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Slave-boson mean-field theory for the negative-U Hubbard model
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We study the negative-U Hubbard model for arbitrary values of the attractive interaction U and

band filling by means of the slave-boson mean-field theory. We analyze both the normal and the

superconducting states. We show that for the superconducting state our approach gives results

similar to those obtained in the usual BCS mean field; only small renormalization of the bare

parameters are obtained for U of the order of the bandwidth W. The energy difFerence between the

normal and the superconducting states is maximum for U ~ W. This energy difFerence is a measure

of the superconducting critical temperature, which increases exponentially for small U and decreases

as 1/U for large U. We discuss briefly the pair-breaking excitations.

I. INTRODUCTION

The problem of the evolution of the superconducting
ground-state and elementary excitations from the weak
coupling to the Bose-condensation limit was addressed
some years ago by a number of authors. ' The discov-
ery of high-temperature superconductivity has triggered
a renewed interest in many aspects of superconductivity,
in particular this crossover from Cooper pairing to Bose
condensation.

Among the peculiarities of the high-T, materials, the
layered crystalline st, ructures, and the short, supercon-
ducting coherence length could be responsible for many
of the anomalous properties observed in these systems
regardless of the particular nsechanism leading to super-
conductivity,

The layered structures could lead to quasi-two-
dimensional behavior, while the short coherence length
seems to indicate that these systenis are in an interinedi-
ate regime between the BCS limit, where the size of the
Cooper pairs is much larger than the characteristic in-

terparticle distance and the Bose condensation of tightly
bound pairs.

At zero temperature the crossover from the weak-
to the strong-coupling limit, s has been analyzed in the
context of a BCS theory with a renormalized chemi-
cal potential and by using a variational ansat, z in two
dimensions.

In this work we study the single-band negat, ive-U Hub-
bard model using the slave-boson formulat, ion in t, he
saddle-point approximation to describe the supercon-
ductivity in a system with short, -range interactions.

It has been shown recently that this method applied
to the positive-U Hubbard model leads to quant, itative
agreement with quantum Monte Carlo results for the en-

ergy and some local observables. Although the repulsive
case has been extensively studied with the slave-boson
approach, for the attractive case the method has not
been used. We expect the method to be equally reliable
in both cases.

We find that the ground state evolves smoothly from

the weak- to the strong-coupling limits. The conden-
sation energy is maximum for the intermediate regime
leading to a maximum in the transition temperature.
We present results for the pair-breaking energy and the
renormalization of the bare parameters.

The rest of the paper is organized as follows: In Sec. II
we present the model and the approximation scheme, in

Sec. III we present the results, and Sec. IV includes a
summary and discussion.

II. SLAVE-BOSON APPROACH

Our starting point is the negative-U Hubbard model,
which in the usual notation reads

H = t) cI c, ——U) nant —p) n;, ,

where c; are annihilation operators of fermions at site
i with spin o. The hopping matrix element t connects
nearest neighbors only, and U (U ) 0) is the strength of
the local attractive interaction.

For the sake of clarity we found it convenient to per-
form a duality transformation that maps the attractive
case into the repulsive one. " Although this step is not
necessary, for the repulsive case we can take advan-
tage of the experience gained in previous studies. This
transformation is equivalent to an electron-hole trans-
formation for the spin-down particles: c;T ~ c;t and

c,l —e'& c, , where Q = (s, . . . ) and R, is the coordi-
nate of site i fhe transformed Ham. iltonian corresponds
to a repulsive Hubbard model with one particle per site
and an external magnetic field:

8 = t) cJ c~ +U)—n;ln 1

i,j,cr 2

U h--) n;. ——) (n, , n;, ), -

where the eA'ective field h = U+ 2p. The subspace of a
fixed number of particles n in the Hamiltonian of Eq. (1)
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corresponds to a fixed magnetization rn, = n —1 in the
representation of Eq. (2).

