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Scattering of a scalar beam from a two-dimensional randomly rough hard wall:
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%e have calculated numerically the scattering of a scalar beam incident normally on a large-
amplitude, large-rms-slope, two-dimensional, randomly rough, hard wall (Dirichlet boundary condi-

tion). Our result is equivalent to a fourth-order KirchhoÃ approximation, and displays a well-defined

peak in the retroreflection direction in the angular dependence of the intensity of the waves scattered
incoherently.

(g(R)) =0,
(((R)('(R')) =o exp[ —(R —R') /a ]. (2)

The angle brackets in these equations denote an average
over the ensemble of realizations of the surface profile, e
is the rms height of the surface, and a is the transverse
correlation length of the surface roughness.

The field in the vacuum region y(r) is given by the
Helmholtz-Kirchhoff theorem ' together with the Dirich-

Enhanced backscattering in the scattering of classical
waves by a randomly rough surface is manifested by a
well-defined peak in the retroreflection direction in the an-
gular dependence of the intensity of the diffuse component
of the scattered waves. In the great majority of the
theoretical studies of this effect to date the random sur-
faces involved have been one dimensional. ' ' In the
comparatively few studies of enhanced backscattering (of
light) from two-dimensional random surfaces, whether by
perturbation theory' or by numerical simulation meth-
ods, 's'9 in which the effect was treated as a multiple-
scattering phenomenon, the surfaces involved were very
weakly corrugated, and supported surface electromagnetic
waves (SEW). The mechanism responsible for
enhanced backscattering in this case is the coherent in-
terference of each multiply scattered light plus SEW path
with its time-reversed partner.

In this paper we study the scattering of a scalar beam
from a large rms slope, two-dimensional, randomly rough,
hard wall (Dirichlet boundary condition). The method of
calculation employed is based on writing the integral
equation for the normal derivative of the total field on the
random surface, in terms of which the scattered field is ex-
pressed, in the form of an inhomogeneous Fredholm equa-
tion of the second kind, and solving the latter by iteration.
The results obtained are applicable to the elastic scatter-
ing of neutral atoms from a randomly rough surface, if the
length scales of the roughness are comparable to the de
Broglie wavelength of the atoms, and to the scattering of
acoustic waves from a pressure-release surface

The system we consider consists of vacuum in the re-
gion z & ((R), where R=(x,y), and an impenetrable
medium in the region z & ((R). The surface profile func-
tion g(R) is assumed to be a stationary, Gaussian process,
defined by the properties

let boundary condition,

y(r) y~, (r) —
~ d S'G(r,r'), , z & ((R),I I' 2, , By(r')

(3)

where y;„(r) is the incident field, B/Bn is the derivative
along the normal to the surface directed into the vacuum
region, and the integration is over the random surface
z' ((R'). G(r, r') is a Green's function that obeys the
equation

[V +(to/c) ]G(r,r') = —4trB(r —r'), (4)

where ro is the angular frequency of the field, and c is its
speed. [In the case of the scattering of a particle of mass
m from the impenetrable medium, (to/c) is given by
2mE/It, where E(&0) is the energy of the particle. ]
The real-space representation of G(r, r') is

I'(CO/C) ) r —r'(

G(r, r')- (s)
)r —r'[

The scattered field is given by the second term on the
right-hand side of Eq. (3). In order to evaluate it we need
to know the normal derivative of the total field on the sur-
face. To obtain the equation satisfied by this quantity we
note that for points below the surface we have the extinc-
tion theorem,

0 y;„(r) — d S'G(r,r'), , z & ((R).l
' z, , By(r')

4n ' Bn'

By(r) By;„(r)
Bn Bn

l P d2S, BG(r,r') By«')
2tr " Bn Bn'

(7)

where P denotes the principal part, and the limit e 0+
has been taken.

To solve Eq. (7) we first replaced integration over the
random surface by integration over the xy plane with the

If we evaluate the normal derivative of Eq. (3) at
z g(R)+e, evaluate the normal derivative of Eq. (6) at
z =g(R) —e, where e is a positive infinitesimal, and add
the resulting two equations, we obtain the equation for
By(r)/Bn on the surface z =((R),2'
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aid of the relation

d 2g —[I + (Vg) 2] I/2 d 2R

We then limited the integration to the region L/—2 & x,
y & L/2, which is much larger than the illuminated area,
and discretized it to obtain a matrix equation,

By(r)
2

Byron(r)

Bn Bn

L 2

[I + [V((R') ] 'j '/'2' R'(~R)

BG(r,r') By(r')
Bn Bn'

(9)

where N&&N is the number of points within the region
—L/2&x, y &L/2. Equation (9) can be solved by a
linear-system-solver algorithm, which requires JV com-
puter operations, or by iteration, which requires N opera-
tions times the number of iterations. In the present calcu-
lations N was chosen to be 64. Consequently, the former
approach would have been very expensive computational-
ly. We therefore used the latter approach. An additional
advantage of the iterative method is that the nth term in

the resulting expansion for By(r)/Bn on the surface de-
scribes an n-fold scattering of the field from the surface.
We can therefore examine the contribution to the differ-
ential reflection coefficient from single-, double-, etc. ,
scattering processes individually.

Once By(r)/Bn on the surface has been found we used
Eq. (3) to obtain the scattered field, which can be written
as

(r) gg(K)eiK ReiPz

K
(10)

Here K and p are the components of the wave vector of
the scattered wave parallel and perpendicular to the mean
surface z 0, respectively (K +p =co /c ).

