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Impurity interactions in disordered metals. II. Conductance Suctuations in mesoscopic systems
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We reexamine the theory of conductance fluctuations in mesoscopic systems, in particular, the sensi-

tivity of such fluctuations to the motion of one single impurity. In contrast with all previous theories on
the subject, we do not assume the impurities to be independent. Instead, we take into account the ex-
istence of a local atomic order between the impurities which results from their mutual interactions. We
show that, to the lowest order in this local ordering, its overall effect cancels out from the sum of all con-
tributing diagrams, so that the universal character of the conductance fluctuations is still preserved. In
contrast, it does show up when a single impurity is moved, in which case the resulting conductance fluc-

tuations become dependent on the degree of electronic disorder and dimensionality. It is conjectured
that, as the amount of impurity local ordering increases, it will also modify the universal character of the
conductance fluctuations.

I. INTRODUCTION

After the important progress made in the understand-
ing of Anderson localization of macroscopic systems [re-
called in the preceding paper (I)], the next hallmark has
been the discovery of the "universal" conductance fluc-
tuations in disordered electronic systems of "mesoscopic"
sizes. ' It turned out that conductance fluctuations in
such systems are independent (between broad limits) of
the degree of disorder, size, and dimensionality of the
sample. Moreover, it has been shown ' that, in thin films
of mesoscopic size, the displacement of a single impurity
induces conductance fluctuations as large as those pro-
duced by changing the entire sample. It was argued in
Ref. 5 that this observation may have implications for the
understanding of I /f noise.

The theories of Refs. 1-5 assumed the electrons to be
noninteracting and the impurities to be independent. We
recently showed that interactions between the impurities
(inducing a local ordering between them), in addition to
affecting the conductivity of the system (as discussed at
length in I), also modifies the conductance fluctuations in
"mesoscopic" samples. In Ref. 6, however, we confined
ourselves to a study of the modifications arising in one of
the "two-diffuson" diagrams considered in Refs. 1 and 2.
We then found, from the computation of such a diagram,
that the universal character of the conductance fluctua-
tions is lost since the amplitude of the conductance fluc-
tuations clearly depended on the degree of electronic dis-
order and dimensionality. Based on this result, we as-
sumed, in Ref. 6, that our finding, concerning the loss of
the universal nature of the conductance fluctuations,
would remain valid also when the contribution of all oth-
er relevant diagrams is included.

In the present paper, we wish to complete our prelimi-
nary work of Ref. 6, using the basic ingredients described

in the preceding paper (I). We include, here, the contri-
butions of all the two-diffuson diagrams contributing to
the conductance fluctuations of mesoscopic systems.
(Diagrams with two diffusons have indeed been shown3 to
be the only ones contributing to the conductance fluctua-
tions. ) We show, in Sec. II, that the qualitative con-
clusion of our preliminary work of Ref. 6 is drastically
modified when the sum of all possible contributions is
evaluated. This amounts to the cancellation of the
overall impurity local ordering effect, although it shows
up in each two-diffuson diagram individually. We thus
recover the universal result of Refs. 1 and 2 for indepen-
dent impurities. Such a cancellation is similar to the one
found in I for the localization contribution (o Mc+Bo Mc)
to the conductivity. In Sec. III, we reexamine the sensi-
tivity of conductance fluctuations in mesoscopic systems
to the motion of a single impurity. There, we show that
the conclusions of Refs. 4 and 5 must be revised: the lo-
cal ordering between the impurities, resulting from their
mutual interactions, does have an overall effect. As a
consequence, the conductance fluctuations induced by
the motion of a single impurity in a two-dimensional sys-
tem do not produce the same fluctuations as those result-
ing from changing the entire sample as found in Ref. 5.
In Sec. IV, we conclude our work by contrasting the re-
sults of Secs. II and III, and analyzing the effect of in-
creasing the impurity local ordering. As in Paper I we
give our results for D = 1, 2, and 3.

