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Many-body effects in resonant tunneling through quantum dots
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We show that the resonance energies associated with tunneling through a typical semiconductor dot
depend strongly on quantum-mechanical many-body effects in the dot. These resonance energies cannot
be written as the sum of single-particle confinement energies and constant Coulomb charging energies,
and the magnetic-field dependence of these resonance energies differs greatly from the single-electron re-
sult. The semiclassical description of Coulomb charging effects in terms of capacitances is shown to be
incorrect.

Recent measurements of transport through zero-
dimensional semiconductor structures (quantum dots)
have yielded current-voltage data with rich structure. '

The interpretation of such data is difficult since there are
many comparable energy scales in the problem, and the
quantum dot contains a varying number of electrons
when carrying a current. Typically the electron-electron
interaction between electrons in the dot, the single-
electron confinement energy, and the cyclotron energy
are all on the meV scale, and hence all these effects must
be included in a quantum-mechanical, many-electron
description of the system. Earlier work on larger dots
probed the regime where the confinement energy is much
smaller than the electrostatic energy. However, atten-
tion has recently turned to the regime in which energy
quantization and charging effects in the dot are of equal
importance. ' In attempting to interpret such data, '

it is often assumed that the resonance energies can be de-
scribed by the sum of single-particle confinement energies
and constant Coulomb charging energies. More sophisti-
cated theories have included Hubbard-like terms to de-
scribe the electron-electron interaction in the dot. '

Such constant Coulomb terms do not, however, take into
account the dependence of the Coulomb repulsion on the
separation of electrons in the dot. In this paper, we use
exact results from an analytically solvable model of in-
teracting electrons in a quantum dot ' to show the fol-
lowing for a typical semiconductor dot: (i) the quantum-
mechanical many-body effects dramatically alter the reso-
nant tunneling energies; (ii) the magnetic-field depen-
dence of these resonance energies differs significantly
from the single-electron result; (iii) the resonance energies
of the dot cannot be written as the sum of single-particle
confinement energies and constant, magnetic field-
independent, Coulomb charging energies; (iv) the semi-
classical description of Coulomb charging effects (e.g.,
Coulomb blockade, Coulomb staircase ) in terms of ca-
pacitances is incorrect.

We consider a quantum dot coupled to leads on each
side. The dot will act as a scattering center for electrons

and the quasibound states (resonances) of the dot are ex-
pected to give rise to features in the current-voltage
characteristic. Our model Hamiltonian for an isolated,
quasi-two-dimensional' quantum dot in a perpendicu-
lar magnetic field 8 is
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The parabolic dot lies in the x-y plane and contains N in-
teracting electrons with effective mass m *, negative
charge —e, effective g factor g*, spatial coordinates
r;=(x;,y;), and spin components s;, along the z axis.
The quantity A; is the vector potential and pz is the
Bohr magneton. The interaction potential is given by

V(r;, rj)=2VO —
—,'m*0 ~r;

—r
~
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where Vo and 0 are positive parameters. The saturation
of V(r;, r ) for small electron separations models the
effect of the finite electron wave function spread along the
perpendicular (z) direction. With Vo = 10 meV and
fiQ=5. 6 meV, the model interaction shows similar be-
havior to a cutoff Coulomb interaction" for separations
between 0 and 350 A; the upper limit is of the order of
the electron-gas diameter in a typical GaAs dot with
fico0=15 meV. ' Different values of Vo and 0 will mod-
el dots of different sizes.