The superconducting order parameter of the Hamilto-
nian (1) 4 = (c,tc, l) corresponds to a staggered mag-

netization in the z-y plane of Hamiltonian (2)
(c,tc, l)e'~ '. The superconducting state is then ob-
tained as a state with stagger'ed magnet, lzatloll ill t, he 2;-y
plane and total magnetization m. , = n —1 along the .di-
rection. To obtain this state we add t,o the Hamiltonian
of Eq. (2) a constrain by means of' a Lagrange multiplier
A( ). The total Hamiltonian is given by

A()
Hs —H — ) [TI, (c,Tc;1 + c, lc, T )

—m ],

where zi changes the number of bosons at, site i and is

given by

1 —d- d' —p. pi

x(eJp,.+ pJ.d, )

ei ei pie &«t
(7)

The choice of the operator zi is not unique. The form
given in Eq. (7) guarantees that, , at a saddle-point level,
the U = 0 limit is well described. The operator yi in

Eq. (6) is given by

eie;+ p, tp;t + p, &p;~+ d;d; = 1 (4)

il7 i& pi 0'pi& + i

These constraints are introduced through Lagrange mul-
t, ipliers A ) and A(')

In terms of the auxiliary boson fields the Hamiltonian
are given by

H= t) z, c—, c z~~. +~U) d d; ——) (n T
—nl)

z

(o)
I'(y'T 'T 'ly l + y. l 'l 'Ty'T

(e e' + p Tp'T + p lp'l + d; d, —1)(i) t t t

t

—) Al T(cJ c, —pt p, —dJd;), (6

where s), = e' '. Once the eiiergy of the system
with this constraint is evaluated, it, is rniriimized with
respect to I . The normal phase is t, hen characterized
by m = 0, the superconduct, ing phase by m, g 0. The
magnetization m in the positive-V representation corre-
sponds to an oif-diagonal long-range order (ODLRO) of
the negative-U model.

In the slave-boson approach the partition function of
the system is written in a functional-integral form in
terms of four auxiliary boson fields: e;, p;~, and d;. Fol-
lowing Kotliar and Ruckenstein each boson is associate
with a given electronic configuration: empty (e;), single-
occupied (p, ) and double-occupied (d, ) states of Hamil-
tonian (3). Completeness relation and charge conserva-
tion give the following identities:

1 d' di pimp
t 1 —e e i —p; —pi(y

t

Here again, as in the case of the operator:, , we take
the representation of y;, which gives the exact result for
the uncorrelated state.

In the Hamiltonian of Eq. (6) the fermion variables ap-
pear in a bilinear form and can be integrated out, exa.ctly.
The boson variables are treated in the saddle-point a.p-
proximation. This approximation is equivalent, to replac-
ing the boson operators by numbers in Eq. (6). Clearly
in this type of approach the tei nis of the Hamilton ian
that contain products of fermion and boson operators
are treated in an approximated way. In particular, in the
present case, the kinetic energy and the pairing energy—
proportional to A( )—are evaluated at a mean-field level,
This way of treating the slave-boson fields presents a poor
approximation. In the large-U limit, the pairing energy
dominates, and it would be convenient to evaluate it in a
more rigorous way. To do so, we proceed in the following
way.

The Hamiltonian of Eq. (3) describes electrons in the
presence of an external magnetic field. This effective field
has a component along the z direction given by the chem-
ical potential p of the original Hamiltonian of Eq. (1) and
a staggered field in the z-y plane given by the pairing-
order parameter. We perform a rotation at each site of
the lattice such that the effective magnetic field induces
a magnet, ization along the z direction of the new coordi-
nates system. This corresponds to a rotation of an angle
0 (—0) along the z-z plane in sublattice A (B) After.
performing the rotation we introduce t, he boson fields.
The angle 0 is calculated self-consistently. In t.his way in

the large-U limit the pairing energy is evaluated exact, ly.
In the mixed boson-fermion representation the Hamil-

tonian reads

HR = —t cos 0 ) z c, c& ~ &~
—t sin 0 ) 'g, (z;t c,Tc&lz& l —z, lc;tcj Tzjt )

+U) d,'. d, —hcos0+ A& sino - A& ) cos0 —hsin0) (n:I n:1 )
2 ) T, (y;Tc, tc*ly l + y. lc;lc*Ty T)

A(')m.
—) AI T(eJe, + p, tp, t + p,. lp;1 +d, d; —1}—) A (c, c~ —p; p~ —d, d;)+

1)0'

(9)
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As we have mentioned above, the angle 9 is evaluated
self-consistently to achieve the condition that the mag-
netization at each site points along the z direction. The
angle 0 depends on the pairing field A& &, for the normal
state A(o} = 8 = 0, and Hamiltonian (9) reduces con-
siderably. In what follows we study two phases: (i) the
normal phase (A( },m~ = 0) and (ii) the superconducting
ph~e (X(n},m g 0).

III. RESULTS

In this section we present, the results corresponding to
the normal and superconducting phases.