II. CONDUCTANCE FLUCTUATIONS
IN MESOSCOPIC SYSTEMS IN THE PRESENCE

OF IMPURITY INTERACTIONS

In the present section, we recall the main steps to cal-
culate the conductance fluctuations in mesoscopic sys-
tems, taking into account impurity interactions.
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According to the classical result, the variance of the di-
mensionless conductance Var (g)=(g ) —(g} behaves
as

»r(g) - (g ) '/L -L
where L is the characteristic linear size of the system.
The breakthrough of Refs. 1 —3 was to show that
quantum-mechanical effects modify the above result so
that

Var(g)-L J,(q } d q .

The additional integral in (2) corresponds to the two-
diffuson diagram contribution arising in the calculation
of the variance of the conductivity ( o }—( o ), with

g =O.L . q is the common momentum involved in
both diffusons. We recall that a diffuson I'd is an infinite
ladder of single impurity scattering lines in the particle-
hole channel, which satisfies the Bethe-Salpeter equation
shown in Fig. 1 of I. In what follows, I d will be simply
denoted by I'. Equation (2) yields

(a)

Var(G)-(e /h)~, G =(e2/1'i)g . (3)

In Ref. 3 it was shown that the diagrams contributing to
Var (g) are the two-diffuson diagrams recalled here in Fig.
1, with their detailed structures displayed in Fig. 2. It
can indeed be rigorously proved that only two-diffuson
diagrams contribute to the conductance fluctuations.

In Ref. 6, we reevaluated one of the two-diffuson dia-
grams [namely, the one in Fig. 1(a}],taking into account
the interactions between impurities along the lines de-
scribed in I. We found that the universal result (3) ob-
tained in the absence of impurity interactions is modified
by these interactions and depends explicitly on dirnen-
sionality and the degree of electronic disorder. Although
we emphasized that other diagrams [in particular, those
in Figs. 1(b)—1(e)] should also be considered, we assumed
that our conclusion would not be qualitatively changed
and that the impurity local ordering would still break the
universal character of the conductance fluctuations.
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FIG. 1. The two-diffusion diagrams entering the calculation

of the conductance fluctuations in the independent impurity

model (Ref. 3). The wiggly lines denote the diffuson whereas the

dotted line with a cross stands for a single impurity line. See

Fig. 2 for details.

First, we show that, in the presence of impurity in-
teractions, there are more diagrams to consider than
those displayed in Fig. 1. These additional diagrams are
shown in Figs. 3 and 4. The diagrams in Figs. 1, 3, and 4
are the ones which contribute to first order in A, , where A,

contains the impurity interaction strength [as defined in
Eq. (3) of I]. Then we show that the effect of the impurity
local ordering disappears from the sum of diagrams in
Figs. 1, 3, and 4 when these are evaluated to first order in

As a consequence, the effect of impurity interaction
shows up in the conductance fluctuations only through
the upper cutoff in the integral in (2). This result is
analogous to the one found in I for the localization con-
tribution to the conductivity in the presence of impurity
local ordering.

The algebra is quite straightforward and is done the
way it was described in Ref. 6 for the diagram of Fig.
1(a). Each one of the two diffusons contributes through
the quantity

I =I o[1+A[Mi(x)—3Mo(x}]],
(4)

e(Q, )e(Q )Io=
2 7

2mN(es)~o Doq +Qi+Q

where 0& and Q2 are the appropriate Matsubara frequen-
cies of the electron lines on either side of the diffuson.

Mo(x) and Mi(x) are given, respectively, by formulas (5)
and (7) in I. x =kid, kz is the Fermi momentum and d

(b)

FIG. 2. The details of the Hikami-type boxes of Fig. 1. An
ensemble of two dotted lines with crosses denote an infinite
ladder diffuson I d, as shown in Fig. 1 of I. Figures 1(c), 1(d),
and 1(e) are obtained from (b) with the addition of single impur-
ity lines.
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(e)

FIG. 3. Extra diagrams to be added to Fig. 1(a) in the presence of finite impurity interactions.