In order to tunnel through a dot that initially contains
N electrons, an electron in the emitter lead needs enough
energy to leave the lead and enter the dot, which then be-
comes an (5+ 1)-electron system. In this paper, we con-
centrate on the energy required to increase the number of
electrons in the dot although we will briefly describe the
effect of interaction between the dot and the leads and
other nearby conductors. Hence we first consider the
leads to be at infinity so that any rearrangement of the
electrons in them during the tunneling process has negli-
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gible effect on the energy levels of the dot (i.e., the dot is
isolated). Suppose the dot initially contains N electrons
(N=0, 1,2, .. . , ) in a particular eigenstate ~N;i) of H
with corresponding eigenvalue E (N; i). Consider an
(N + 1 }-th electron in the emitter lead with energy
Eo. Neglecting tunneling through virtual states, the
(N + 1)-th electron in the emitter can tunnel into the dot
when EO=E(N+1;j ) E(—N, i), where E(N+1;j) is an
eigenvalue corresponding to state ~N + 1;j ) of the quan-
tum dot with N+1 electrons. [For noninteracting elec-
trons, E(N+1;j} can be written in the form
E(N;i)+s(j) where e(j) is a single-particle energy of the
quantum dot. Hence Eo =E(j) and the resonant tunnel-
ing peaks occur at the single-particle levels of the quan-
tum dot as expected. ] In general, there are a multitude of
excited states ~IN+ I;j), and many possible decay pro-
cesses for the excited (N + 1)-electron dot system.

Here we focus on one particularly important tunneling
channel where the exact dot eigenstates IN;i ) and
~IN+I;j) have the additional property of being the
ground states for large magnetic field, the regime probed
experimentally in Ref. 1. Similar conclusions can also be
obtained from considering other tunneling channels. For
convenience we label these particular eigenstates ~N;i }
and

~
N + 1;j ) as Vo(N) and %0(N + I ). We shall briefiy

describe the variation of the energy of state %0(N). The
overall spin state of 40 is symmetric since the electron
spins are aligned parallel to the field. The corresponding
spatial state of %0(N) is antisymmetric and has a wave
function

g (x; iy; )e—xp
Nm 'coo(B) (X+Y)

X exp — g (x,"+y," )

i (j
where aP&(B) =coo+co, /4, Qo=coo(B) NQ; co, =—eB/
m'c, r;J =(x;J.,y;~ ) =r; —r~, and R=(X, Y) =(1/
N)g;r;. The energy of the state %0(N) is given by

E (N) =fi[coo(B)+—,
' (N —1)(N +2)QD

,'N(N —I+—4—a)co,]+N(N —1)VD (3)

with a=g*m'/4mo. Curve A in Fig. 1 shows the total
energy E(N) of state %0(N} as a function of magnetic
field (A'co, ) for N=5 interacting electrons in a GaAs dot
with fico0=15 meV. The behavior of E(N) can be under-
stood from the limiting cases shown by curves B—D in
Fig. 1. In the absence of the electron-electron interac-
tion, E(N) becomes a sum over single-particle energies,
and is given by (curve B)
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FIG. 1. Total energy E(N) (curve A) of N =5 electrons in a
GaAs dot (%coo=15 meV) in eigenstate %0(N), as a function of
magnetic field. Curves B, C, and D correspond to the energies
E~(N), Ec(N},and ED(N) defined by Eqs. (4)-(6), respectively.

In the absence of both the Pauli exclusion principle and
the electron-electron interaction, E(N) becomes (curve
D)

ED(N) =Nfi[coo(B) aco, ]—
which is obviously just five times the single-particle ener-
gy. Both ED(N) and Ec(N) increase with B field due to
increasing kinetic energy (wave-function shrinkage}. The
zero-field value of E~(N) is lower than that of Ec(N)
since the kinetic-energy cost due to the Pauli exclusion
principle is smaller than the electrostatic potential ener-
gy. The energies E(N) (curve A) and Eii(N) tend to the
values of Ec(N) and ED(N), respectively, at large fields,
since in this limit the fermion statistics of the particles
becomes less important. The potential energy due to the
electron-electron interaction, E (N) Eii(N), inc—reases by
50% from 105 meV at Ace, =0 to 160 meV at %co, =50
meV as a result of the reduction in the typical electron-
electron separation with increasing Ace, . Therefore the
total dot energy E(N) cannot be written as a sum of
single-particle energies [i.e., E~(N)] plus a constant
Coulomb charging energy. If we try to interpret a capac-
itance for the isolated dot (Cd„ ) by setting E(N) E~(N)—
equal to the classical charging energy (Ne) /2Cd„, we
obtain Cd«=(Ne) /[2[E(N) —Eii(N)]I which is a com-
plicated function of N and Ace„and does not correspond
to a classical capacitance.