A. The normal phase

f't —U U
+ Ud + l

m. ———kgTln2,
2

'
2

(10)

where

4d2
q = (z;~) = [1 —2d + j(l —2d ) —m, ] .1-m2

In order to study the phase without QDLRO we set, in

Hamiltonian (9), A(o} = 8 = 0. After integration of the
fermion variables and performing the saddle-point ap-
proximation for the boson fields, we obtain the following
free energy for the system:

k~T hl
ftv = — ) ln 1+ cosh P qt-t. ——

M 2j

system. However, some authors speculate that in two
dimensions the system may behave as a marginal Fermi
liquid.

The critical value of U at which a bound state occurs
is given by

U, = 2W[1+ gn(2 —n)],

assuming a rectangula. r ba.nd of width 2th'.
In Fig. 1 the mass-renormalization factor q, the prob-

ability of single-occupied sites and the energy per site
are shown as a function of U for n = 0.6. For U )
U, the mass renormalization q and the probability of
single-occupied sites are zero, and the energy is given

by Un—/2 Th. e same quantities (q, d, and F ) are
shown in Fig. 2 as a function of the particle density
n As . Eq. (12) indicates, for U & 2W (U ) 4W)
the mass-renormalization factor q is diA'erent from zero
(equal to zero) for the whole range of concentrations. For
2W & U & 4W there is a critical density n, such that
for n & n, there is a real bound state, while for n ) n,
the electrons can propagate as independent particles.

The pairing energy in the normal phase is given by the
minimum energy 6 needed to flip a spin. This quantity
is zero for U ( U, and increases for «p (~„ to reach,
in the large-U limit, the value 4 = U. To Hip a. spin in

the negative-U Hubbard model corresponds to changing
the number of particles in the transformed Hamiltonian
of Eq. (3). The pairing gap is given by the Mott gap of
a polarized system in the positive-U representation.

We calculate the chemical potential of t, he system (p =

Here z~ is the dispersion relation of the uncorrelated
band, and d2 = (dtd;). Note that d2 is the probabil-
ity of a single occupation for the original Hamiltonian

(1) with a local attraction.
This free energy has been minimized with respect to

the Lagrangian multipliers A~ ~ and At ~. After minimiza-
tion with respect to dz and It, we obtain —as expected-
two phases that correspond to q = 0 for large U and

q g 0 for small U.
If q = 0, electrons cannot propagate as independent

particles; this phase corresponds to a situation in which
there is a real two-particle bound state below the bot-
tom of the one-particle band. The electrons are bound in

pairs, and the system behaves as a collection of hard-core
bosons. In the present approximation, however, the bo-
son mass is infinite; only by including fluctuations around
the saddle-point have the bosons acquired a finite mass.
An alternative way to study the large-U limit is by means
of a canonical transformation of the original Hamiltonian
(1);t2 t~ with this procedure it is easy to show that the
effective hopping matrix element for the bosons is of the
order of t /U

The phase with q g 0 corresponds to a state with un-

bound electrons, which can propagate as independent
particles, although the eAective mass is strongly renor-
malized by a factor q. In this regime our approximation
suggests' that the system will behave as a Fermi-liquid
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~ 0. 0
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0 1 2 3 4

FIG. 1. Mass-renormalization factor q (a}, probability of
single-occupied sites d (b}, and energy per site (c}as a func-
tion of U in the normal phase. Calculatioris are for a particle
density n = 0.6, and bandwidth W = l.
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indicating the existence of t, he bound state, which can
accommodate a finite number of pairs. The bound state
lies at —U/2. For U ( 2W, p ~ —W as n ~ 0, and in all
cases p, ~ —U/2 as n ~ 1. For the parameters studied,
there is always a range of densities where the chemical
potential decreases with 71, indicating an instability of the
system. For this density the system is characterized by a
negative compressibility. This is not surprising, since the
normal phase does not correspond t,o the ground state of
the system. As we show below, the state with ODLRO
always has lower energy than the nornsal st, ate and is wel)
behaved.
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B. 'The superconductiug phase

In this phase we minimize t, he free energy with respect
to the ODLRO paramet, er 7m~. The free energy in t, he
saddle-point approxima t, ion is given by

-1.0

-1.5
0. 0 0. 2 0. 4 0. 6 0. S 1.0

fs =—

where

—I"gT ln 2,
2

) ln [1+cosh (PEt)j+ Ud

Un I rn,+ +

FIG. 2. Mass-renormalization factor q (a), probability of
single-occupied sites d (b), and energy per site (c) as a, func-
tion of the particle density n in the normal phase and calcu-
lated for diferent values of U as indicated i» t, he figure, and
N~=&.
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C
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FIG. 3. Chemical potent, ial p, as a function of the particle
density n in the normal phase (full line) and in the super-
conducting phase (dashed line). The curves correspond to
diferent values of the interaction parameter U as indicated
in the figure, and bandwidth W = 1.