the nearest-neighbor distance of the lattice model used to
represent our system of a binary alloy of host and impuri-

ty atoms. (For more details, see I and Ref. 5 in that pa-

per. ) The extra single impurity line (with a cross), in-

volved in Figs. 1, 3, and 4, corresponds to the effective
scattering potential modified by impurity interactions and
is given by formulas (1) and (3) in I. With all the previ-
ously defined terms, we find the following results. As far
as the A, dependence of Fig. 1(a) is concerned (the only
one studied in Ref. 5},it contributes as

Therefore, adding the contributions of Figs. 1(a} and 3,
the term AM &(x) cancels out. One can easily check that
the same kind of cancellation occurs between the dia-

grams of Figs. 1(b)-l(e) and those of Fig. 4. Finally, in

three dimensions, the contributions of the diagrams in

Figs. 1(a) and 3, denoted, respectively, by E'"~ and K'3'

yield
d3It'"'+J:"'=(16kF4y3}T'yf "q I

(2n }'
with

(r )'r'=r', [1+6aM,'(x)]

X12{1+2K [M, (x)—3M2(x) ]]
=vol o[1+2A,M, (x}], (5)

8(cp„„)8(-cp„)8(co„)8(—c0„. „.)Y=
(cpn+v con'+Doq }(con con'+~'+Doq )

8(~„,„)e( ~„,)e-(-~„)e(~„,,„,)+
(cp„+„cp„+Dpq—)(c0„,+„, c0+D q

—p)
However, the extra diagrams in Fig. 3 amount to adding
to the above expression the quantity

—r I [2AM, (x)] .

8(-~„,„)e(~„.)e(-~„)e(~„.,„)
(cp c0 + +Dpq )(co ~ c0 +Dpq )

where ~„+„and co„are the Matsubara frequencies in-
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FIG. 4. Extra diagrams to be added to Figs. 1(b)-1(e), in the presence of finite impurity interactions. Twelve other diagrams
analogous to (a)—(d) are not shown but do contribute as well; they are obtained by dressing each of the other three external vertex
corners analogously to what is shown in (a)—(d).
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volved in one of the loops, with co„being the external in-

coming and outgoing frequency; co„.+ ~ and co„. are those
of the other loop, with m„. the corresponding external fre-

quency.
On the other hand, the contributions of Figs. 1(b)—1(e)

and 4 give

K'"'+K'"'+K" '+K'"'+K"'=4k'T'g ~, Y.
(2n )

(9)

[Note that there is only a numerical factor difference be-
tween (7) and (9).]

Compared to the above results (7) and (9), the full con-
tribution of Fig. 1(a) alone (computed in Ref. 5) is

K'"'=(16k /3)[1+2AM, ( )]T g I Y.
(2m )

(10)

In Figs. 1, 3, and 4, each diagram, individually, contains
a multiplicative factor, a signature of the impurity local
ordering. However, when the sum of all the diagrams is
performed, the impurity interaction effect disappears, at
least to first order in A,. The impurity interaction effect
survives only in the upper limit of the remaining integral
over q, since q ((kFl') [with I' being the mean free
path in the presence of impurity local ordering, given by
formula (4) in I], as was the case for the localization con-
tribution to the conductivity in I. However, here, due to
the convergence of the q integral at the uppers limit, this
cutoff is much less important than in the conductivity
case (fd q/q compared to f d q/q )

Therefore the universal character of the conductance
fluctuations, emphasized in Refs. 1 —3 for independent
impurities, still survives here (to first order in A, ), provid-
ed that the linear dimension I. of the mesoscopic sample
is larger than I',

L » I',
(I') '=10 '[1—AMO(x)]

(l is the mean free path in the absence of impurity in-

teractions. ) As discussed in I, there is no physical reason
for such a cancellation to survive when the impurity local
ordering gets stronger. In fact upon increasing the local
ordering, the impurities eventually will develop long-

range spatial order either in the form of long-range atom-
ic order or segregation, depending on the sign of their in-

I

FIG. 5. The difFuson I when one impurity is moved from its
original position. The extra diamond-type impurity scattering
line is given in the text by formula (12).

teractions. This, in turn, reacts on the conductivity of
macroscopic systems as well as on the conductance fluc-
tuations of mesoscopic ones. Furthermore, even to first
order in A, , there are diagrams which we have neglected
both here and in I because they would give smaller con-
tributions, involving higher powers of (euro) (in the
metallic regime ezra »1). Such contributions are impur-

ity interaction dependent and there is no a priori reason
why they would also cancel to all powers of (eFro)
Calculations to higher orders in A, for fixed (ezra)
values or to first order in k but to higher powers of
(sp1 p)

' are out of the scope of the present paper but
should be kept in mind before concluding that the impur-
ity local ordering plays no role at all.