Curve A in Fig. 2 shows the resonant tunneling energy
b, (N), defined as E(N + 1) E(N) minus the spin-u—p en-

ergy of the (N+1)-th electron, through a dot initially
containing N =5 electrons. The energy h(N) is given by

Ez(N) = [N(N + 1)coo(B)——,'N(N —1+4a)co, ]—. (4) b(N)= [N(N+3)(QO —Q )'—fi

In the absence of the Pauli exclusion principle, but retain-
ing the electron-electron interaction, E (N) becomes
(curve C)

E, (N) =fi[coo(B)+(N —1)QO aNru, ]+N(N——1)Vo .

(5)

—(N —1)(N +2)QO Neo, ]+2NVO . —

In the absence of the electron-electron interaction, A(N)
becomes (curve B)

h~(N) =fi[(N + 1)a)0(B)—,'Nco, ] . —
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FIG. 2. Resonance energy A(N) (curve A) for an incident
spin-up electron tunneling through a GaAs dot (fico0=15 meV)
containing N=5 electrons, as a function of magnetic 6eld.
Curves 8, C, and D correspond to the quantities b z(N), hz(N),
and b D(N) defined by Eqs. (8)-(10),respectively.

bn(N) =A'too(B) . (10)

The energy contribution due to the electron-electron in-
teraction h(N) b,s(N) increases —by 400%%uo from 14 meV
at Ace, =0 to 71 meV at fico, =50 meV. In addition
bs(N) decreases monotonically over this range while
A(N) (curve A) shows an overall increase. Therefore the
resonant tunneling energy b, (N) cannot be written as a
single-particle energy term [i.e., As(N)] plus a constant
Coulomb energy term.

In the special case when Q«(~, /N+~, /4N)'i, it
follows from Eqs. (3), (4), (7), and (8) that E (N)
=Es(N)+N(N —1)VO and b(N)=As(N)+2NVO. This

In the absence of the Pauli exclusion principle, but retain-
ing the electron-electron interaction, b (N) becomes
(curve C)

A, (N) =A' [N(QO —0 )'i —(N —1)QO]+2NVO . (9)

In the absence of both the Pauli exclusion principle and
the electron-electron interaction, h(N) becomes (curve
D)

separation into single-particle energies and Coulomb
terms is now reasonable since, for small 0, large cop or
large co„ the electron-electron interaction is nearly con-
stant ( =2 Vo) over the radius of the electron gas (cf. Hub-
bard model). In this limit, Cdo, =(Ne) /[2N(N —1)Vo]
which yields the constant value e /2Vp for large N. Set-
ting the Coulomb saturation energy 2Vp-e /a, where a
is the electron gas radius in the z direction, yields Cd„-a
for large N, which is the result expected for a classical,
spheroida1 conductor. However we stress that the ap-
proximation h(N) =b,s(N)+2NVO, which is that used in
Ref. 1 (2VO = U, where U is a constant Coulomb energy),
is generally invalid.

We now give a qualitative discussion of the effects of
nearby leads and gates. Quantitative details will depend
upon specific device design, and are beyond the scope of
this paper. To a first approximation, the total energy of
the isolated dot E(N) will decrease by (Ne) /2C, tr in the
presence of nearby conductors, where C,~ reflects the
change in capacitance of the isolated dot due to image
charges induced in the conductors. The classical N
dependence reflects the fact that the negative charges on
the dot are spatially separated from image charges in the
leads, and hence in contrast to the isolated dot, there is
no self-interaction term. The magnitude of the energy
(Ne) /2C, tr has been estimated to be smaller than E(N)
for typical semiconductor dots. However, as E(N) does
not have an N dependence, even for the special case
mentioned, the total dot energy is not proportional to N
and therefore cannot be described in terms of an effective
total capacitance. The semiclassical description of
Coulomb charging effects in terms of a total dot-lead ca-
pacitance is consequently incorrect. We note finally that
the proximity of leads and gates can also introduce a
complicated electric-field distribution at the dot, thus
perturbing the ¹lectron wave functions and energies.
However, a constant electric field merely shifts the origin
of the wave functions of a parabolic potential, hence only
the nonuniform contribution to the electric field over the
region of the dot can actually cause changes to the ener-
gies that we have evaluated in this work.
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