PHYSICAL REVIEW B

VOLUME 45, NUMBER 7

Effect of long-range potential fluctuations on scaling in the integer quantum Hall effect

H. P. Wei,* S. Y. Lin, and D. C. Tsui

Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544

A. M. M. Pruisken

Institute for Theoretical Physics, University of Amsterdam, The Netherlands (Received 1 July 1991; revised manuscript received 5 December 1991)

We report a set of transport data taken in two low-mobility $GaAs/Al_xGa_{1-x}As$ heterostructures. When T > 200 mK, we find that the T dependence of $(d\rho_{xy}/dB)^{max}$ behaves differently in different Landau levels, whereas when T < 200 mK, it behaves like $T^{-0.42}$ as reported by Wei *et al.* [Phys. Rev. Lett. **61**, 1294 (1988)]. The characteristic T(=200 mK) for observing the critical behavior is much lower than that of previous observations in the $In_xGa_{1-x}As/InP$ heterostructure. This lowering of T for scaling is attributed to the dominance of long-range potential fluctuations due to the remote ionized impurities in the $Al_xGa_{1-x}As$.

The appearance of the integer quantum Hall effect (IQHE) in a two-dimensional electron gas (2DEG) in high magnetic fields (B) at low temperatures (T) indicates that the electronic states are localized except at some singular energies, where they are delocalized.¹ The transition of the electronic states at the Fermi level (E_F) from localized to delocalized states, when B is swept through adjacent quantum Hall plateaus, has been found to exhibit scaling behavior.^{2,3} In particular, in an $In_xGa_{1-x}As/InP$ heterostructure, the T dependence of the peak of the derivative of the Hall resistance ρ_{xy} with respect to B [$(d\rho_{xv}/dB)^{max}$] diverges like $T^{-\kappa}$ ($\kappa = 0.42$), independent of Landau levels, when T < 4.2 K. This result is a direct consequence of the scaling theory of Pruisken.⁴ Basically, the scaling behavior is due to the quantum interference of electrons in a disordered medium. At finite T, the inelastic scattering length (l_{in}) is the largest length scale within which the quantum interference makes sense, and therefore is the effective sample size.⁵ The scaling theory of the IQHE (Refs. 6 and 7) assumes the existence of uncorrelated, δ -function-like potential fluctuations. This is realized in $In_xGa_{1-x}As/InP$ heterostructures where the correlation length of the random potential is approximately equal to the lattice constant. In this paper, we discuss the situation in GaAs/Al_xGa_{1-x}As heterostructures in which the potential fluctuations are long range.

In the GaAs/Al_xGa_{1-x}As samples that we have studied⁸ (all grown by molecular-beam epitaxy), we find that in most cases, the *T*-dependent behavior of $(d\rho_{xy}/dB)^{max}$ is sample and Landau-level dependent. A similar result is also reported in a recent paper by Koch *et al.*⁹ On the other hand, in two of our samples, we did find evidence that the $T^{-0.42}$ critical behavior is observed for T < 200mK. The first sample has an electron density n=1.9×10¹¹ cm⁻² and a mobility $\mu = 55000$ cm²/V s at 4.2 K. Figure 1 shows the transport coefficients ρ_{xx} and ρ_{xy} at 66 mK. There is no signature of the fractional quantum Hall effect that is observed in samples with higher mobility,¹⁰ thus the many-body effect is not relevant in this sample. The other sample has $n=2.1 \times 10^{11}$ cm⁻² and $\mu = 65000$ cm^2/Vs at 4.2 K. We find that the transport properties in these two samples are the same in all respects. Therefore, we will present the data from the first sample only.