III. SENSITIVITY OF THE CONDUCTANCE
FLUCTUATIONS TO THE MOTION

OF A SINGLE IMPURITY IN THE PRESENCE
OF IMPURITY INTERACTIONS

I
U'(p' —p) I'=Z'[1+5Z(lp' —pl)]

Z'=(Z/N, )Re(1 —e' "~ i")

(12a)

(12b)

X,. is the number of impurities and Z is given below for-
mula (1) of I. For the derivation of (12b), see the Appen-
dix. [In the work of Ref. 5, impurity interactions were
absent, corresponding to 5Z =0 in (12a).] Here the ana-
lytic expression corresponding to Fig. 5 is given by

In order to evaluate the modifications of the conduc-
tance fluctuations upon moving a single impurity a dis-
tance 5r away from its original position, we follow the re-
cipe described in Ref. 5. In that paper, it was pointed out
that moving a single impurity amounts to replacing one
of the two diffusons in the conductance fluctuations dia-
grams, I, by I" as shown in Fig. 5. The extra vertex in
Fig. 5 involves a new scattering potential different from
the one in formula (1) of I, through the quantity Z' as fol-
lows:

I"=I' ZN; ' (B') —A'(5r)A'( —5r)+ [—2A'(d)A'( —d)+ A'(d+5r)A'( —d —5r)+ A'(d —5r)A'( —d+5r)]
2Z

(13)

z is the number of nearest neighbors in the model lattice
describing the binary alloy of host and impurity atoms.
B' and A' have been defined in Ref. 6. A tedious but
straightforward calculation shows that B' and
A '(s) A '( —s), needed in (13), reduce to

(B') =Z [1+2MO(x)],
(14)

A'(s)A'( —s)=(B') Mo(k~s)
(we recall that x =k~d). Here s =

l s l
denotes the

Inodu1us of the argument appropriate to each one of the
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various A ' functions appearing in (13), equal to
+5r, +d, +~d+ 5r ~, + (d —5r ~. Mo(k~s ) is given by for-
mula (5) of I, but with kFs replacing x. One finally gets

been replaced by I". We will compute 6K in the presence
of impurity local ordering and compare it with the result
of Ref. 5, 5EFzs, obtained in the absence of impurity in-
teractionsI"=I A,

A=Z 'N, '(1 —Mo(y}+3,[Mo(x)[1—2MO(xy)]
5@i,Ls

=Ca(k~ 5r ),
C =(e /h) L (N;lo ) '(L/lo)

(21)

+R (x,y}]) a(k~ 5r) in (21), resulting from an angular average, de-
pends on dimensionality

=A(A, =O)+A, SA, (15)
a(kz 5r ) = 1 —Mo(k~ 5r), (22)

withy =kF 5r and

R (x,y) = g [Mo(kp Id+5rl )+MD(kp ld —5rl }] (16)
2z

we obtain the following partial results.
In three dimensions (3D), R reduces to

1

4xy
ln +Ci(2 ~x —y ~ )—Ci(2(x +y) )

x+y
x —y

(17)

where Ci is the integral cosine of the argument.
In 2D, R can be represented by an integral which is

well behaved and can be evaluated numerically, namely,

Jo(kF&Y )Rzo=- (1&)"- QY+ YQY— Y—dY

with Y+ =(d+5r); Jo is the Bessel function of the first

kind and index 0.
In 1D, R reads

R» =cos x cos y +sin x sin y

so that I" takes a very simple form,

I =(I' ) Z N; sin (k 5r)(1+/)

Now, let

5K =Kb —K, ,

(19)