Ofjv /Bn) as a function of n for different values of U. The
results are shown in Fig. 3. As can be seen, there is a
change in behavior when U = 2W. For U & 2R' there
is a region at low density where p is independent of n,

&k = g(coal —~i)2+ (&»-I, + ~

1 hrn, + A(O)7n
1—

2 gm'+ m"-,

g A(O&771, —h, m,

2 /m2 + pr)'-

qm.,

gm2+ m~

q7ll~
7gm'+ m. ',

4d~[1 —2d2 + g(1 —2d"-}"-
q =

1 —7n- —7n-
L

2/( I —2d2) 2—

7ll, 2 7712

n12 —rn2
Z

771

(l4)

This free energy is to be minimized with respect to the
parameters m~, h, A& &, a,nd d .

In this phase the behavior of the system is qualitatively
the same for all values of U. In Fig. 4 we show the factor
q and the probability of a single-occupied site for dift'e&ent

values of the band filling. For t, he sake of completeriess
the self-consistent value of the angle 0 is also shown. Note
t, hat q 1 for all values of U. The maxiiuum correction
to this value is about 5% for U/I4' 1. In contrast, to the
result obtained for the normal phase the renormalization
of the quasiparticle excitations in the supercondueting
state is very small. This means that the quasiparticles
and, as we will see below, the energy of the system are
well described by the BCS mean field, which corresponds
to q = 1. The pair-breaking gap is, as in the normal
phase, of the order of U for large U. It should be noted,
however, that the pair-breaking excitations are not the
ones that will destroy the off-diagonal long-range order



45 SLAVE-BOSON MEAN-FIELD THEORY FOR THE NEGATIVE-U. . . 381

1.00

0. 96

0. 10
4t

I

0. 05 .

0. 92

D. 20

0. 10

Q7&
0. 00

0 2 6 8 10 12
U

0. 00
1.60

0. 80
Cc&

FIG. 5. Difference between the energy of the normal phase
E& and the energy of the superconducting phase Ez as a
function of the interaction parameter U for two-particle den-
sities: n = 0.1 (dashed line) and n = 1.0 (full line), with a
bandwidth 6' = I.

I
0. 00
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U

FIG. 4. Mass-renormalization factor q (a), probability of
single-occupied sites d (b), and angle of rotation of the quan-
tization axis for the spin 8 (c) as a function of U in the super-
conducting phase with a bandwidth S' = 1. The correspond-
ing particle densities are iz = 0.2 (dashed line) and n = 0.9
(full line).

for large V. In both, the superconducting and the normal
states all the particles are bound in pairs for large U.

The chemical potential of the superconducting phase
as a function of n is shown in Fig. 3. In this phase the
compressibility is always positive.

The difference between the energy of the normal phase
E~ and the energy of the superconducting phase E~ is
shown in Fig. 5. As U increases from zero, this energy
difference increases exponentially. It goes through a max-
imum, and it decreases as I/U for large U. Clearly the
critical temperature T, will behave roughly as this energy
difference. However, to calculate T, one should evaluate
the entropy. Unfortunately the saddle point presented in
this work gives the wrong ent, ropy for the system, and in

order to do the thermodynamic one should correct the
mean field by including corrections around the saddle
point.

tion. We have obtained solutions for both the normal
and the superconduct, ing states.

The normal state obtained within this approximation
is qualitatively different from the normal state described
in the usual BCS mean field. The existence of real bound
pairs in the former is a feature that is not present in
the latter. This causes the energy difference between
the normal and the superconducting state (see Fig. 5)
to go as t /U for large U, while in the BCS mean field
it is of the order of U. It is cleai that in this limit the
superconductivity will be dest, royed because of t, ice loss
of coherence and not by pair-breaking excitat, ions.

For the superconducting state, we have shown that, in

order to obtain a qualitatively correct description at the
saddle-point level, a particular represent, ation of the orig-
inal Hamiltonian is to be used. The BCS nsean-field t, he-

ory is a very good description of the superconduct, ing
phase for all values of f~ and densities.

The method can be generalized to study tl&e interplay
between superconductivity and cllarge-density waves for
n I—a nearly half-filled band. The charge-density-
wave state in the positive U representat, ion of Hamilto-
nian (I) is described by a. staggered magnetization along
the z axis and can be included in a straightforward way

by including a different order parameter.
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