To obtain the differential reflection coefficient, we write
the scattered flux crossing a horizontal plane as

By„(r)j„—Im d R y,,(r)
m 4 Bz

L' —d KplA(K)l

f

d fl —p'(~(K) I'
m 2n

f

BR h 2 L
80 incoh m 2x

N P
& jin

x [(]a(K) ) ) —)(A (K)) ( ], (i 2)

where d0 is the element of solid angle and we have used
the result that K = (co/c)sin8, where the scattering angle 8
is measured from the normal to the mean surface. The
contribution to the ensemble-averaged differential reflec-
tion coefficient from the field scattered incoherently is ob-
tained by normalizing the integrand in Eq. (11}by the in-
cident flux j;„,and is

j;„—W d Kpexp[ —(K —Ko) W l.
m 4 K (co/c

(is)

We have carried out calculations of (BR/80);„„h using
three iterations in the solution of Eq. (9), which corre-
sponds to including quadruple-scattering processes. We
generated 100 random surfaces possessing the properties
(1) and (2) by an extension to two-dimensional surfaces
of the method of Garcia and Stoll. z The scattered field
was obtained for each surface, and the averages in Eqs.
(12) computed. The surface roughness was characterized
by the parameters a 2X and cr k, where k is the wave-
length of the incident beam. The parameters of the in-
cident field were W=2X and Ko=0 (normal incidence).
In solving Eq. (9) we used a square grid with 64 points per
side and L =16k,. The results for in-plane scattering are
shown in Fig. 1, where the contributions from the pure n-
fold scattering processes are plotted for n =1, 2, 3, 4, to-
gether with the total. Two sets of displayed data are the
results as they came from the computer [Fig. 1(a)] and
the results obtained from the latter by averaging the
values for the scattering angles 8 and —8 [Fig. 1(b)].
These two sets of results are not seen to differ signifi-
cantly. They show that the dominant contribution to
(BR/80);„„h is from the double-scattering process. We
also see a well-defined peak in the retroreflection direction
in the double-scattering contribution, a weaker and
broader peak in the triple-scattering contribution, but no

where the second term is the contribution from the field
scattered coherently. For the incident field we used a sum
of plane waves with a Gaussian weight function,

2xW
y;, (r) =

2
ge'" e '"'exp[ —(K —Ko) W /2],
K

(13)

where the sum is over the region ) K) ~ co/c. For W&& c/co
we can obtain an approximate analytic expression for
y;„(r) by expanding p in a Taylor series for K around Ko
and keeping terms to first order in (K —Ko). The result is
an incident beam which at the mean surface z =0 is a
plane wave modulated by a Gaussian envelope of half-
width W centered at R =0. The area of the beam spot is
=xW, and as long as the area of the plane z =0 covered
by the random surface, L, is much larger than irWz we
can restrict the integration in Eq. (7) to the region—L/2 & x, y & L/2, as we have done in obtaining Eq. (9).
However, rather than using this approximate analytic ex-
pression, which is valid only for large W, we used Eq. (13)
and evaluated the sum numerically. Although it takes
more computer time, this way of evaluating y;„(r) enables
us to use an incident field with an arbitrary spot size. This
is important because for a fixed L we can choose W to
satisfy the condition xW &(L, while to use the approxi-
mate analytic expression we need also to satisfy the condi-
tion W»c/co, which in many cases cannot be done.

The total incident flux crossing a horizontal plane is

j;„—Im d R y;„(r)
By;„(r)

(i4)
m 4 Bz

On substituting Eq. (13) into Eq. (14), we obtain
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FIG. 1. The contribution to the mean differential reflection
coeScient from the incoherent component of the scattered Aeld,
with the contributions from the individual scattering processes
indicated. (a) Unsymmetrized results; (b) symmetrized results.

peak in the single- and quadruple-scattering contribu-
tions. The large angular width of the enhanced back-
scattering peak is due to the spread in K of our incident
beam. For the case under consideration the spread corre-
sponds to an angular width of 9'. Subsidiary maxima are
also seen on both sides of this peak. However, the present
results do not confirm their existence because their ampli-
tudes are within the statistical fluctuations of our results.

In summary, we have carried out a multiple-scattering

calculation of the interaction of a scalar beam with a
two-dimensional, randomly rough hard wall. The results
predict enhanced backscattering, and suggest the presence
of subsidiary maxima in the differential scattering cross
section. The mechanism responsible for both features is
believed to be the coherent interference of each multiply
scattered beam path with its time-reversed partner. In
this context the absence of a peak in the backscattering
direction in the quadruple-scattering contribution to the
mean differential reflection coefficient is of interest since
such a peak is expected in the contribution from each n
fold scattering process for n~ 2. However, from our re-
sults it seems as if the width of the enhanced backscatter-
ing peak increases with the order of the scattering process,
so that its width in the case of quadruple scattering could
be great enough for it to be indistinguishable from the

background.
The two ingredients in the present calculation that have

contributed to its success are the use of a narrow incident
beam, made possible by the use of Eq. (13), and the use of
an iterative approach to the solution of Eq. (9), which
made it possible to solve the large (4096X4096) matrix
equations involved with a reasonable expenditure of com-
puter time. However, it should be noted that although the
results presented in Fig. 1 show that the contributions to
the mean differential reflection coefficient from the suc-
cessive terms in the iterative solution of Eq. (9) are mono-
tonically decreasing past the double-scattering contribu-
tion, we have not addressed the question of the conver-
gence of the iterative expansion. That is left to subse-
quent work. Nevertheless, the results presented here indi-
cate that the approach used here is a viable one for the
study of the scattering of a scalar beam from a large-
rms-height and large-rms-slope, two-dimensional, random
hard wall.
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