Fourier transform of the results in momentum space.
The macroscopic electric field around a point charge in ¢
space is E (q)=2m*/q, and the local field is the product of
the macroscopic field and the enhancement factor. We
can transform this into real space by using our calculated
values of B (q) with a form factor, or by fitting curves to
our measured electric-field enhancements. We found that
a curve of the form (a+bgq3)/(c+dg®) described the
shape of E(q) for each solid adequately. The integrals
were performed over 200 periods, and a damping term
was added due to the instability of the integral. The re-
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FIG. 9. Local-field enhancement for a Coulomb field in O, in
real space.

sults show that the enhancement in the electric field ap-
proaches unity at »r—0 and »-— o, and shows a broad
peak at about 1.2 Ain Kr, 1.5 A in Ar and N,, and 2.0 A
in O,. The enhancement at the peak is about 1.8 in O,
and Kr and about 2.3 in Ar and N,. As an example, we
show the electric-field enhancement in O, in real space in
Fig. 9.

CONCLUSIONS

We have reported enhancements in physical quantities
due to local fields for four solids obtained in different
manners. The behavior of the enhancements is different
for each solid, but shows a common shape which includes
an increase at low momentum and a peak at intermediate
momentum. The values obtained are consistent with
theoretical calculations. The results indicate the local
fields of moderate wave vector can be much stronger than
would be expected from the Clausius-Mossotti relation.
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