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Eff'ect of long-range potential fluctuations on scaling in the integer quantum Hall eff'ect
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We report a set of transport data taken in two low-mobility GaAs/AI, Ga~ —„As heterostructures.
When T) 200 mK, we find that the T dependence of (dp,~/dB) '" behaves differently in different

Landau levels, whereas when T (200 mK, it behaves like T as reported by Wei et al. IPhys. Rev.
Lett. 61, 1294 (1988)l. The characteristic T(=200 mK) for observing the critical behavior is much

lower than that of previous observations in the In, Ga~ —„As/InP heterostructure. This lowering of T
for scaling is attributed to the dominance of long-range potential fluctuations due to the remote ion-

ized impurities in the AI, Gal-„As.

The appearance of the integer quantum Hall effect
(IQHE) in a two-dimensional electron gas (2DEG) in
high magnetic fields (8) at low temperatures (T) indi-
cates that the electronic states are localized except at
some singular energies, where they are delocalized. ' The
transition of the electronic states at the Fermi level (EF)
from localized to delocalized states, when 8 is swept
through adjacent quantum Hall plateaus, has been found
to exhibit scaling behavior. ' In particular, in an
In„Ga~ —„As/InP heterostructure, the T dependence of
the peak of the derivative of the Hall resistance p„y with
respect to 8 t(dp„,,/d8) '"j diverges like T " (tr=0.42),
independent of Landau levels, when T &4.2 K. This re-
sult is a direct consequence of the scaling theory of Pruisk-
en. Basically, the scaling behavior is due to the quantum
interference of electrons in a disordered medium. At
finite T, the inelastic scattering length (l;„) is the largest
length scale within which the quantum interference makes
sense, and therefore is the effective sample size. The
scaling theory of the IQHE (Refs. 6 and 7) assumes the
existence of uncorrelated, &function-like potential fluc-
tuations. This is realized in In„Ga~ —,As/InP heterostruc-
tures where the correlation length of the random potential
is approximately equal to the lattice constant. In this pa-
per, we discuss the situation in GaAs/AI„Ga~-„As het-
erostructures in which the potential fluctuations are long
range.

In the GaAs/AI„Ga~-„As samples that we have stud-
ied (all grown by molecular-beam epitaxy), we find that
in most cases, the T-dependent behavior of (dp„r/dB)
is sample and Landau-level dependent. A similar result is
also reported in a recent paper by Koch et al. On the
other hand, in two of our samples, we did find evidence
that the T critical behavior is observed for T & 200
mK. The first sample has an electron density n=1.9
x10" cm and a mobility p =55000 cm /Vs at 4.2 K.
Figure I shows the transport coefficients p~ and p,~ at 66
mK. There is no signature of the fractional quantum Hall
eAect that is observed in samples with higher mobility, '

thus the many-body eAect is not relevant in this sample.
The other sample has n =2.1&10'' cm and p =65000

cm /Vs at 4.2 K. We find that the transport properties in

these two samples are the same in all respects. Therefore,
we will present the data from the first sample only.

In Fig. 2 we plot the T dependent (dp„y/dB) '" for 30
mK& T &4.2 K in three Landau levels. There are four
different symbols in each curve representing data taken
from four different runs. We notice that for T & 200 mK,
(dp„r/d8) '" behave differently in each Landau level.
However, they behave more or less the same for T & 200
mK. The straight line on top of this figure is drawn for
reference purpose. It has a slope of 0.42 on this log-
log plot. The data suggest that for T(-200 mK,
(dp, /dB) "'" has a power-law dependence, T ", in-

dependent of Landau levels. The exponent x 0.42, the
same as that reported previously in the In, Ga~-„As/InP
sample.