In Fig. 2 we plot the T dependent $(d\rho_{xy}/dB)^{\max}$ for 30 mK < T < 4.2 K in three Landau levels. There are four different symbols in each curve representing data taken from four different runs. We notice that for T > 200 mK, $(d\rho_{xy}/dB)^{\max}$ behave differently in each Landau level. However, they behave more or less the same for T < 200 mK. The straight line on top of this figure is drawn for reference purpose. It has a slope of 0.42 on this loglog plot. The data suggest that for T < -200 mK, $(d\rho_{xy}/dB)^{\max}$ has a power-law dependence, $T^{-\kappa}$, independent of Landau levels. The exponent $\kappa = 0.42$, the same as that reported previously in the In_xGa_{1-x}As/InP sample.²

The main difference from the previous $In_xGa_{1-x}As/$ InP results is the value of $T_{\rm sc}$, which is the T where the $T^{-0.42}$ power-law behavior starts to appear ($T_{\rm sc} \sim 200$ mK in the present sample and ~ 4 K in the $In_xGa_{1-x}As/InP$ sample of Ref. 2). We find that T_{sc} in the GaAs/Al_xGa_{1-x}As sample is substantially lower than T, where the conductivity peak $(\sigma_{xx}^{\text{max}})$ has a maximum (see Fig. 3) and which equals about 1 K. We emphasize that the latter T is solely an effect of the thermal width of the Fermi-Dirac distribution, ^{2,3} and in $In_xGa_{1-x}As/InP$ it equals T_{sc} . Experimentally, transport coefficients are obtained by measuring a voltage across two contacts which are typically a millimeter apart. This procedure is viewed as an average over the macroscopic sample composed of a large number of microscopic effective samples, each with a size of l_{in} . The observation of much lower T_{sc} in the GaAs/Al_xGa_{1-x}As sample is an indication of the presence of long-range potential fluctuations. More specifically, the lack of the power-law behavior in the range of T from 1 K to 200 mK is mainly a result of l_{in} not being much larger than the distance over which the potential fluctuations are correlated.

The qualitative difference in the potential distributions in the $In_xGa_{1-x}As/InP$ and the $GaAs/Al_xGa_{1-x}As$ heterostructures is also obvious from the metallurgy of the

<u>45</u> 3926

EFFECT OF LONG-RANGE POTENTIAL FLUCTUATIONS ON

FIG. 1. Magneto-transport coefficients ρ_{xx} and ρ_{xy} vs B at T = 66 mK in a GaAs/Al_xGa_{1-x}As heterostructure. $N = 1\downarrow, 1\uparrow$, and $0\downarrow$ are the indexes for spin (\downarrow,\uparrow) split Landau levels, in which the E_F resides when B is swept through adjacent quantum Hall plateaus.

sample. Since the 2DEG in the $In_xGa_{1-x}As/InP$ heterostructure is in the $In_xGa_{1-x}As$ layer, which is an alloy,¹¹ the potential fluctuations are therefore short ranged compared to the cyclotron radius (typically 100 Å) and hence to l_{in} . On the other hand, the 2DEG in the GaAs/ $Al_xGa_{1-x}As$ heterostructures is in the GaAs layer, and it is well known that the dominant scattering mechanism at low T is the remote ionized impurities away from the 2DEG layer.^{12,13} One should then expect smooth, longrange potential fluctuations.¹⁴ The dominance of long-

FIG. 2. T dependence of $(d\rho_{xy}/dB)^{\text{max}}$ for three Landau levels, $N=1\downarrow$, $1\uparrow$, and $0\downarrow$. The solid line is drawn for reference purpose and has a slope of 0.42.

range potential fluctuations lowers the T, below which scaling starts and complicates the observability of the critical phenomenon. Given the T available to the experiment, our data is quite limited compared to that of our previous work on $In_xGa_{1-x}As/InP$, in which case the critical behavior in $d\rho_{xy}/dB$, $(\Delta B)^{-1}$, $d^2\rho_{xx}/dB^2$, and $d^3\rho_{xy}/dB^3$ are well established in more than two decades in T.³

Another striking difference may be found in the spin (\downarrow,\uparrow) dependence of σ_{xx}^{max} corresponding to the $N=1\uparrow$ and $1\downarrow$ Landau levels for T less than ~ 1 K in Fig. 3. They are not equal as in the case of the $\ln_x \text{Ga}_{1-x} \text{As/InP}$ sample. Although there is a clear tendency toward the $T^{-0.42}$ critical behavior in $(d\rho_{xy}/dB)^{max}$ at low T, the ori-

FIG. 3. σ_{xx}^{max} as a function of T for three Landau levels, $N = 1\downarrow, 1\uparrow, and 0\downarrow$.