(20)

where Kb, K, are the values of the sum of the diagrams in

Figs. 1, 3, and 4, respectively, before and after moving
one impurity a distance 5r away from its original posi-
tion; obviously Kb involves diagrams with two identical
diffusons I, while, in E„one of the two diffusons has

(r') I' 2(r') I I (23)

The factor 2 here is due to the fact that I" can replace ei-
ther one of the two diffusons I . I ' is given by (15).
Therefore, each one of the two series (E'"'+E' ') and
(rC'ib'+Sr'"'+re'"'+re'"'+re"') involves

where Mo was given in formula (5) of I, with x replaced
here by (kz 5r), with different forms depending on D [for
convenience, we recall that Mo(x)=sin(x)/x in 3D,
Jo(x) in 2D, cosx in 1D]. The contribution of Fig. 1(a) to
E, defined above, amounts to changing the two-diffuson
diagram into a three-diffuson one, by replacing one of the
I in Fig. 1(a) by I depicted in Fig. 5. This leads, in the
final q integral [like the one in (2)], to a (1/q ) depen-
dence instead of the (1/q ) dependence in the absence of
impurity interactions.

Now, we have to, not only consider Fig. 1(a), but we
must also collect the contributions of all the diagrams of
Figs. 1, 3, and 4, where we move one impurity a distance
5r away. This is done in two ways: either as in the case
of Ref. 5 by moving one impurity in one of the two
diffusons as in Fig. 5, thus yielding three-diffuson dia-
grams, with an ultimate (1/q ) divergence, as noted
above, or by moving that impurity which corresponds to
a single impurity line (the dotted line with a cross in Figs.
1, 3, and 4). In such a case, the corresponding diagrams
will still contain only two diffusons and will thus involve
only ( 1/q ) divergences, the two diffusons being
unaffected by the motion of the extra impurity.

Clearly, moving one impurity in one of the two
diffusons will yield the dominant contribution [due to the
resulting (1/q ) singularity] and we retain only these in
the following. Compared with the discussion in the
preceding section, instead of (r') I in (5), we have now
to deal with the modified quantity

2[( ') IrI"—[(r') I'I"]i o[2AMi(x)]] =2roI o([1+3A[Mi(x)—Mo(x)]][A(A.=O)+A5A] —2AMi(x)A(A, =O))

=&061 s— ([1—Mo(y)][1+A[M&(x) Mo(x)]]+A[ —Mo(x)+R(x, y)]) .

(2&)

In addition to (24) and (25}, the two series of diagrams contain, similarly to (7) and (9}, the numerical coefficients (—", )

and 4. Therefore, compared to 5KFzs [which involved only the diagram of Fig. 1(a), with one diffuson I replaced by I"
of Fig. 5, and A, =0], we have
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2( —", +4)
([1—M0(y}]+A [ [1—M0(y)][M, (x)—M0(x)] —M0(x)+R (x,y)] }

5+Ft.s —"[1 M0(y)]

With C given in (21) and a(y) =a(kF 5r ) of (22), we get

5K = ,'C(—a(kF 5r)+A [a(k& 5r)[Mf(k+d) —M0(k+d)] M—Q(kFd)+R (kFd, k+ 5r )] ) .

(26)

(27)

One checks that, for 5r =0, 5' vanishes as it should.
Note that, in 1D, MC takes the simple form

(5E),n =', C—sin (kF 5r)[1—2A, cos(2kFd) ]

with the interesting consequences that, for k= —,',

(5K),n ~ sin (kF 5r) sin (kid),

and when A, = —
—,',

(5E),n ~ sin (kF 5r) cos (kFd) .

(28)

In either cases, (5K),n oscillates, separately, with (kFd)
and (kF 5r) and vanishes for certain values of these argu-
ments.