The main difference from the previous In„Ga~-„As/
InP results is the value of T„, which is the T where the
T " power-law behavior starts to appear (T„-200
rn K in the present sample and -4 K in the
In„Ga~ —„As/InP sample of Ref. 2). We find that T„ in

the GaAs/AI„Ga~ -„As sample is substantially lower than

T, where the conductivity peak (cr,„'") has a maximum
(see Fig. 3) and which equals about I K. We emphasize
that the latter T is solely an effect of the thermal width of
the Fermi-Dirac distribution, and in In„Ga~ —,As/InP
it equals T„. Experimentally, transport coefficients are
obtained by measuring a voltage across two contacts
which are typically a millimeter apart. This procedure is
viewed as an average over the macroscopic sample corn-
posed of a large number of microscopic effective samples,
each with a size of I;„. The observation of much lower T„
in the GaAs/AI„Ga~ „As sample is an indication of the
presence of long-range potential fluctuations. More
specifically, the lack of the power-law behavior in the
range of T from 1 K to 200 mK is mainly a result of I;„
not being much larger than the distance over which the
potential fluctuations are correlated.

The qualitative diA'erence in the potential distributions
in the In Ga~ — As/InP and the GaAs/Al Ga~ —,As het-
erostructures is also obvious from the metallurgy of the
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FIG. l. Magneto-transport coefficients p„and p„„vs B at T 66 mK in a GaAs/Al Ga~-„As heterostructure. N 1 l, I I, and Ol

are the indexes for spin (I, I) split Landau levels, in which the EF resides when B is swept through adjacent quantum Hall Pla«aus.

sample. Since the 2DEG in the In„Ga~ —„As/InP hetero-
structure is in the In, Ga&,As layer, which is an alloy, "
the potential fluctuations are therefore short ranged com-
pared to the cyclotron radius (typically 100 A) and hence
to I;„On th.e other hand, the 2DEG in the GaAs/
Al, Ga~, As heterostructures is in the GaAs layer, and it
is well known that the dominant scattering mechanism at
low T is the remote ionized impurities away from the
2DEG layer. '~'3 One should then expect smooth, long-
range potential fluctuations. ' The dominance of long-

)p6

range potential fluctuations lowers the T, below which
scaling starts and complicates the observability of the crit-
ical phenomenon. Given the T available to the experi-
ment, our data is quite limited compared to that of our
previous work on In, Ga~, As/InP, in which case the crit-
ical behavior in dp, r/dB, (hB) ', d p„„/dB, and
d p,J/dB are well established in more than two decades
ln T.

Another striking difference may be found in the spin
(j, t) dependence of a„„'"corresponding to the N I f
and 1J Landau levels for T less than —1 K in Fig. 3.
They are not equal as in the case of the In„Ga~ -„As/InP
sample. Although there is a clear tendency toward the
T critical behavior in (dp„~/dB) '" at low T, the ori-
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FIG. 2. T dependence of (dp ~/dB) ""for three Landau lev-'
els, N 1 l, I I, and Ol. The solid line is drawn for reference
purpose and has a slope of 0.42.
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FIG. 3. a„"" as a function of T for three Landau levels,
N I l, 1 I, and OJ.
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gin of this effect, not relevant to scaling, is not understood
at present.

In summary, we may say that the critical behavior in

the metal-insulator transition in the IQHE is severely
affected by the long-range nature of the potential fluctua-
tions in the GaAs/Al„Ga~ „As samples, in contrast to the
short-range random alloy potential in the In„Ga~,As/
InP samples. The dominance of long-range potential fluc-
tuations lowers the T below which the scaling becomes ob-
servable. In two of our samples, scaling and the related
critical behavior are observed for T less than 200 mK.
We conclude from this observation that the apparent lack
of scaling in most of our GaAs/AI, Ga~ —,As samples is
due to crossover effects, which are dependent on the mi-

croscopic details of the sample, and much lower T will be
needed to observe scaling in these samples.

Note added. While this paper was being reviewed, we

became aware of the recent work by Koch et al. [Phys.
Rev. Lett. 67, 833 (1991)],who found that the temper-
ature exponent p for the inelastic scattering length
l;„( T "l ) depends on the quality of samples. Thus,
they concluded that «(-p) is material dependent in the
T range available in the laboratory. On the other hand, if
l;„ is due to electron-electron interaction at low T, it is

likely that p should not depend on the details of disorder
in the limit of very large sample size.
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