3928

<u>45</u>

gin of this effect, not relevant to scaling, is not understood at present.

In summary, we may say that the critical behavior in the metal-insulator transition in the IQHE is severely affected by the long-range nature of the potential fluctuations in the GaAs/Al_xGa_{1-x}As samples, in contrast to the short-range random alloy potential in the In_xGa_{1-x}As/ InP samples. The dominance of long-range potential fluctuations lowers the T below which the scaling becomes observable. In two of our samples, scaling and the related critical behavior are observed for T less than 200 mK. We conclude from this observation that the apparent lack of scaling in most of our GaAs/Al_xGa_{1-x}As samples is due to crossover effects, which are dependent on the microscopic details of the sample, and much lower T will be needed to observe scaling in these samples.

Note added. While this paper was being reviewed, we

- *Present address: Department of Physics, University of Maryland, College Park, MD 20742.
- ¹M. A. Paalanen, D. C. Tsui, and A. C. Gossard, Phys. Rev. B 25, 5566 (1982).
- ²H. P. Wei, D. C. Tsui, M. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. **61**, 1294 (1988).
- ³H. P. Wei, S. W. Hwang, D. C. Tsui, and A. M. M. Pruisken, Surf. Sci. **229**, 30 (1990).
- ⁴A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988).
- ⁵D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).
- ⁶A. M. M. Pruisken, Phys. Rev. B 32, 2636 (1985), and references therein.
- ⁷A. M. M. Pruisken, in *The Quantum Hall Effect*, edited by R. Prange and S. Girvin, Springer Physics Lecture Series

became aware of the recent work by Koch *et al.* [Phys. Rev. Lett. **67**, 833 (1991)], who found that the temperature exponent p for the inelastic scattering length $l_{in}(=T^{-p/2})$ depends on the quality of samples. Thus, they concluded that $\kappa(\sim p)$ is material dependent in the T range available in the laboratory. On the other hand, if l_{in} is due to electron-electron interaction at low T, it is likely that p should not depend on the details of disorder in the limit of very large sample size.

We are indebted to Dr. K. Alavi for the GaAs/ $Al_xGa_{1-x}As$ samples. This work is supported by the Office of Naval Research under Contract No. N00014-89-J-1567. One of us (A.M.M.P) acknowledges the support in part by the Dutch Science Foundation (FOM) and by NSF Grant No. DMR-8907580.

(Springer-Verlag, Berlin, 1986).

- ⁸H. P. Wei, S. Lin, D. C. Tsui, and K. Alavi, Bull. Am. Phys. Soc. 33, 665 (1988); H. Z. Zheng, H. P. Wei, and D. C. Tsui, *ibid.* 32, 892 (1987).
- ⁹S. Koch, R. J. Haug, K. v. Klitzing, and K. Ploog, Phys. Rev. B 43, 6828 (1991).
- ¹⁰D. C. Tsui, H. L. Störmer, and A. C. Gossard, Phys. Rev. Lett. 48, 1599 (1982).
- ¹¹G. Bastard, Appl. Phys. Lett. 43, 591 (1983).
- ¹²C. Jiang, D. C. Tsui, and G. Weimann, Appl. Phys. Lett. 53, 1533 (1988).
- ¹³A. L. Efros, Solid State Commun. **65**, 1281 (1988); A. Gold, Appl. Phys. Lett. **54**, 2100 (1989).
- ¹⁴J. A. Davis and J. A. Nixon, Phys. Rev. B 39, 3423 (1989).