In 2D and 3D, as 5r~ao, while MCF&s —+C, we find

here that

tance fluctuations of Sec. II of the present paper. In this
case, using the terminology of the renormalization group
(see I for details), interactions between the impurities
should lead to the change of the conductance fixed point,
as compared to the independent impurity case. This, in
turn, would show up in the breakdown of the universal
character of the conductance fluctuations. Our results,
valid to first order in A, , allow us only to demonstrate the
tendency towards the breakdown of this universal charac-
ter. Evaluating the integral in (2), one has

Var(g)-(4 —D) [1—(10/L) ], (30}

where, for L &&l0, the second term is negligible and one

gets the universal result of the independent impurity
model. In the presence of impurity interactions, la in (30)

is replaced by 1', and (30) now becomes

(5E)zn 3n~C [1+A [M ) (kFd) —2MQ(kFd) ] ] Var(g) -(4—D) '[1 (I'/L) —] . (31)

as 5r~~ . (29)

Therefore, in contrast to the results of the previous sec-
tion, where the impurity interaction effects canceled out
(to first order in A, ), here they give a nonvanishing contri-
bution when one impurity is moved away. As a conse-
quence, in particular in 2D, moving a single impurity
does not induce the same conductance fluctuations as
those resulting from the changing of the entire sample, as
found in Ref. 5. The fluctuations which are induced de-
pend on dimensionality and the degree of electronic dis-
order. Such modifications should be kept in mind when
extending the theory to high temperatures to explore
(1/f)-noise phenomena, as suggested in Ref. 5.

IV. DISCUSSION

In this work similarly to I, we only compute the effect
of impurity interactions to first order in A., i.e., to the
lowest order in the impurity local ordering. In that
sense, we can understand that the impurity interactions
disappear in the results of Sec. II (except for the upper
cutoff in q), while they play a role in Sec. III. Indeed
when only a small amount of impurity local ordering is
involved, the overall conductance fluctuations may
remain unaffected. In contrast, when one moves a single
impurity a distance 5r away, one probes a local effect
and, there, even a tiny amount of impurity local ordering
will be significant.

%e expect, on physical grounds —although we cannot
prove it mathematically at this point —higher-order con-
tributions in A, (i.e., a larger amount of local ordering be-
tween the impurities), to show up in the localization con-
tribution to the conductivity of I as well as in the conduc-

According to (11), for A, &0, I'& la. Therefore the second

term within the square brackets in (31) increases, upon

increasing A, , and may become comparable to the first

term, while the corresponding term in (30) remains small

compared to the first one.
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APPENDIX

In this appendix, we show that displacing a single im-

purity by 5r is equivalent to introducing a modified
scattering potential given by (12). The diagrams in Figs.
1, 3, and 4, involve, each one of them, two bubbles which
correspond to conductivities with different impurity
configurations. In particular, for the electron-impurity
interaction in one of the bubbles, one takes

U(r)=U0 g 5(r —R;)+U05(r —R, —5r) .
1 (wj)

(A2}

U(r)= U0 +5(r—R;) .
i=1

Here R; and UQ stand, respectively, for the position vec-

tor and the strength of the scattering potential in the ab-

sence of interactions between the impurities. In the other
bubble
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Here 5r is a fixed vector, whereas Rk are independent
random variables which can take any value within the
volume of the system, with probability L . In calculat-
ing the diagrams in Figs. 1, 3, and 4, one needs
(U(r)U(r)) —(U(r)U(r)), where ( ) denotes the aver-
age with respect to the probability distribution of the R
(this means integration with respect to the Rk with the
constant weight L for each value of k =1,2, . . . , N;).
Since

( U(k) )
= Re d (r —r)e

1

N;

X [(U(r) U(r) ) —( U(r) U(r) ) ]

U'2

[N, (N—; —1+Ree'" ') ] .
I

(A4)

( U(r) U(r) ]=Z [5(r—r)+(N, —I )/2]

by choosing appropriately the zero of the potential, the
constant term in (A3) can be discarded. Performing an
analogous calculation for ( U(r) U(r) ), upon Fourier
transformation, we obtain

This result is equivalent to expression (12b) given in the
text with k—:(p' —p). This derivation also shows that the
extra vertex [yielding (12b)] should not affect the indivi-
dual Green's functions involved in the bubbles of Figs. 1,
3, and 4; it acts only between the bubbles (as shown in
Fig. 5), contrary to what was assumed in Ref. 9.
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